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as_weitrix Convert data to a weitrix

Description

Ensure data is a weighted matrix or "weitrix". A weitrix is a SummarizedExperiment or subclass
thereof with some metadata fields set. If it is ambiguous how to do this, produce an error.

Usage

as_weitrix(object, weights = NULL)

Arguments

object Object to convert.

weights Optional, weights matrix if not present in object.

Details

Input can be a matrix or DelayedArray.

Input can be anything the limma package recognizes, notably the limma EList class (for example
as output by voom or vooma).

If weights are not present in "object" and not given with "weights", they default for 0 for NA values
and 1 for everything else.
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Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Examples

mat <- matrix(c(1,2,NA,3,NA,4), ncol=2)
weitrix <- as_weitrix(mat)

metadata(weitrix)
weitrix_x(weitrix)
weitrix_weights(weitrix)

bless_weitrix Bless a SummarizedExperiment as a weitrix

Description

Set metadata entries in a SummarizedExperiment object so that it can be used as a weitrix.

Usage

bless_weitrix(object, x_name, weights_name)

Arguments

object A SummarizedExperiment object.

x_name Name of the assay containing the observations.

weights_name Name of the assay containing the weights.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Examples

mat <- matrix(c(1,2,NA,3,NA,4), ncol=2)
weights <- matrix(c(1,0.5,0,2,0,1), ncol=2)
se <- SummarizedExperiment(assays=list(foo=mat, bar=weights))

weitrix <- bless_weitrix(se, "foo", "bar")

metadata(weitrix)
weitrix_x(weitrix)
weitrix_weights(weitrix)
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components_seq_scree Proportion more variance explained by adding components one at a
time

Description

Based on the output of components_seq, work out how much further variance is explained by
adding further components.

Usage

components_seq_scree(comp_seq, rand_comp = NULL)

components_seq_screeplot(comp_seq, rand_comp = NULL)

Arguments

comp_seq A list of Components objects, as produced by components_seq.

rand_comp Optional. A Components object with a single component. This should be
based on a randomized version of the weitrix, for example as produced by
weitrix_components(weitrix_randomize(my_weitrix), p=1).

Details

If rand_comp is given, some possible threshold levels for including further components are also
calculated.

The "Parallel analysis" threshold is chosen based on varianced explained by a single component in
a randomized weitrix.

The "Optimistic" thresholds are chosen starting from the "Parallel Analysis" threshold. We view
the Parallel Analysis threshold as indicating random variance is split amongst an effective number
of samples, which will be somewhat smaller than the real number of samples. As each component
is accepted, the pool of remaining variance is reduced by its contribution, and also the number of
effective samples is reduced by one. The threshold is then the size of the remaining variance pool
divided by the effective remaining number of samples. This is a somewhat ad-hoc method, but may
indicate more components are justified than by criteria based on a flat threshold.

Value

components_seq_scree returns a data frame listing the variance explained by each further compo-
nent.

components_seq_screeplot returns a ggplot2 plot object.

Examples

comp_seq <- weitrix_components_seq(simwei, 4, verbose=FALSE)

components_seq_scree(comp_seq)
components_seq_screeplot(comp_seq)
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counts_proportions Produce a weitrix of proportions within groups

Description

Produce a weitrix of proportions between 0 and 1. The input is read counts at a collection of features
in a collection of samples. The features need to be grouped, for example by gene. The proportions
will add to 1 within each group.

Usage

counts_proportions(counts, grouping, verbose = TRUE, typecast = identity)

Arguments

counts A matrix of read counts. Rows are peaks and columns are samples.

grouping A data frame defining the grouping of features. Should have a column "group"
naming the group and a column "name" naming the feature (corresponding to
rownames(counts)).

verbose If TRUE, output some debugging and progress information.

typecast A function to convert a matrix to a matrix-like type. Applied at the chunk level,
before all chunks are rbinded. Allows use of memory-efficient matrix repre-
sentations.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Examples

grouping <- data.frame(
group=c("A","A","A","B","B"),
name=c("p1","p2","p3","p4","p5"))

counts <- rbind(
p1=c(1,2,0),
p2=c(0,1,0),
p3=c(1,0,0),
p4=c(0,0,1),
p5=c(0,2,1))

wei <- counts_proportions(counts, grouping)

weitrix_x(wei)
weitrix_weights(wei)
rowData(wei)
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counts_shift Produce a weitrix of shift scores

Description

Produce a weitrix of shift scores between -1 and 1. The input is read counts at a collection of peaks
(or other features) in a collection of samples. The peaks can be grouped by gene, and are ordered
within each gene.

