Package 'stJoincount'

January 21, 2025

Type Package

Title stJoincount - Join count statistic for quantifying spatial correlation between clusters

Version 1.8.0

Description stJoincount facilitates the application of join count analysis to spatial transcriptomic data generated from the 10x Genomics Visium platform.

This tool first converts a labeled spatial tissue map into a raster object, in which each spatial feature is represented by a pixel coded by label assignment.

This process includes automatic calculation of optimal raster resolution and extent for the sample. A neighbors list is then created from the rasterized sample, in which adjacent and diagonal neighbors for each pixel are identified.

After adding binary spatial weights to the neighbors list, a multi-categorical join count analysis is performed to tabulate ``joins" between all possible combinations of label pairs.

The function returns the observed join counts, the expected count under conditions of spatial randomness, and the variance calculated under non-free sampling.

The z-score is then calculated as the difference between observed and expected counts, divided by the square root of the variance.

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.2.0)

Imports graphics, stats, dplyr, magrittr, sp, raster, spdep, ggplot2, pheatmap, grDevices, Seurat, SpatialExperiment, SummarizedExperiment

LazyData FALSE

RoxygenNote 7.2.1

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews Transcriptomics, Clustering, Spatial, BiocViews, Software

Bugreports https://github.com/Nina-Song/stJoincount/issues

URL https://github.com/Nina-Song/stJoincount

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/stJoincount

git_branch RELEASE_3_20

git_last_commit 8ee63ec

2 customDict

git_last_commit_date 2024-10-29
Repository Bioconductor 3.20
Date/Publication 2025-01-20
Author Jiarong Song [cre, aut] (https://orcid.org/0000-0002-3673-4853),
 Rania Bassiouni [aut],
 David Craig [aut]
Maintainer Jiarong Song songjiar@usc.edu>

Contents

 •

Description

customDict

Create a dictionary with categorical cluster labels as values and their converted numerical labels as keys

Generate dict of cluster names

Usage

customDict(sampleInfo)

Arguments

sampleInfo

A data.frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

Value

A dictionary with categorical cluster labels as values and their converted numerical labels as keys.

dataPrepFromSeurat 3

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
nameList <- customDict(humanBC)</pre>
```

dataPrepFromSeurat

Data Preparation from Seurat Object

Description

This data preparation function creates a data frame from a Seurat Object. It extracts the pixel information and cluster labels of each barcode from user's input Seurat Object and generate a data frame with a certain format which is required for the algorithm. If the user has customized labels, this function will change the column name to "Cluster" when generating the data frame to make it consistent to the required format.

Usage

```
dataPrepFromSeurat(SeuratObj, label)
```

Arguments

Seurat0bj input Seurat object that contains labels for each barcode label the column name of the label information in "meta.data"

Value

A data frame contains the pixel information and cluster labels for each barcode the sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

```
fpath <- system.file("extdata", "SeuratBC.rda", package="stJoincount")
load(fpath)
df <- dataPrepFromSeurat(seuratBC, "Cluster")</pre>
```

4 extentBuffer

dataPrepFromSpE

Data Preparation from SpatialExperiment Object

Description

This data preparation function creates a data.frame form Spatial Experiment Object. It extracts the pixel information and cluster labels of each barcode from user's input Seurat Object and generate a data.frame with a certain format which is required for the algorithm. If the user has customized labels, this function will change the column name to "Cluster" when generating the data.frame to make it consist to the required format.

Usage

```
dataPrepFromSpE(SpeObj, label)
```

Arguments

Spe0bj input SpatialExperiment object that contains labels for each barcode

label the column name of the label information in "colData"

Value

A data.frame contains the pixel information and cluster labels for each barcode of the sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

Examples

```
fpath <- system.file("extdata", "SpeBC.rda", package="stJoincount")
load(fpath)
df <- dataPrepFromSpE(SpeObjBC, "label")</pre>
```

extentBuffer

Find optimal number of buffer for extent

Description

When we create the rasterlayer, there will be a rectangular range. It is often necessary to provide a buffer to ensure that subsequent functions do not result in blank or missed pixels. This function is to find the right buffer for the sample coordinates so that each cluster is not lost in the process of converting a spot to a pixel.

Usage

```
extentBuffer(sampleInfo)
```

joincountAnalysis 5

Arguments

sampleInfo

A data.frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode This data.frame can be produced by "dataPrepFromSeurat()/dataPrepFromSpE" functions

Value

optimal number of buffer for extent

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
n <- extentBuffer(humanBC)</pre>
```

joincountAnalysis

Join count analysis

Description

This function performes multi-categorical join count analysis of the rasterized sample. A neighbors list is then created from the rasterized sample, in which adjacent and diagonal neighbors for each pixel are identified.

