Package 'signeR'

January 21, 2025

Type Package

Title Empirical Bayesian approach to mutational signature discovery

Version 2.8.0

Author Rafael Rosales, Rodrigo Drummond, Renan Valieris, Alexandre Defelicibus, Israel Tojal da Silva

Maintainer Renan Valieris <renan.valieris@accamargo.org.br>

Description The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.

License GPL-3

Imports BiocGenerics, Biostrings, class, grDevices, GenomeInfoDb, GenomicRanges, IRanges, nloptr, methods, stats, utils, PMCMRplus, parallel, pvclust, ppclust, clue, survival, maxstat, survivalAnalysis, future, VGAM, MASS, kknn, glmnet, e1071, randomForest, ada, future.apply, ggplot2, pROC, pheatmap, RColorBrewer, listenv, reshape2, scales, survminer, dplyr, ggpubr, cowplot, tibble, readr, shiny, shinydashboard, shinycssloaders, shinyWidgets, bsplus, DT, magrittr, tidyr, BiocFileCache, proxy, rtracklayer, BSgenome

Depends R (>= 3.0.2), VariantAnnotation, NMF

LinkingTo Rcpp, RcppArmadillo (>= 0.7.100)

SystemRequirements C++11

URL https://github.com/TojalLab/signeR

LazyData true

NeedsCompilation yes

ByteCompile TRUE

- **biocViews** GenomicVariation, SomaticMutation, StatisticalMethod, Visualization
- Suggests knitr, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, rmarkdown
- VignetteBuilder knitr

RoxygenNote 7.2.3 Encoding UTF-8 git_url https://git.bioconductor.org/packages/signeR git_branch RELEASE_3_20 git_last_commit_99cef7c git_last_commit_date 2024-10-29 Repository Bioconductor 3.20

Date/Publication 2025-01-20

Contents

signeR-package	2
cosmic_data	3
DiffExp	6
ExposureClassify	7
ExposureClassifyCV	9
ExposureCorrelation	10
ExposureGLM	11
ExposureSurvival	13
ExposureSurvModel	14
FuzzyClustExp	15
generateMatrix	17
HClustExp	18
methods	19
plots	20
signeR	22
signeRFlow	24
SignExp	25
tcga_similarities	25
tcga_tumors	27
	28

Index

signeR-package

Empirical Bayesian approach to mutational signature discovery

Description

The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.

cosmic_data

Details

signeR package focuses on the characterization and analysis of mutational processes. Its functionalities can be divided into three steps. Firstly, it provides tools to process VCF files and generate matrices of SNV mutation counts and mutational opportunities, both divided according to a 3bp context (mutation site and its neighboring bases). Secondly, the main part of the package takes those matrices as input and applies a Bayesian approach to estimate the number of underlying signatures and their mutational profiles. Thirdly, the package provides tools to correlate the activities of those signatures with other relevant information, e.g. clinical data, to infer conclusions about the analyzed genome samples, which can be useful for clinical applications.

Author(s)

Rodrigo Drummond, Rafael Rosales, Renan Valieris, Israel Tojal da Silva

Maintainer: Renan Valieris <renan.valieris@accamargo.org.br>

References

This work has been submitted to Bioinformatics under the title "signeR: An empirical Bayesian approach to mutational signature discovery".

L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, and M. R. Stratton. Deciphering Signatures of Mutational Processes Operative in Human Cancer. Cell Reports, 3(1):246-259, Jan. 2013. doi:10.1016/j.celrep.2012.12.008.

A. Fischer, C. J. Illingworth, P. J. Campbell, and V. Mustonen. EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome biology, 14(4):R39, Apr. 2013. doi:10.1186/gb-2013-14-4-r39.

Examples

vignette(package="signeR")

cosmic_data

COSMIC Mutational Signatures

Description

COSMIC Mutational Signatures Data Files (SBS) v3.2.

Usage

data("cosmic_data")

Format

A data frame with 96 observations on the following 75 variables.

Substitution.Type a character vector

Trinucleotide a character vector

Somatic.Mutation.Type a character vector

SBS1 a numeric vector

cosmic_data

SBS2 a numeric vector SBS3 a numeric vector SBS4 a numeric vector SBS5 a numeric vector SBS6 a numeric vector SBS7a a numeric vector SBS7b a numeric vector SBS7c a numeric vector SBS7d a numeric vector SBS8 a numeric vector SBS9 a numeric vector SBS10a a numeric vector SBS10b a numeric vector SBS11 a numeric vector SBS12 a numeric vector SBS13 a numeric vector SBS14 a numeric vector SBS15 a numeric vector SBS16 a numeric vector SBS17a a numeric vector SBS17b a numeric vector SBS18 a numeric vector SBS19 a numeric vector SBS20 a numeric vector SBS21 a numeric vector SBS22 a numeric vector SBS23 a numeric vector SBS24 a numeric vector SBS25 a numeric vector SBS26 a numeric vector SBS27 a numeric vector SBS28 a numeric vector SBS29 a numeric vector SBS30 a numeric vector SBS31 a numeric vector SBS32 a numeric vector SBS33 a numeric vector SBS34 a numeric vector SBS35 a numeric vector SBS36 a numeric vector