Usage

counts_shift(counts, grouping, verbose = TRUE, typecast = identity)

Arguments

counts A matrix of read counts. Rows are peaks and columns are samples.

grouping A data frame defining the grouping of peaks into genes. Should have a column
"group" naming the gene and a column "name" naming the peak (corresponding
to rownames(counts)). Within each group, peak names should be ordered from
5’ to 3’ position.

verbose If TRUE, output some debugging and progress information.

typecast A function to convert a matrix to a matrix-like type. Applied at the chunk level,
before all chunks are rbinded. Allows use of memory-efficient matrix repre-
sentations.

Details

For a particular gene, a shift score measures measures the tendency of reads to be upstrand (nega-
tive) or downstrand (positive) of the average over all samples. Shift scores range between -1 and
1.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Examples

grouping <- data.frame(
group=c("A","A","A","B","B"),
name=c("p1","p2","p3","p4","p5"))

counts <- rbind(
p1=c(1,2,0),
p2=c(0,1,0),
p3=c(1,0,0),
p4=c(0,0,1),
p5=c(0,2,1))

wei <- counts_shift(counts, grouping)

weitrix_x(wei)
weitrix_weights(wei)
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rowData(wei)

matrix_long Convert a matrix to long form for ggplotting

Description

A convenience function which melts the matrix and then joins row and column information.

Usage

matrix_long(
matrix,
row_info = NULL,
col_info = NULL,
varnames = c("name", "col")

)

Arguments

matrix A matrix, or object that can be converted to a matrix.
row_info Information about rows of the matrix. A data frame, or object that can be con-

verted to a data frame.
col_info Information about columns of the matrix. A data frame, or object that can be

converted to a data frame.
varnames Vector of two column names in the output, the first for the row and the second

for the column.

Value

A data frame containing the matrix and associated information in long format.

Examples

matrix_long(weitrix_x(simwei), rowData(simwei), colData(simwei))

simwei Simulated weitrix dataset.

Description

This is a small simulated weitrix used in examples. There is one component of variation to be found,
plus Gaussian noise with variance inversely proportional to the weights.

Usage

simwei

Format

A weitrix object.
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weitrix_calibrate Adjust weights row-wise based on given row dispersions

Description

Based on estimated row dispersions, adjust weights in each row.

Usage

weitrix_calibrate(weitrix, dispersions)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

dispersions A dispersion for each row.

Details

For large numbers of samples this can be based directly on weitrix_dispersions. For small numbers
of samples, when using limma, it should be based on a trend-line fitted to known co-variates of the
dispersions. This can be done using weitrix_calibrate_trend.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Examples

# Adjust weights so dispersion for each row is exactly 1. This is dubious
# for a small dataset, but would be fine for a dataset with many columns.
comp <- weitrix_components(simwei, p=1, verbose=FALSE)
disp <- weitrix_dispersions(simwei, comp)
cal <- weitrix_calibrate(simwei, disp)
weitrix_dispersions(cal, comp)

weitrix_calibrate_all Adjust weights element-wise by fitting a trend to squared residuals

Description

This is a very flexible method of calibrating weights. It should be especially useful if your existing
weights account for technical variation, but there is also biological variation. In this case large
weights will tend to be overly optimistic, and a non-linear transformation of weights is needed.
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Usage

weitrix_calibrate_all(
weitrix,
design = ~1,
trend_formula = NULL,
mu_min = NA,
mu_max = NA,
keep_fit = FALSE

)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a pre-existing Components object, in
which case the existing fits (design$row) are used.

trend_formula A formula specification for predicting squared residuals. See below. If absent,
metadata(weitrix)$weitrix$calibrate_all_formula is used.

mu_min When fitting the GLM, omit observations where the estimated mu is less than
this value. When calculating weights from the fitted GLM, clip mu to be at least
this value.

mu_max When fitting the GLM, omit observations where the estimated mu is greater than
this value. When calculating weights from the fitted GLM, clip mu to be at most
this value.

keep_fit Keep glm fit and the data used to create it. This can be large! If TRUE, these will
be stored in metadata(weitrix)$weitrix$all_fit and metadata(weitrix)$weitrix$all_data.