Usage

```
joincountAnalysis(mosaicIntegration)
```

Arguments

mosaicIntegration

A raster object converted from a labeled spatial tissue map from Function rasterization.

Value

A data frame that contains the observed join counts, the expected count under conditions of spatial randomness, the variance calculated under non-free sampling, and calculated Z-score.

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
mosaicIntegration <- rasterizeEachCluster(humanBC)
joincount.result <- joincountAnalysis(mosaicIntegration)</pre>
```

6 rasterizeEachCluster

mosaicIntPlot

Mosaic plot

Description

Visualization of the rasterization results and label coding of the sample.

Usage

```
mosaicIntPlot(sampleInfo, mosaicIntegration)
```

Arguments

sampleInfo

A dataset of a human breast cancer sample containing the pixel information and cluster labels for each barcode.

mosaicIntegration

A raster object converted from a labeled spatial tissue map.

Value

A mosaic plot with labeled pixels.

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
mosaicIntegration <- rasterizeEachCluster(humanBC)
mosaicIntPlot(humanBC, mosaicIntegration)</pre>
```

 $rasterize Each {\tt Cluster}$

Create a raster object from a labeled sample

Description

Converts a labeled spatial tissue map into a raster object, in which each spatial cluster is represented by a pixel coded by label assignment.

Usage

```
rasterizeEachCluster(sampleInfo)
```

Arguments

sampleInfo

A data.frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

rasterPrep 7

Value

This function returns a class of RasterLayer. This raster object is converted from a labeled spatial tissue map.

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
mosaicIntegration <- rasterizeEachCluster(humanBC)</pre>
```

rasterPrep

Raster layer preparation

Description

When sample coordinates finds a suitable buffer to ensure that each cluster is not lost in the process of converting the spot to pixel, apply this buffer to this function to find a suitable rectangle for the rasterlayer

Usage

```
rasterPrep(sampleInfo, n)
```

Arguments

sampleInfo

A data.frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

n

buffer for extent (from function extentBuffer).

Value

This function returns a class of RasterLayer. This is a raster layer with calculated resolution and extent with buffer applied

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
raster <- rasterPrep(humanBC, 15)</pre>
```

8 zscoreMatrix

resolutionCalc

Resolution calculation

Description

Automatic calculation of optimal raster resolution for the sample.

Usage

```
resolutionCalc(sampleInfo)
```

Arguments

sampleInfo

A data.frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

Value

A list that contains length and height of resolution.

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
resolutionList <- resolutionCalc(humanBC)</pre>
```

zscoreMatrix

Generate Z-score matrix

Description

This function provides a heatmap of z-scores resulting from the join count analysis for all possible label pairs.

Usage

```
zscoreMatrix(sampleInfo, joincount.result)
```

Arguments

sampleInfo

A data frame contains the pixel information and cluster labels for each barcode of a human breast cancer sample. The index contains barcodes, and at least three other columns that have these information are required and the column names should be the same as following: "imagerow": The row pixel coordinate of the center of the spot "imagecol": The column pixel coordinate of the center of the spot "Cluster": The label that corresponding to this barcode

joincount.result

calculated result from join count analysis

zscorePlot 9

Value

A data.frame that has a z-score matrix resulting from the join count analysis for all possible label pairs

Examples

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
mosaicIntegration <- rasterizeEachCluster(humanBC)
joincount.result <- joincountAnalysis(mosaicIntegration)
matrix <- zscoreMatrix(humanBC, joincount.result)</pre>
```

zscorePlot

Visulization of Z-score heatmap.

Description

Visulization of Z-score heatmap.

Usage

```
zscorePlot(zscoreMatrix)
```

Arguments

zscoreMatrix calculated and reshaped z-score matirx from join count analysis.

Value

A Heatmap plot

```
fpath <- system.file("extdata", "dataframe.rda", package="stJoincount")
load(fpath)
mosaicIntegration <- rasterizeEachCluster(humanBC)
joincount.result <- joincountAnalysis(mosaicIntegration)
matrix <- zscoreMatrix(humanBC, joincount.result)
zscorePlot(matrix)</pre>
```

Index

```
customDict, 2

dataPrepFromSeurat, 3
dataPrepFromSpE, 4

extentBuffer, 4

joincountAnalysis, 5

mosaicIntPlot, 6

rasterizeEachCluster, 6
rasterPrep, 7
resolutionCalc, 8

zscoreMatrix, 8
zscorePlot, 9
```