
Package ‘goSorensen’
January 20, 2025

Type Package

Title Statistical inference based on the Sorensen-Dice dissimilarity
and the Gene Ontology (GO)

Version 1.8.0

Description This package implements inferential methods to compare gene lists in terms of their bio-
logical meaning as expressed in the GO. The compared gene lists are characterized by cross-
tabulation frequency tables of enriched GO items. Dissimilarity between gene lists is evalu-
ated using the Sorensen-Dice index.
The fundamental guiding principle is that two gene lists are taken as simi-
lar if they share a great proportion of common enriched GO items.

Depends R (>= 4.3)

Imports clusterProfiler, goProfiles, org.Hs.eg.db, parallel, stats,
stringr

Suggests BiocManager, BiocStyle, knitr, rmarkdown, org.At.tair.db,
org.Ag.eg.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db,
org.Dm.eg.db, org.Dr.eg.db, org.EcSakai.eg.db, org.EcK12.eg.db,
org.Gg.eg.db, org.Mm.eg.db, org.Mmu.eg.db, org.Rn.eg.db,
org.Sc.sgd.db, org.Ss.eg.db, org.Pt.eg.db, org.Xl.eg.db

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.2.3

NeedsCompilation no

biocViews Annotation, GO, GeneSetEnrichment, Software, Microarray,
Pathways, GeneExpression, MultipleComparison, GraphAndNetwork,
Reactome, Clustering, KEGG

git_url https://git.bioconductor.org/packages/goSorensen

git_branch RELEASE_3_20

git_last_commit 3db7a6f

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-01-20

1

2 Contents

Author Pablo Flores [aut, cre] (<https://orcid.org/0000-0002-7156-8547>),
Jordi Ocana [aut, ctb] (0000-0002-4736-699),
Alexandre Sanchez-Pla [ctb] (<https://orcid.org/0000-0002-8673-7737>),
Miquel Salicru [ctb] (<https://orcid.org/0000-0001-9644-5626>)

Maintainer Pablo Flores <p_flores@espoch.edu.ec>

Contents

allBuildEnrichTable . 3
allEquivTestSorensen . 4
allHclustThreshold . 6
allOncoGeneLists . 7
allSorenThreshold . 7
allTabs . 9
allTabsBP.4 . 10
boot.cancerEquivSorensen . 10
boot.tStat . 11
BP.4 . 12
buildEnrichTable . 12
cancerEquivSorensen . 15
completeTable . 16
dSorensen . 17
duppSorensen . 19
enrichedIn . 24
equivTestSorensen . 26
getDissimilarity . 31
getEffNboot . 33
getNboot . 35
getPvalue . 38
getSE . 40
getTable . 42
getUpper . 44
gosorensen . 46
hclustThreshold . 47
nice2x2Table . 48
pbtGeneLists . 50
pruneClusts . 51
seSorensen . 51
sorenThreshold . 54
tab_atlas.sanger_BP3 . 56
upgrade . 57
waldman_atlas.BP.4 . 58

Index 60

https://orcid.org/0000-0002-7156-8547
https://orcid.org/0000-0002-8673-7737
https://orcid.org/0000-0001-9644-5626

allBuildEnrichTable 3

allBuildEnrichTable Iterate buildEnrichTable along the specified GO ontologies and GO
levels

Description

Iterate buildEnrichTable along the specified GO ontologies and GO levels

Usage

allBuildEnrichTable(
x,
check.table = TRUE,
ontos = c("BP", "CC", "MF"),
GOLevels = seq.int(3, 10),
trace = TRUE,
...

)

Arguments

x object of class "list". Each of its elements must be a "character" vector of gene
identifiers (e.g., ENTREZ). Then all pairwise contingency tables of joint enrich-
ment are built between these gene lists, iterating the process for all specified GO
ontologies and GO levels.

check.table Boolean. If TRUE (default), all resulting tables are checked by means of func-
tion nice2x2Table.

ontos "character", GO ontologies to analyse. Defaults to c("BP", "CC", "MF").

GOLevels "integer", GO levels to analyse inside each of these GO ontologies.

trace Logical. If TRUE (default), the (usually very time consuming) process of func-
tion allbuildEnrichTable is traced along the specified GO ontologies and
levels.