Details

Residuals are found relative to a fitted model. A trend model is then fitted to the squared residuals
using a gamma GLM with log link function. Weitrix weights are set based on the inverse of the
fitted trend.

Residuals from a fitted model are generally smaller than residuals from the true model. A simple
adjustment to the weights is made to account for this. Weights are reduced by a factor of (n-
ncol(design)*nrow(weitrix))/n where n is the number of non-missing values in the weitrix.

trend_formula may reference any row or column variables, or mu for the predicted value, or
weight for the existing weights, or special factors row and col. Keep in mind also that a log
link function is used.

Unlike in weitrix_calibrate_trend, existing weights must be explicitly included in the formula
if they are to be retained (see examples).

This function is currently not memory efficient, it should be fine for bulk experiments but may
struggle for single cell. To reduce memory usage somewhat, when constructing the data frame on
which to fit the glm, only columns referenced in trend_formula are included.

Example formulas:

trend_formula=~1+offset(-log(weight)) Apply a global scaling, otherwise keeping weights
the same.

trend_formula=~log(weight) Moderate weights by raising them to some power and applying
some overall scaling factor. This will allow for biological variation.
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trend_formula=~poly(log(weight),2)) Apply a more complex quadratic curve-based modera-
tion of weights.

trend_formula=~col+offset(-log(weight)) Calibrate each sample’s weights by a scaling fac-
tor. Note that due to the simplistic adjustment for using a fitted model rather than the true model,
this may give misleading results when the design is unbalanced and there are few samples, i.e. when
there are some samples with much higher leverage than others.

trend_formula=~col*poly(log(weight),2) Quadratic curve moderation of weights, applied to
each sample individually.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

metadata(weitrix)$weitrix will contain the fitted trend model, and if requested the data frame
used to fit the model.

Examples

simcal <- weitrix_calibrate_all(simwei, ~1, ~log(weight), keep_fit=TRUE)

metadata(simcal)$weitrix$all_fit

weitrix_calibrate_trend

Adjust weights row-wise by fitting a trend to estimated dispersions

Description

Dispersions are estimated using weitrix_dispersions. A trend line is then fitted to the dispersions
using a gamma GLM with log link function. Weitrix weights are calibrated based on this trend line.

Usage

weitrix_calibrate_trend(weitrix, design = ~1, trend_formula = NULL)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a pre-existing Components object, in
which case the existing fits (design$row) are used.

trend_formula A formula specification for predicting log dispersion from columns of row-
Data(weitrix). If absent, metadata(weitrix)$weitrix$calibrate_trend_formula is
used.
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Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

Several columns are added to the rowData:

• deg_free Degrees of freedom for dispersion calculation.

• dispersion_before Dispersion before calibration.

• dispersion_trend Fitted dispersion trend.

• dispersion_after Dispersion for these new weights.

Examples

rowData(simwei)$total_weight <- rowSums(weitrix_weights(simwei))

# To estimate dispersions, use a simple model containing only an intercept
# term. Model log dispersion as a straight line relationship with log total
# weight and adjust weights to remove any trend.
cal <- weitrix_calibrate_trend(simwei,~1,trend_formula=~log(total_weight))

# This dataset has few rows, so calibration like this is dubious.
# Predictors in the fitted model are not significant.
summary( metadata(cal)$weitrix$trend_fit )

# Information about the calibration is added to rowData
rowData(cal)

# A Components object may also be used as the design argument.
comp <- weitrix_components(simwei, p=1, verbose=FALSE)
cal2 <- weitrix_calibrate_trend(simwei,comp,trend_formula=~log(total_weight))

rowData(cal2)

weitrix_calplot Weight calibration plots, optionally versus a covariate

Description

Various plots based on weighted squared residuals of each element in the weitrix. weight*residual^2
is the Pearson residual for a gamma GLM plus one, as used by weitrix_calibrate_all.