4

cosmic_data

SBS37	a numeric vector
SBS38	a numeric vector
SBS39	a numeric vector
SBS40	a numeric vector
SBS41	a numeric vector
SBS42	a numeric vector
SBS43	a numeric vector
SBS44	a numeric vector
SBS45	a numeric vector
SBS46	a numeric vector
SBS47	a numeric vector
SBS48	a numeric vector
SBS49	a numeric vector
SBS50	a numeric vector
SBS51	a numeric vector
SBS52	a numeric vector
SBS53	a numeric vector
SBS54	a numeric vector
SBS55	a numeric vector
SBS56	a numeric vector
SBS57	a numeric vector
SBS58	a numeric vector
SBS59	a numeric vector
SBS60	a numeric vector
SBS84	a numeric vector
SBS85	a numeric vector
SBS86	a numeric vector
SBS87	a numeric vector
SBS88	a numeric vector
SBS89	a numeric vector
SBS90	a numeric vector

Source

https://cancer.sanger.ac.uk/signatures/documents/453/COSMIC_v3.2_SBS_GRCh38.txt

DiffExp

Description

DiffExp : Identify signatures with significantly different activities among sample groups.

Usage

```
## S4 method for signature 'SignExp,character'
DiffExp(signexp_obj, labels, max_instances=200,
    method=kruskal.test, contrast="all", quant=0.5, cutoff=0.05,
    p.adj= "BH",plot_to_file=FALSE, file="Diffexp_boxplot.pdf",
    colored=TRUE, relative = FALSE, ...)
```

signexp_obj	a SignExp object returned by signeR function.
labels	sample labels used to define sample groups.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
method	algorithm used to compare each signature exposure among sample groups. De- fault is kruskal.test, which leads to the use of Kruskal-Wallis Rank Sum Test.
contrast	defines which sample groups will be considered in the analysis. Default is "all", which leads the algorithm to evaluate the null hypothesis of exposure levels being constant in all groups. Instead, if this parameter contains a list of group labels, the algorithm will evaluate the null hypothesis of exposure levels being constant among those groups.
quant	the p-values quantile which, after log-transform, will be used as DES (Differen- tial Exposure Score). Default is 0.5, which means the median log-transformed p-value will be considered as DES.
p.adj	correction method for p-values adjust at the post-hoc tests performed when there are more than two group labels. See p.adjust for options.
cutoff	threshold for p-values quantile for signatures to be considered as showing dif- ferential exposure.
plot_to_file	Whether to save the plot to the file parameter. Default is FALSE.
file	Output file to export p-values boxplot.
colored	Boolean variable, if TRUE boxplots of differentially exposed signatures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for DE evaluation will be colored in blue. Otherwise the plot will be black & white.
relative	Whether tests should be performed on absolute or relative signature contribu- tions to each sample mutation. Default is FALSE (absolute contributions will be tested).
	additional parameters for test algorithm defined by the method parameter.

ExposureClassify

Value

A list with the following items:

Pvquant	boolean array with one entry for each signature, indicating whether it shows differential exposure.
Pvalues	matrix containing all computed p-values, with one row for each signature.
MostExposed	for each differentially exposed signature, this array contains the label of the group where it showed higher levels of exposure. Contains NA for signatures not showing differential exposure.
Differences	List of matrices, exported only when there are more than two groups in the anal- ysis and any signature is found to be differentially active. Each matrix corre- sponds to one of the highlighted signatures and show the results of comparisons among groups, with the significant ones marked as TRUE.

Examples

assuming signatures is the return value of signeR()

```
# labels vector, one for each sample
my_labels <- c("a","a","b","b")</pre>
```

diff_exposure <- DiffExp(signatures\$SignExposures,labels=my_labels)</pre>

```
# see also
vignette(package="signeR")
```

ExposureClassify Classify samples by exposure levels

Description

Assign unlabeled samples to previously defined groups.

Usage

```
## S4 method for signature 'SignExp,character'
ExposureClassify(signexp_obj, labels,
    method="knn", max_instances=200, k=3, weights=NA, plot_to_file=FALSE,
    file="Classification_barplot.pdf", colors=NA_character_, min_agree=0.75,...)
```

signexp_obj	A SignExp object returned by signeR function.
labels	Sample labels. Every sample labeled as NA will be classified according to its mutational profile and the profiles of labeled samples.
method	Classification algorithm used. Default is k-Nearest Neighbors (kNN). Any other algorithm may be used, as long as it is customized to satisfy the following conditions: Input: a matrix of labeled samples, with one sample per line and one feature per
	column; a matrix of unlabeled samples to classify, with the same structure; an array of labels, with one entry for each labeled sample. Output: an array of assigned labels, one for each unlabeled sample.

<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
k	Number of nearest neighbors considered for classification, used only if method="kNN". Default is 3.
weights	Vector of weights applied to the signatures when performing classification. De- fault is NA, which leads all the signatures to have weight=1.
plot_to_file	Whether to save the plot to the file parameter. Default is FALSE.
file	File that will be generated with classification graphic output.
colors	Array of color names, one for each sample class. Colors will be recycled if the length of this array is less than the number of classes.
min_agree	Minimum frequency of agreement among individual classifications. Samples showing a frequency of agreement below this value are considered as "undefined". Default is 0.75.
	additional parameters for classification algorithm (defined by "method" above).

Value

A list with the following items:

class	The assigned classes for each unlabeled sample.
freq	Classification agreement for each unlabeled sample: the relative frequency of assignment of each sample to the group specified in "class".
د	
allfreqs	Matrix with one column for each unlabeled sample and one row for each class label. Contains the assignment frequencies of each sample to each class.
probs	As above, a matrix with unlabeled samples in columns and class labels in rows. Contains the average probability, among repeated exposure classifications, of each sample belonging to each class.