... extra parameters for function buildEnrichTable.

Value

An object of class "allTableList". It is a list with as many components as GO ontologies have been
analysed. Each of these elements is itself a list with as many components as GO levels have been
analised. Finally, the elements of these lists are objects as generated by buildEnrichTable.list,
i.e., objects of class "tableList" containing all pairwise contingency tables of mutual enrichment
between the gene lists in argument x.

Examples

This example is highly time-consuming. It scans two GO ontologies and three
GO levels inside them to obtain the contingency tables of joint enrichment.

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

4 allEquivTestSorensen

Gene lists to be explored for enrichment:
data(allOncoGeneLists)

Computing Contingency Tables for all the possible pairwise comparisons for
the ontologies MF, BP, and the GO levels from 4 to 6:
allBuildEnrichTable(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
ontos = c("MF", "BP"), GOLevels = seq.int(4,6))
When the "ontos" and "GOLevels" arguments are not supplied, the function computes
by default every possible contingency table between the lists being compared for
the three ontologies (BP, CC, MF) and GO levels from 3 to 10.

allEquivTestSorensen Iterate equivTestSorensen along the specified GO ontologies and
GO levels

Description

Iterate equivTestSorensen along the specified GO ontologies and GO levels

Usage

allEquivTestSorensen(x, ...)

S3 method for class 'list'
allEquivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
ontos = c("BP", "CC", "MF"),
GOLevels = seq.int(3, 10),
trace = TRUE,
...

)

S3 method for class 'allTableList'
allEquivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
ontos,
GOLevels,
trace = TRUE,
...

)

allEquivTestSorensen 5

Arguments

x either an object of class "list" or an object of class "allTableList". In the first
case, each of its elements must be a "character" vector of gene identifiers (e.g.,
ENTREZ).

... extra parameters for function buildEnrichTable.

d0 equivalence threshold for the Sorensen-Dice dissimilarity, d. The null hypothe-
sis states that d >= d0, i.e., inequivalence between the compared gene lists and
the alternative that d < d0, i.e., equivalence or dissimilarity irrelevance (up to a
level d0).

conf.level confidence level of the one-sided confidence interval, a value between 0 and 1.

boot boolean. If TRUE, the confidence interval and the test p-value are computed
by means of a bootstrap approach instead of the asymptotic normal approach.
Defaults to FALSE.

nboot numeric, number of initially planned bootstrap replicates. Ignored if boot ==
FALSE. Defaults to 10000.

check.table Boolean. If TRUE (default), argument x is checked to adequately represent a
2x2 contingency table (or an aggregate of them) or gene lists producing a correct
table. This checking is performed by means of function nice2x2Table.

ontos "character", GO ontologies to analyse. Defaults to c("BP", "CC", "MF").

GOLevels "integer", GO levels to analyse inside each one of the GO ontologies.

trace Logical. If TRUE (default), the (usually very time consuming) process of func-
tion allEquivTestSorensen is traced along the specified GO ontologies and
levels.

Value

An object of class "AllEquivSDhtest". It is a list with as many components as GO ontologies have
been analysed. Each of these elements is itself a list with as many components as GO levels have
been analized. Finally, the elements of these lists are objects as generated by equivTestSorensen.list,
i.e., objects of class "equivSDhtestList" containing pairwise comparisons between gene lists.

Methods (by class)

• allEquivTestSorensen(list): S3 method for class "list"

• allEquivTestSorensen(allTableList): S3 method for class "allTableList"

Examples

Gene lists to be explored for enrichment:
data(allOncoGeneLists)

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

This example is highly time-consuming. It scans two GO ontologies and three
GO levels inside them to perform the equivalence test.
allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
ontos = c("MF", "BP"), GOLevels = seq.int(4,6))
When the "ontos" and "GOLevels" arguments are not supplied, the function computes

6 allHclustThreshold

by default every possible contingency table between the lists being compared for
the three ontologies (BP, CC, MF) and GO levels from 3 to 10.
#
Much faster:
Object \code{allTabs} of class "allTableList" contains all the pairwise contingency tables of
joint enrichment for the gene lists in \code{allOncoGeneLists}, obtained along all three GO
ontologies and along GO levels 3 to 10:
data(allTabs)
tests <- allEquivTestSorensen(allTabs, ontos = c("MF", "BP"), GOLevels = seq.int(4,6))
testsBP`level 5`
getPvalue(tests)

allHclustThreshold Iterate hclustThreshold along the specified GO ontologies and GO
levels

Description

Iterate hclustThreshold along the specified GO ontologies and GO levels

Usage

allHclustThreshold(x, ontos, GOLevels, trace = TRUE, ...)