Usage

weitrix_calplot(
weitrix,
design = ~1,
covar,
cat,
funnel = FALSE,
guides = TRUE

)
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Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a Components object.

covar Optional. A covariate. Specify as you would with ggplot2::aes. Can be a
matrix of the same size as weitrix.

cat Optional. A categorical variable to break down the data by. Specify as you
would with ggplot2::aes.

funnel Flag. Produce a funnel plot? Note: covar can not be used for funnel plots.

guides Show blue guide lines.

Details

This function is not memory efficient. It is suitable for typical bulk data, but generally not not for
single-cell.

Defaults to a boxplot of sqrt(weight) weighted residuals. Blue guide bars are shown for the expected
quartiles, these will ideally line up with the boxplot.

If cat is given, it will be used to break the elements down into categories.

If covar is given, sqrt(weight) weighted residuals are plotted versus the covariate, with red trend
lines for the mean and for the mean +/- one standard deviation. If the weitrix is calibrated, the trend
lines should be horizontal lines with y intercept close to -1, 0 and 1. Blue guide lines are shown for
this ideal outcome.

Any of the variables available with weitrix_calibrate_all can be used for covar or cat.

Value

A ggplot2 plot.

Examples

weitrix_calplot(simwei, ~1)
weitrix_calplot(simwei, ~1, covar=mu)
weitrix_calplot(simwei, ~1, cat=col)

# weitrix_calplot should generally be used after calibration
cal <- weitrix_calibrate_all(simwei, ~1, ~col+log(weight))
weitrix_calplot(cal, ~1, cat=col)

# You can use a matrix of the same size as the weitrix as a covariate.
# It will often be useful to assess vs the original weighting.
weitrix_calplot(cal, ~1, covar=weitrix_weights(simwei))
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weitrix_components Principal components of a weitrix

Description

Finds principal components of a weitrix. If varimax rotation is enabled, these are then rotated to
enhance interpretability.

Usage

weitrix_components(
weitrix,
p = 0,
design = ~1,
n_restarts = 3,
max_iter = 1000,
tol = 1e-05,
use_varimax = TRUE,
initial = NULL,
verbose = TRUE

)

weitrix_components_seq(
weitrix,
p,
design = ~1,
n_restarts = 3,
max_iter = 1000,
tol = 1e-05,
use_varimax = TRUE,
verbose = TRUE

)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.
p Number of components to find.
design A formula referring to colData(weitrix) or a matrix, giving predictors of a

linear model for the experimental design. By default only an intercept term
is used, i.e. rows are centered before finding components. A more complex
formula might be used to account for batch effects. ~0 can be used if rows are
already centered.

n_restarts Number of restarts of the iteration to use.
max_iter Maximum iterations.
tol Stop iterating if R-squared increased by less than this amount in an iteration.
use_varimax Use varimax rotation to enhance interpretability of components.
initial Optional, an initial guess for column components (scores). Can have fewer

columns than p, in which remaining components are initialized randomly. Can
have more columns than p, in which case a randomly chosen subspace is used
in each restart.
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verbose Show messages about the progress of the iterations.

Details

Note that this is a slow numerical method to solve a gnarly problem, for the case where weights are
not uniform. The case of uniform weights or weights that can be written as an outer product of row
and column weights is somewhat faster, however there are much faster algorithms for this available
elsewhere.

An iterative method is used, starting from a random initial set of components. It is possible for this
to get stuck at a local minimum. To ameliorate this, the iteration is initially run n_restarts times
and the best result used. This is then iterated further. Examine all_R2s in the output to see if this
is happening – if the values are not all nearly identital, the iteration is sometimes getting stuck at
local minima. Increase n_restarts to increase the odds of finding the global minimum.

Value

A "Components" object with the following elements accessible using $.

• row Row matrix, aka loadings. Rows are rows in the weitrix, and columns contain the experi-
mental design (usually just an intercept term), and components.