Examples

assuming signatures is the return value of signeR()

```
my_labels <- c("a","a","a","a",NA,"b","b","b","b",NA)
Class <- ExposureClassify(signatures$SignExposures, labels=my_labels)</pre>
```

see also
vignette(package="signeR")

ExposureClassifyCV *k-fold cross-validation of sample classifcation by exposure levels*

Description

Splits labeled samples in k groups (deafult k=8), keeping the proportion of classes stable among groups. Classify samples in each group according to the k-1 remaining ones. Gather results and evaluate global classification performance.

Usage

```
## S4 method for signature 'SignExp,character'
ExposureClassifyCV(signexp_obj, labels, method="knn",
    max_instances=200, k=3, weights=NA, plot_to_file=FALSE,
    file="Classification_CV_barplot.pdf", colors=NA_character_,
    min_agree=0.75, fold=8, ...)
```

signexp_obj	A SignExp object returned by signeR function.
labels	Sample labels. Unlabeled samples (NA labels) will be ignored.
method	Classification algorithm used. Default is k-Nearest Neighbors (kNN). Any other algorithm may be used, as long as it is customized to satisfy the following con- ditions: Input: a matrix of labeled samples, with one sample per line and one feature per column; a matrix of unlabeled samples to classify, with the same structure; an array of labels, with one entry for each labeled sample. Output: an array of assigned labels, one for each unlabeled sample.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
k	Number of nearest neighbors considered for classification, used only if method="kNN". Default is 3.
weights	Vector of weights applied to the signatures when performing classification. De- fault is NA, which leads all the signatures to have weight=1.
<pre>plot_to_file</pre>	Whether to save the plot to the file parameter. Default is FALSE.
file	File that will be generated with cross validation graphic output.
colors	Array of color names, one for each sample class. Colors will be recycled if the length of this array is less than the number of classes.
min_agree	Minimum frequency of agreement among individual classifications. Samples showing a frequency of agreement below this value are considered as "undefined". Default is 0.75.
fold	Number of subsets in which labeled samples will be split
	additional parameters for classification algorithm (defined by "method" above).

Value

A list with the following items:

confusion_matrix

	Contingency table of attributed sample classes against original labels.
class	The assigned classes for each sample.
freq	Classification agreement for each sample: the relative frequency of assignment of each sample to the group specified in "class".
allfreqs	Matrix with one column for each sample and one row for each class label. Con- tains the assignment frequencies of each sample to each class.
probs	As above, a matrix with samples in columns and class labels in rows. Contains the average probability, among repeated exposure classifications, of each sample belonging to each class.

Examples

assuming signatures is the return value of signeR()

```
# see also
vignette(package="signeR")
```

ExposureCorrelation Exposure correlation analysis (given a known sample feature)

Description

ExposureCorrelation : Identify signatures which are significantly correlated with a provided (numeric) sample feature.

Usage

```
## S4 method for signature 'SignExp,numeric'
ExposureCorrelation(Exposures, feature,
    method="spearman", max_instances=200, cutoff_pvalue=0.05, quant=0.5,
    plot_to_file=FALSE, file="ExposureCorrelation_plot.pdf",
    colors=TRUE,...)
```

Arguments

Exposures	a SignExp object returned by signeR function or a matrix of exposures (with signatures in rows and a column for each sample).
feature	numeric feature associated with each sample, such as age, weight or the expres- sion of a gene.
method	a character string indicating which correlation coefficient should be used for the test. Options are "pearson", "kendall", or "spearman" (default).

10

<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
cutoff_pvalue	threshold for p-values quantile for signatures to be considered as showing sig- nificant correlation.
quant	the p-values quantile which, after log-transform, will be used for selecting sig- nificantly correlated signatures. Default is 0.5, which means the median p-value will be considered.
<pre>plot_to_file</pre>	Whether to save the plot to the file parameter. Default is FALSE.
file	Output file to export p-values boxplot and scatterplots showing the correlations of exposures and the provided feature.
colors	Boolean variable, if TRUE p-values boxplots of significantly correlated signa- tures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will be colored in blue. Otherwise the plot will be black & white.
	additional parameters for test algorithm defined by the method parameter.

Value

A list with the following items:

Significance	boolean array with one entry for each signature, indicating whether it shows significant correlation with the provided feature.	
Correlation_quantiles		
	vector of correlation quantiles, with one entry for each signature.	
Pvalues_quantiles		
	vector of p-values quantiles used for significance evaluation.	
Correlations	matrix containing all computed correlations, with one row for each signature.	
Pvalues	matrix containing all computed p-values, with one row for each signature.	

Examples

assuming signatures is the return value of signeR()

```
# feature vector, with one value for each sample
my_feature <- rnorm(30,100,20)+signatures$SignExposures@Exp[1,,1]</pre>
```

Exp_corr <- ExposureCorrelation(signatures\$SignExposures,feature=my_feature)</pre>

see also
vignette(package="signeR")

ExposureGLM

Exposure Generalized Linear Model

Description

Fits a GLM to exposure data, with a given sample feature as the target of the model.