• col Column matrix, aka scores. Rows are columns in the weitrix, and columns contain fitted
coefficients for the experimental design, and components.

• R2 Weighted R squared statistic. The proportion of total variance explained by the compo-
nents.

• all_R2s R2 statistics from all restarts. This can be used to check how consistently the iteration
finds optimal components.

• ind_designColumn indices associated with experimental design.

• ind_componentsColumn indices associated with components.

For a result comp, the original measurements are approximated by comp$row %*% t(comp$col).

weitrix_components_seq returns a list of Components objects, with increasing numbers of com-
ponents from 1 up to p.

Functions

• weitrix_components(): Find a matrix decomposition with the specified number of compo-
nents.

• weitrix_components_seq(): Produce a sequence of weitrix decompositions with 1 to p
components.

Examples

# Variables in rows, observations in columns, as per Bioconductor convention
dat <- t(iris[,1:4])

# Find two components
comp <- weitrix_components(dat, p=2, max_iter=5, n_restart=1)

# Examine row and col matrices
pairs(comp$row, panel=function(x,y) text(x,y,rownames(comp$row)))
pairs(comp$col)
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weitrix_confects Top confident effects based on one or more contrasts of a linear model
for each row

Description

This function provides topconfects-style testing of a linear model contrast, as well as a multi-
contrast extension of this method for F-tests with effect sizes.

Usage

weitrix_confects(
weitrix,
design,
coef = NULL,
contrasts = NULL,
effect = c("auto", "contrast", "sd", "cohen_f"),
dispersion_est = c("ebayes_limma", "row", "none"),
fdr = 0.05,
step = NULL,
full = FALSE

)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a pre-existing Components object, in
which case the existing fits (design$row) are used.

coef Give either coef or contrasts but not both. If coef is given, it is converted into
a set of contrasts that simply test each given coefficient. Coefficients can be
specified by number of name.

contrasts Give either coef or contrasts but not both. One or more contrasts of interest,
i.e. specifications of linear combination of coefficients. Each contrast should be
placed in a columns. The number of rows should match the number of coeffi-
cients.

effect Effect to estimate and provide confidence bounds on. See description.

dispersion_est Method of estimating per-row dispersion. See description.

fdr False Discovery Rate to control for.

step Granularity of effect sizes to test.

full If TRUE, output some further columns related to the calculations.

Details

Based on the effect argument, the estimated effect may be:

• "auto" Choose "contrast" or "sd" as appropriate.

• "contrast" The estimated contrast. This should produce results identical to a limma-topconfects
analysis.
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• "sd" Standard deviation explained (i.e. square root of the variance explained) by the part of
the model captured by the contrasts provided.

• "cohen_f" Cohen’s f, i.e. the signal to noise ratio. Ranking is similar to traditional ranking
of results by p-value.

Based on the dispersion_est argument, the estimated residual dispersion is estimated as:

• "none" Weitrix is assumed to be fully calibrated already. Dispersion is assumed to be 1. If
the assumption is correct, this is most powerful, as there is no uncertainty to the dispersion.

• "row" Dispersion is estimated based on the residuals for each row. With a limited number of
columns, this estimate is uncertain (low residual degrees of freedom), so may lack power.

• "ebayes_limma" Default, recommended. Perform Empricial Bayes squeezing of dispersions,
using limma::squeezeVar. This also reduces the uncertainty about the dispersion (mainfest-
ing as extra "prior" degrees of freedom), increasing the power of the test.

In results from this function, whenever we talk about the mean, standard deviation explained, or
typical observation error, this should be understood to be weighted. Standard deviation explained is
in the same units as the observations, but its estimation is weighted by the weights, so in a row with
some high weight observations and other low weight observations, estimated standard deviation
explained will mostly be driven by the high weight observations.

Value

A topconfects result. The $table data frame contains columns:

• effect Estimated effect (as requested using the effect parameter).

• confect An inner confidence bound on effect.

• fdr_zero FDR-adjusted p-value for the null hypothesis that effect is zero.

• row_mean Weighted row mean.

• typical_obs_err Typical residual standard deviation (square root of variance) associated with
observations in this row. Note that each observation has its own associated variance, based on
its weight and the row dispersion estimate used. This column is calculated from the weighted
average variance of observations.

Examples

# Simplest possible test
# Which rows have an average different from zero?
weitrix_confects(simwei, ~1, coef="(Intercept)")

# See vignettes for more substantial examples
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weitrix_dispersions Calculate row dispersions

Description

Calculate the dispersion of each row. For each observation, this value divided by the weight gives
the observation’s variance.

Usage

weitrix_dispersions(weitrix, design = ~1)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a pre-existing Components object, in
which case the existing fits (design$row) are used.

Value

A numeric vector.

Examples

# Using a model just containing an intercept
weitrix_dispersions(simwei, ~1)

# Allowing for one component of variation, the dispersions are lower
comp <- weitrix_components(simwei, p=1, verbose=FALSE)
weitrix_dispersions(simwei, comp)

weitrix_elist Convert a weitrix object to a limma EList object

Description

The resulting object can be used as input to limma::lmFit for a limma analysis.

Usage

weitrix_elist(weitrix)

Arguments

weitrix A weitrix object.

Value

A limma EList object.



18 weitrix_hill

Examples

library(limma)

elist <- weitrix_elist(simwei)
design <- model.matrix(~true_score, data=colData(simwei))
fit <- lmFit(elist, design)
# ...perform further limma analysis steps as desired...

weitrix_hill Calculate Hill numbers (effective number of observations) for rows or
columns

Description

Effective numbers of observations. order=0 produces count of non-zero weights. order=1 pro-
duces exp(entropy). order=2 produces the inverse Simpson index.

Usage

weitrix_hill(weitrix, what = c("row", "col"), order = 2)

Arguments

weitrix A weitrix object.

what Calculate for rows ("row") (default) or columns ("col")?

order Order of the Hill numbers.

Value

A numeric vector of effective numbers of observations.

Examples

weitrix_weights(simwei)

weitrix_hill(simwei, what="row", order=0)
weitrix_hill(simwei, what="row", order=1)
weitrix_hill(simwei, what="row", order=2)

weitrix_hill(simwei, what="col", order=0)
weitrix_hill(simwei, what="col", order=1)
weitrix_hill(simwei, what="col", order=2)
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weitrix_randomize Generate a random normally distributed version of a weitrix

Description

Values are generated with variance equal to 1/weight. This can be used to see what R-squared would
be achieved with purely random data, and therefore an appropriate number of components to use.
This is known as Parallel Analysis.

Usage

weitrix_randomize(weitrix)

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

Value

A SummarizedExperiment object with metadata fields marking it as a weitrix.

See Also

components_seq_screeplot

Examples

weitrix_randomize(simwei)

weitrix_sd_confects Find rows with confidently excessive variability in a calibrated weitrix

Description

Find rows with confident excess standard deviation beyond what is expected based on the weights
of a calibrated weitrix. This may be used, for example, to find potential marker genes.

Usage

weitrix_sd_confects(
weitrix,
design = ~1,
fdr = 0.05,
step = 0.001,
assume_normal = TRUE

)



20 weitrix_sd_confects

Arguments

weitrix A weitrix object, or an object that can be converted to a weitrix with as_weitrix.

design A formula in terms of colData(weitrix or a design matrix, which will be fitted
to the weitrix on each row. Can also be a pre-existing Components object, in
which case the existing fits (design$row) are used.

fdr False Discovery Rate to control for.

step Granularity of effect sizes to test.

assume_normal Assume weighted residuals are normally distributed? Assumption of normality
is quite a strong assemption here. If TRUE, tests are based on the weighted
squared residuals following a chi-squared distribution. If FALSE, tests are based
on assuming the dispersion follows an asymptotically normal distribution, with
variance estimated from the weighted squared residuals. If FALSE, a reasonably
large number of columns is required. Defaults to TRUE.

Details

Important note: With the default setting of assume_normal=TRUE, the "confect" values produced by
this method are only valid if the weighted residuals are close to normally distributed. If you have a
reasonably large number of columns (eg single cell data), you can and should relax this assumption
by specifying assume_normal=FALSE.