Usage

```
## S4 method for signature 'SignExp,numeric'
ExposureGLM(Exposures, feature, max_instances=200,
    cutoff_pvalue=0.05,quant=0.5, plot_to_file=FALSE,
    file="ExposureGLM_plot.pdf",colors=TRUE,...)
```

Arguments

Exposures	A SignExp object returned by signeR function or a matrix of exposures (with signatures in rows and a column for each sample).
feature	numeric feature associated with each sample, such as age, weight or the expres- sion of a gene.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
cutoff_pvalue	threshold for p-values quantile for signatures to be considered as significant on the model.
quant	p-values quantile used to evaluate if signatures are significant. Default is 0.5, meaning that median p-values are adopted.
<pre>plot_to_file</pre>	Whether to save plots to the file parameter. Default is FALSE.
file	Output file to export p-values boxplot and scatterplots showing the correlations of exposures and the provided feature.
colors	Boolean variable, if TRUE p-values boxplots of significantly correlated signa- tures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will be colored in blue. Otherwise the plot will be black & white.
	additional parameters for test algorithm defined by the method parameter.

Value

A list with the following items:

Significance	boolean array with one entry for each signature, indicating whether it shows a significant contribution to the model.
Stats	matrix of model statistics, with one line for each signature.
Pvalues	vector of p-values used for significance evaluation.

Examples

assuming signatures is the return value of signeR()

my_feature <- rnorm(30,100,20)+signatures\$SignExposures@Exp[1,,1] EGlm <- ExposureGLM(signatures\$SignExposures, feature=my_feature)</pre>

see also
vignette(package="signeR")

ExposureSurvival *Exposure survival analysis*

Description

ExposureSurvival: Given survival data, identify signatures that are significantly related to differences in hazards.

Usage

```
## S4 method for signature 'SignExp,Surv'
ExposureSurvival(signexp_obj, surv, max_instances=200,
    method=logrank, quant=0.5, cutoff_pvalue=0.05, cutoff_hr=NA,
    plot_to_file=FALSE, file="ExposureSurvival_plot.pdf",
    colors=TRUE, ...)
```

Arguments

Value

A list with the following items:

Significance boolean array with one entry for each signature, indicating whether its levels of exposure are significant to survival.

Correlation_quantiles

vector of correlation quantiles, with one entry for each signature.

pvalues	vector of p-values used for significance evaluation.
limits	vector containing one cut value for the exposures of each signature, such that splitting the samples according to this value leads to maximal differences in survival among generated groups.
Groups	matrix containing one line for each signature, defining a division of the sam- ples into two groups according to their exposures, such that survival differences between the groups are maximal.

Examples

assuming signatures is the return value of signeR()

```
# feature vector, with one value for each sample
library(survival)
my_surv <- Surv(rnorm(30,730,100),sample(c(0:1),30,replace=TRUE))
Exp_corr <- ExposureSurvival(signatures$SignExposures, surv = my_surv)
# see also
vignette(package="signeR")
```

ExposureSurvModel Exposure Cox model

Description

ExposureSurvModel: Given survival data, fits a multivariate Cox proportional hazards model to exposure data.

Usage

```
## S4 method for signature 'SignExp,Surv'
ExposureSurvModel(Exposures, surv, addata,
    max_instances=200, quant=0.5, cutoff_pvalue=0.05, cutoff_hr=NA,
    plot_to_file=FALSE, file="ExposureSurvival_plot.pdf", colors=TRUE, ...)
```

Exposures	A SignExp object returned by signeR function or a matrix of exposures (with signatures in rows and a column for each sample).
surv	a Surv object from package survival or a matrix with columns "time" and "sta- tus" (the last indicates whether 1:an event occurred or 0:there was a loss of follow up).
addata	a data frame with additional data (one sample per row) that will be used in the Cox model along with exposure data.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
quant	the quantile of p-values and hazard ratios which will be used for selecting sur- vival significant signatures. Default is 0.5, which means the median p-value and hazard ratio will be considered.

FuzzyClustExp

cutoff_pvalue	threshold for p-values quantile for signatures to be considered as significant.
cutoff_hr	threshold for hazard ratio quantile for signatures to be considered as significant.
<pre>plot_to_file</pre>	Whether to save the plot to the file parameter. Default is FALSE.
file	Output file to export p-values boxplots and Kaplan-Meier curves.
colors	Boolean variable, if TRUE p-values boxplots of significant signatures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will be colored in blue. Otherwise the plot will be black & white.
	additional parameters for test algorithm defined by the method parameter.

Value

A list with the following items:

Significance	boolean array with one entry for each signature, indicating whether its levels of exposure are significant to survival.
Stats	data frame containing hazard ratios and pvalues for signatures (one per line) on fitted Cox models.

Examples

assuming signatures is the return value of signeR()

```
# feature vector, with one value for each sample
library(survival)
my_surv <- Surv(rnorm(30,730,100),sample(c(0:1), 30, replace = TRUE))
Exp_corr <- ExposureSurvModel(signatures$SignExposures, surv = my_surv)
# see also
```

vignette(package="signeR")

FuzzyClustExp

Fuzzy Clustering of exposure data

Description

FuzzyClustExp : Performs fuzzy C-means clustering of samples, based on exposures. The number of clusters is defined by optimizing the PBMF index of obtained clustering.

Usage

Arguments

signexp_obj	a SignExp object returned by signeR function.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
Clim	number of groups range, a vector with minimum and maximum accepted num- ber of groups. The algorithm will maximize the PBMF-index within this range.
method.dist	used distance metric
method.clust	clustering method. Either "fcm", default, for fuzzy C-means or "km" for k-means.
relative	Whether to normalize exposures of each sample so that they sum up to one.
	Default is FALSE, thus clustering samples by the absolute contributions of sig- natures to mutation counts. Otherwise, clustering will be based on relative con- tributions.
m	Default is FALSE, thus clustering samples by the absolute contributions of sig- natures to mutation counts. Otherwise, clustering will be based on relative con-
	Default is FALSE, thus clustering samples by the absolute contributions of sig- natures to mutation counts. Otherwise, clustering will be based on relative con- tributions.
m	Default is FALSE, thus clustering samples by the absolute contributions of sig- natures to mutation counts. Otherwise, clustering will be based on relative con- tributions. Expoent used in PBMF-index

Value

A list with the following items: Meanfuzzy=Meanfuzzy, AllFuzzy=Fuzzy[[1]], Centroids=Fuzzy[[2]]

Meanfuzzy	Final clustering: mean levels of pertinence of samples to found groups.
AllFuzzy	All levels of pertinence of samples to found groups in repeated runs of the clus- tering algorithm.
Centroids	All centroids of found groups in repeated runs of the clustering algorithm.