This is a conversion of the "dispersion" statistic for each row into units that are more readily inter-
pretable, accompanied by confidence bounds with a multiple testing correction.

We are looking for further perturbation of observed values beyond what is accounted for by a linear
model and, further, beyond what is expected based on the observation weights (assumed to be
calibrated and so interpreted as 1/variance). We are seeking to estimate the standard deviation of
this further perturbation.

The weitrix must have been calibrated for results to make sense.

Top confident effect sizes are found using the topconfects method, based on the model that the
observed weighted sum of squared residuals being non-central chi-square distributed.

Note that all calculations are based on weighted residuals, with a rescaling to place results on the
original scale. When a row has highly variable weights, this is an approximation that is only sensible
if the weights are unrelated to the values themselves.

Value

A topconfects result. The $table data frame contains columns:

• effect Estimated excess standard deviation, in the same units as the observations themselves.
0 if the dispersion is less than 1.

• confect A lower confidence bound on effect.

• row_mean Weighted mean of observations in this row.

• typical_obs_err Typical accuracy of each observation.

• dispersion Dispersion. Weighted sum of squared residuals divided by residual degrees of
freedom.

• n_present Number of observations with non-zero weight.

• df Degrees of freedom. n minus the number of coefficients in the model.

• fdr_zero FDR-adjusted p-value for the null hypothesis that effect is zero.

Note that dispersion = effect^2/typical_obs_err^2 + 1 for non-zero effect values.
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Examples

# weitrix_sd_confects should only be used with a calibrated weitrix
calwei <- weitrix_calibrate_all(simwei, ~1, ~1)

weitrix_sd_confects(calwei, ~1)

weitrix_weights Get or set a weitrix object’s "weights" matrix

Description

Gets or sets the appropriate assay in the SummarizedExperiment object.

Usage

weitrix_weights(weitrix)

weitrix_weights(x) <- value

Arguments

weitrix A weitrix object.

x The weitrix to modify.

value The new matrix.

Value

A matrix-like object such as a matrix or a DelayedArray.

Examples

weitrix_weights(simwei)

weitrix_x Get or set a weitrix object’s "x" matrix

Description

Gets or sets the appropriate assay in the SummarizedExperiment object.

Usage

weitrix_x(weitrix)

weitrix_x(x) <- value
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Arguments

weitrix A weitrix object.

x The weitrix to modify.

value The new matrix.

Value

A matrix-like object such as a matrix or a DelayedArray.

Examples

weitrix_x(simwei)

simwei2 <- simwei
weitrix_x(simwei2) <- weitrix_x(simwei2) * 2

well_knotted_spline Natural cubic spline with good choice of knots

Description

For use in model formulas, natural cubic spline as in splines::ns but with knot positions chosen
using k-means rather than quantiles. Automatically uses less knots if there are insufficient distinct
values.

Usage

well_knotted_spline(x, n_knots, verbose = TRUE)

Arguments

x The predictor variable. A numeric vector.

n_knots Number of knots to use.

verbose If TRUE, produce a message about the knots chosen.

Details

Wong (1982, 1984) showed the asymptotic density of k-means in 1 dimension is proportional to the
cube root of the density of x. Compared to using quantiles (the default for ns), choosing knots using
k-means produces a better spread of knot locations if the distribution of values is very uneven.

k-means is computed in an optimal, deterministic way using Ckmeans.1d.dp.

Value

A matrix of predictors, similar to ns.

This function supports "safe prediction" (see makepredictcall). Original knot locations will be
used for prediction with predict.
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References
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See Also

ns, makepredictcall

Examples

lm(mpg ~ well_knotted_spline(wt,3), data=mtcars)

# When insufficient unique values exist, less knots are used
lm(mpg ~ well_knotted_spline(gear,3), data=mtcars)

library(ggplot2)
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_smooth(method="lm", formula=y~well_knotted_spline(x,10))

https://dspace.mit.edu/handle/1721.1/46876
https://dspace.mit.edu/handle/1721.1/46876
https://doi.org/10.1007/BF01890126
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