Examples

```
# assuming signatures is the return value of signeR()
# Limits to number of groups:
cl <- c(2,4)
FuzClust <- FuzzyClustExp(signatures$SignExposures, Clim = cl)
# see also
vignette(package="signeR")</pre>
```

generateMatrix count matrix and opportunity matrix generators

Description

genCountMatrixFromVcf : generate a count matrix from a VCF file. genCountMatrixFromMAF : generate a count matrix from an MAF file. genOpportunityFromGenome : generate an opportunity matrix from a target regions set.

Usage

```
genCountMatrixFromVcf(bsgenome, vcfobj)
genCountMatrixFromMAF(bsgenome, maf_file)
genOpportunityFromGenome(bsgenome, target_regions, nsamples=1)
```

Arguments

bsgenome	A BSgenome object, equivalent to the genome used for the variant call.
vcfobj	A VCF object. See VCF-class from the VariantAnnotation package.
<pre>maf_file</pre>	Path to a MAF file.
target_regions	A GRanges object, describing the target region analyzed by the variant caller.
nsamples	Number of samples to generate the matrix, should be the same number as rows of the count matrix.

Value

A matrix of samples x (96 features). Each feature is an SNV change with a 3bp context.

Examples

```
library(rtracklayer)
library(VariantAnnotation)
# input files, variant call and target
vcf_file <- system.file("extdata", "example.vcf", package="signeR")
bed_file <- system.file("extdata", "example.bed", package="signeR")
maf_file <- system.file("extdata", "example.maf", package="signeR")
# BSgenome, will depend on your variant call
library(BSgenome.Hsapiens.UCSC.hg19)
vcfobj <- readVcf(vcf_file, "hg19")
mut <- genCountMatrixFromVcf(BSgenome.Hsapiens.UCSC.hg19, vcfobj)
target_regions <- import(con=bed_file, format="bed")
opp <- genOpportunityFromGenome(BSgenome.Hsapiens.UCSC.hg19,
    target_regions, nsamples=nrow(mut))
mut <- genCountMatrixFromMAF(BSgenome.Hsapiens.UCSC.hg19, maf_file)
# see also
vignette(package="signeR")</pre>
```

HClustExp

Description

HClustExp: Performs hierarchical clustering of samples, based on exposures.

Usage

Arguments

signexp_obj	a SignExp object returned by signeR function.
Med_exp	optional matrix with (median) exposures.
<pre>max_instances</pre>	Maximum number of the exposure matrix instances to be analyzed. If the num- ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.
method.dist	used distance metric
method.hclust	clustering method.
use.cor	used in pv.distance
relative	Whether to normalize exposures of each sample so that they sum up to one. Default is FALSE, thus clustering samples by the absolute contributions of sig- natures to mutation counts. Otherwise, clustering will be based on relative con- tributions.
<pre>plot_to_file</pre>	Whether to save a heatmap of results to the file parameter. Default is FALSE.
file	Output file to export a heatmap with the levels of pertinence of samples to found groups.
colored	Whether plots will be in color or B&W. Default is TRUE.

Value

A pvclust object, as described in package pvclust.

Examples

```
# assuming signatures is the return value of signeR()
```

HClust <- HClustExp(signatures\$SignExposures)</pre>

see also
vignette(package="signeR")

methods

Description

setSamples: Define sample names for a SignExp object, according to the "names" argument.

setMutations: Define mutation names for a SignExp object, according to the "mutations" argument.

Normalize: Normalize a SignExp object so that the entries of each signature sum up to one.

Reorder_signatures: Change the order of the signatures in a SignExp object. The new signature order will be defined by the "ord" argument.

Reorder_samples: Change samples order, according to ord parameter.

Reorder_mutations: Change mutations order, according to ord parameter.

Average_sign: Exports an approximation of the signatures obtained by the averages of the samples for the signature matrix P.

Median_sign: Exports an approximation of the signatures obtained by the medians of the samples for signature matrix P.

Average_exp: Exports an approximation of the exposures obtained by the averages of the samples for exposure matrix E.

Median_exp: Exports an approximation of the exposures obtained by the medians of the samples for exposure matrix E.

Usage

```
## S4 method for signature 'SignExp'
setSamples(signexp_obj, names)
## S4 method for signature 'SignExp'
setMutations(signexp_obj, mutations)
## S4 method for signature 'SignExp'
Normalize(signexp_obj)
## S4 method for signature 'SignExp,numeric'
Reorder_signatures(signexp_obj, ord)
## S4 method for signature 'SignExp,numeric'
Reorder_samples(signexp_obj, ord)
## S4 method for signature 'SignExp,numeric'
Reorder_mutations(signexp_obj, ord)
## S4 method for signature 'SignExp'
Average_sign(signexp_obj, normalize=TRUE)
## S4 method for signature 'SignExp'
Median_sign(signexp_obj, normalize=TRUE)
```

```
## S4 method for signature 'SignExp'
Average_exp(signexp_obj, normalize=TRUE)
## S4 method for signature 'SignExp'
Median_exp(signexp_obj, normalize=TRUE)
```

Arguments

signexp_obj	a SignExp object returned by signeR function. e.g.: sig\$SignExposures
names	Vector of sample names.
mutations	Vector of mutations, e.g. "C>A:TCG".
normalize	Whether the signatures should be normalized before extracting approximations. Default is TRUE.
ord	Vector with the new signature order.

Value

setSamples, setMutations, Normalize and Reorder_* returns a modified SignExp object. Average_sign, Median_sign, Average_exp and Median_exp return a matrix with the corresponding approximation.

Examples

```
# each function needs the SignExposures object
# which is part of the result of the signeR() call
signexp <- Normalize(signatures$SignExposures)
signexp <- Reorder_signatures(signatures$SignExposures,ord=c(2,1))
matrix_p <- Median_sign(signatures$SignExposures)
# etc ...
# see also
vignette(package="signeR")
```

plots

signeR plot functions

Description

BICboxplot: Plot the measured values of the Bayesian Information Criterion (BICs) for tested model dimensions.

Paths: Plot the convergence of the Gibbs sampler for signatures and exposures on separate charts.

SignPlot: Plot the mutational signatures in a bar chart, with error bars according to the variation of individual entries along the generated Gibbs samples.

SignHeat: Plot the mutation signatures in a heatmap.

20

plots

ExposureBarplot: Barplot of estimated exposure values, showing the contribution of the signatures to the mutation counts of each genome sample.

ExposureBoxplot: Boxplot of exposure values, showing their variation along the generated Gibbs samples.

ExposureHeat: Plot a heatmap of the exposures, along with a dendrogram of the samples grouped by exposure levels.

Usage

```
BICboxplot(signeRout, plot_to_file=FALSE, file="Model_selection_BICs.pdf")
## S4 method for signature 'SignExp'
Paths(signexp_obj, plot_to_file=FALSE,
    file_suffix="plot.pdf", plots_per_page=4, ...)
## S4 method for signature 'SignExp'
SignPlot(signexp_obj, plot_to_file=FALSE,
    file="Signature_plot.pdf", pal="bcr1", threshold=0, plots_per_page=4,
    gap=1, reord=NA, ...)
## S4 method for signature 'SignExp'
SignHeat(signexp_obj, plot_to_file=FALSE,
    file="Signature_heatmap.pdf", nbins=50, pal="roh", ...)
## S4 method for signature 'SignExp'
ExposureBarplot(signexp_obj, plot_to_file=FALSE,
    file="Exposure_barplot.pdf", col='tan2', threshold=0, relative=FALSE,
    title="", show_samples=NA, ...)
## S4 method for signature 'SignExp'
ExposureBoxplot(signexp_obj, plot_to_file=FALSE,
    file="Exposure_boxplot.pdf", col='tan2', threshold=0, show_samples=NA,
    plots_per_page=4, reord=NA, ...)
## S4 method for signature 'SignExp'
ExposureHeat(signexp_obj, plot_to_file=FALSE,
    file="Exposure_heatmap.pdf", nbins=50, pal="roh", distmethod="euclidean",
        clustermethod="complete", show_samples=NA, ...)
```

signexp_obj	A SignExp object returned by signeR function. e.g.: sig\$SignExposures
signeRout	The list returned by the signeR function.
<pre>plot_to_file</pre>	Whether to save the plot to the file parameter. Default is FALSE.
file	Output pdf file of the plots.
pal	Color palette used. Options are: "brew","lba","bcr1", "bcr2","bw","rdh","roh","blh" or "bph".
threshold	Entries below this value will be rounded to 0. Default is 0 (all entries are kept).
plots_per_page	How many plots in a single page, default is 4.
gap	Distance between consecutive bars on the plot.
reord	Order of signatures for plotting. Should be a permutation of 1:nsig, where nsig is the number of signatures. By default, signatures are ordered by the total exposure, in decreasing order.

nbins	The range of signature entries is divided into this number of bins for plotting, each bin corresponding to a different color.
file_suffix	The suffix of the output file.
col	Single color name for boxplots.
distmethod	Distance measure used for grouping samples. Default is "euclidean", see the documentation of the dist function for other options.
clustermethod	Agglomeration method used for grouping samples. Default is "complete", see the documentation of the hclust function for other options.
relative	Whether to normalize exposures of each sample so that they sum up to one. Default is FALSE, thus generating a plot of absolute contributions of signatures to mutation counts. Otherwise, relative contributions will be displayed.
title	Main title added to the plot. Default is no title.
show_samples	Whether sample names will be shown in the plot. Default is NA, which leads to sample names being displayed only when there are less than 30 samples. How- ever, even if show_samples=TRUE, due to display limitations sample names are not shown if there are more than 50 samples.

Value

The plot result is exported to the current graphic device. If plot_to_file=TRUE, the plot is saved in the file defined by the file argument.

Examples

```
# each plot function needs the SignExposures object
# which is part of the result of the signeR() call
SignPlot(signatures$SignExposures)
Paths(signatures$SignExposures)
# etc ...
# BICboxplot needs the returned list itself
BICboxplot(signatures)
# see also
vignette(package="signeR")
```

signeR

signeR

Description

Generates the signatures.

signeR

Usage

```
signeR(M, Mheader = TRUE, samples = "rows", Opport = NA,
    Oppheader = FALSE, P = NA, fixedP = FALSE,
    nsig = NA, nlim = c(NA, NA),
    try_all = FALSE, BICsignificance = FALSE, critical_p = 0.05,
    ap = NA, bp = NA, ae = NA, be = NA,
    lp = NA, le = NA, var.ap = 10, var.ae = 10,
    start = "lee", testing_burn = 1000, testing_eval = 1000,
    main_burn = 10000, main_eval = 2000,
    estimate_hyper = FALSE, EMit_lim=100, EM_eval = 100,
    parallelization = "multisession")
```

М	mutation counts matrix of samples x features.
Mheader	if M has colnames defined use TRUE, if FALSE a default order will be assumed.
samples	if the samples are row-wise or column-wise in M, default is "row".
Opport	context count matrix of samples x features in the target genome or region.
Oppheader	if Opport has header defined.
Р	Previously known matrix of signatures. If provided, can be fixed along algorithm iterations or just used as an initial value (see next parameter)
fixedP	If TRUE, provided P matrix will be fixed along iterations.
nsig	number of signatures, which can be provided or estimated by the algorithm.
nlim	define an interval to search for the optimal number of signatures.
try_all	if TRUE, all possible values for nsig will be tested
BICsignificance	
	if TRUE, BICs will be considered different only if their distribution is signifi- cantly different. In case of ties in BICs comparison, signer will adopt the model with fewer signatures.
critical_p	level of significance for BICs distribution to be considered different
ар	shape parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate signatures.
bp	rate parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate signatures.
ae	shape parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate exposures.
be	rate parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate exposures.
lp	parameter of the exponential distribution used to generate the entries of a matrix of shape parameters of the gamma distributions which generate signatures.
le	parameter of the exponential distribution used to generate the entries of a matrix of shape parameters of the gamma distributions which generate exposures.
var.ap	variance of the gamma distribution used to generate proposals for shape parameters of signatures
var.ae	variance of the gamma distribution used to generate proposals for shape parameters of exposures

start	NMF algorithm used to generate initial values for signatures and exposures,options: "brunet","KL","lee","Frobenius","offset","nsNMF", "ls-nmf","pe-nmf","siNMF","snmf/r" or "snmf/l".
testing_burn	number of burning iterations of the Gibbs sampler used to estimate the number of signatures in data. Corresponds to R0 at Algorithm 1 on signeR paper.
testing_eval	number of iterations of the Gibbs sampler used to estimate the number of signa- tures in data. Corresponds to R2 at Algorithm 1 on signeR paper.
EM_eval	number of samples generated at each iteration of the EM algorithm. Corresponds to R1 at Algorithm 1 on signeR paper.
main_burn	number of burning iterations of the final Gibbs sampler.
main_eval	number of iterations of the final Gibbs sampler.
estimate_hyper	if TRUE, algorithm estimates optimal values of ap,bp,ae,be,lp,le. Start values can still be provided.
EMit_lim	limit of EM iterations for the estimation of hyper-hyperparameters ap,bp,ae,be,lp,le. Default is 100. Corresponds to U at Algorithm 1 on signeR paper.
parallelizatior	
	strategy of computation parallelization, see future::plan help

Value

signeR output is a list with the following items:

Nsign	selected number of signatures.
tested_n	array containing the numbers of signatures tested by the algorithm.
Test_BICs	list of measured BIC values when testing different numbers of signatures.
Phat	Estimated signatures, median of P samples.
Ehat	Estimated exposures, median of E samples.
SignExposures	SignExp object which contains the set of samples for the model parameters.
Bics	measured BIC values on the final run of the sampler.
HyperParam	evolution of estimated hyperparameters when testing different numbers of sig- natures.

Examples

vignette(package="signeR")

signeRFlow

Launch signeRFlow R Shiny web app

Description

Launch signeRFlow R Shiny web app locally

Usage

signeRFlow()

SignExp

Description

Keep samples for signature and exposure matrices.

Value

Object fields:

@Sign	array of signature matrix samples.
@Exp	array of exposure matrix samples.
@sigSums	Signature sums for each sample, organized by row. Normalizing factors.
@samples	Genome sample IDs.
@mutations	mutation names.
@normalized	boolean variable, indicating whether Sign array has been normalized.

tcga_similarities TCGA Cosmic similarities

Description

TCGA Cosmic similarities calculated by signeR.

Usage

data("tcga_similarities")

Format

A data frame with 112 observations on the following 80 variables.

sigs a character vector

project a character vector

- SBS1 a numeric vector
- SBS10a a numeric vector
- SBS10b a numeric vector
- SBS10c a numeric vector
- SBS10d a numeric vector
- SBS11 a numeric vector
- SBS12 a numeric vector
- SBS13 a numeric vector
- SBS14 a numeric vector
- SBS15 a numeric vector

tcga_similarities

SBS16 a numeric vector SBS17a a numeric vector SBS17b a numeric vector SBS18 a numeric vector SBS19 a numeric vector SBS2 a numeric vector SBS20 a numeric vector SBS21 a numeric vector SBS22 a numeric vector SBS23 a numeric vector SBS24 a numeric vector SBS25 a numeric vector SBS26 a numeric vector SBS27 a numeric vector SBS28 a numeric vector SBS29 a numeric vector SBS3 a numeric vector SBS30 a numeric vector SBS31 a numeric vector SBS32 a numeric vector SBS33 a numeric vector SBS34 a numeric vector SBS35 a numeric vector SBS36 a numeric vector SBS37 a numeric vector SBS38 a numeric vector SBS39 a numeric vector SBS4 a numeric vector SBS40 a numeric vector SBS41 a numeric vector SBS42 a numeric vector SBS43 a numeric vector SBS44 a numeric vector SBS45 a numeric vector SBS46 a numeric vector SBS47 a numeric vector SBS48 a numeric vector SBS49 a numeric vector SBS5 a numeric vector SBS50 a numeric vector

26

tcga_tumors

SBS51 a numeric vector SBS52 a numeric vector SBS53 a numeric vector SBS54 a numeric vector SBS55 a numeric vector SBS56 a numeric vector SBS57 a numeric vector SBS58 a numeric vector SBS59 a numeric vector SBS6 a numeric vector SBS60 a numeric vector SBS7a a numeric vector SBS7b a numeric vector SBS7c a numeric vector SBS7d a numeric vector SBS8 a numeric vector SBS84 a numeric vector SBS85 a numeric vector SBS86 a numeric vector SBS87 a numeric vector SBS88 a numeric vector SBS89 a numeric vector SBS9 a numeric vector SBS90 a numeric vector SBS91 a numeric vector SBS92 a numeric vector SBS93 a numeric vector SBS94 a numeric vector

tcga_tumors

TCGA tumors used on TCGA Explorer

Description

List of TCGA tumors used on TCGA Explorer

Usage

data("tcga_tumors")

Format

A data frame with 37 observations on the following 2 variables.

projectID a character vector

projectName a character vector

Index

* datasets cosmic_data, 3 tcga_similarities, 25 tcga_tumors, 27 * package signeR-package, 2 Average_exp (methods), 19 Average_exp,SignExp-method (methods), 19 Average_sign (methods), 19 Average_sign,SignExp-method (methods), 19 BICboxplot (plots), 20 cosmic_data, 3 DiffExp, 6 DiffExp,SignExp,character-method (DiffExp), 6 ExposureBarplot (plots), 20 ExposureBarplot,SignExp-method(plots), 20 ExposureBoxplot (plots), 20 ExposureBoxplot,SignExp-method(plots), 20ExposureClassify, 7 ExposureClassify,ANY,character-method (ExposureClassify), 7 ExposureClassify,SignExp,character-method (ExposureClassify), 7 ExposureClassifyCV, 9 ExposureClassifyCV,ANY,character-method (ExposureClassifyCV), 9 ExposureClassifyCV,SignExp,character-method (ExposureClassifyCV), 9 ExposureCorrelation, 10 ExposureCorrelation,matrix,numeric-method (ExposureCorrelation), 10 ExposureCorrelation, SignExp, numeric-method (ExposureCorrelation), 10 ExposureGLM, 11 ExposureGLM, matrix, numeric-method (ExposureGLM), 11

ExposureGLM,SignExp,numeric-method (ExposureGLM), 11 ExposureHeat (plots), 20 ExposureHeat,SignExp-method(plots), 20 ExposureSurvival, 13 ExposureSurvival,matrix,character-method (ExposureSurvival), 13 ExposureSurvival, matrix, Surv-method (ExposureSurvival), 13 ExposureSurvival, matrix-method (ExposureSurvival), 13 ExposureSurvival,SignExp,character-method (ExposureSurvival), 13 ExposureSurvival,SignExp,Surv-method (ExposureSurvival), 13 ExposureSurvival,SignExp-method (ExposureSurvival), 13 ExposureSurvModel, 14 ExposureSurvModel,matrix,character-method (ExposureSurvModel), 14 ExposureSurvModel,matrix,Surv-method (ExposureSurvModel), 14 ExposureSurvModel.matrix-method (ExposureSurvModel), 14 ExposureSurvModel,SignExp,character-method (ExposureSurvModel), 14 ExposureSurvModel,SignExp,Surv-method (ExposureSurvModel), 14 ExposureSurvModel,SignExp-method (ExposureSurvModel), 14 FuzzyClustExp, 15 FuzzyClustExp,SignExp,numeric-method (FuzzyClustExp), 15 FuzzyClustExp,SignExp-method (FuzzyClustExp), 15 genCountMatrixFromMAF (generateMatrix), 17 genCountMatrixFromVcf (generateMatrix), 17 generateMatrix, 17

genOpportunityFromGenome (generateMatrix), 17

INDEX

HClustExp, 18 HClustExp,SignExp,numeric-method (HClustExp), 18 HClustExp,SignExp-method(HClustExp), 18 Median_exp (methods), 19 Median_exp,SignExp-method (methods), 19 Median_sign (methods), 19 Median_sign,SignExp-method (methods), 19 ${\tt methods}, 19$ Normalize (methods), 19 Normalize, SignExp-method (methods), 19 Paths (plots), 20 Paths, SignExp-method (plots), 20 plots, 20 Reorder_mutations (methods), 19 Reorder_mutations,SignExp,numeric-method (methods), 19 Reorder_samples (methods), 19 Reorder_samples,SignExp,numeric-method (methods), 19 Reorder_signatures (methods), 19 Reorder_signatures,SignExp,numeric-method (methods), 19 setMutations (methods), 19 setMutations,SignExp-method (methods), 19 setSamples (methods), 19 setSamples,SignExp-method (methods), 19 signeR, 22 signeR-package, 2 signeRFlow, 24 SignExp, 25 SignExp-class (SignExp), 25 SignHeat (plots), 20 SignHeat, SignExp-method (plots), 20SignPlot (plots), 20 SignPlot,SignExp-method(plots), 20

tcga_similarities, 25
tcga_tumors, 27