Arguments

x an object of class "distList".

ontos "character", GO ontologies to iterate. Defaults to the ontologies in ’x’.

GOLevels "integer", GO levels to iterate inside each one of these GO ontologies.

trace Logical. If TRUE (default), the process is traced along the specified GO ontolo-
gies and levels.

... extra parameters for function hclustThreshold.

Value

An object of class "equivClustSorensenList" descending from "iterEquivClust" which itself de-
scends from class "list". It is a list with as many components as GO ontologies have been specified.
Each of these elements is itself a list with as many components as GO levels have been speci-
fied. Finally, the elements of these lists are objects of class "equivClustSorensen", descending from
"equivClust" which itself descends from "hclust".

Examples

Object \code{allTabs} of class "allTableList" contains all the pairwise contingency tables of
joint enrichment for the gene lists in \code{allOncoGeneLists}, obtained along all three GO
ontologies and along GO levels 3 to 10:
data(allTabs)
Compute the Sorensen-Dice equivalence threshold dissimilarity (only for the MF and CC
ontologies and from levels 4 to 6):
dists <- allSorenThreshold(allTabs, ontos = c("MF", "CC"), GOLevels = seq.int(4,6))
hclusts <- allHclustThreshold(dists)

allOncoGeneLists 7

hclustsMF`level 6`
plot(hclustsMF`level 6`)

allOncoGeneLists 7 gene lists possibly related with cancer

Description

An object of class "list" of length 7. Each one of its elements is a "character" vector of gene
identifiers (e.g., ENTREZ). Only gene lists of length almost 100 were taken from their source web.
Take these lists just as an illustrative example, they are not automatically updated.

Usage

data(allOncoGeneLists)

Format

An object of class "list" of length 7. Each one of its elements is a "character" vector of ENTREZ
gene identifiers .

Source

http://www.bushmanlab.org/links/genelists

allSorenThreshold Iterate sorenThreshold along the specified GO ontologies and GO
levels

Description

Iterate sorenThreshold along the specified GO ontologies and GO levels

Usage

allSorenThreshold(x, ...)

S3 method for class 'list'
allSorenThreshold(
x,
geneUniverse,
orgPackg,
boot = FALSE,
nboot = 10000,
boot.seed = 6551,
ontos = c("BP", "CC", "MF"),
GOLevels = seq.int(3, 10),
trace = TRUE,
alpha = 0.05,

http://www.bushmanlab.org/links/genelists

8 allSorenThreshold

precis = 0.001,
...

)

S3 method for class 'allTableList'
allSorenThreshold(
x,
boot = FALSE,
nboot = 10000,
boot.seed = 6551,
ontos,
GOLevels,
trace = TRUE,
alpha = 0.05,
precis = 0.001,
...

)

Arguments

x either an object of class "list" or an object of class "allTableList". In the first
case, each of its elements must be a "character" vector of gene identifiers (e.g.,
ENTREZ). In the second case, the object corresponds to all contingency tables
of joint enrichment along one or more GO ontologies and one or more GO levels.

... extra parameters for function buildEnrichTable.

geneUniverse character vector containing the universe of genes from where gene lists have
been extracted. This vector must be obtained from the annotation package de-
clared in orgPackg. For more details see README File.

orgPackg A string with the name of the genomic annotation package corresponding to a
specific species to be analyzed, which must be previously installed and activated.
For more details see README File.

boot boolean. If TRUE, the confidence intervals and the test p-values are computed
by means of a bootstrap approach instead of the asymptotic normal approach.
Defaults to FALSE.

nboot numeric, number of initially planned bootstrap replicates. Ignored if boot ==
FALSE. Defaults to 10000.

boot.seed starting random seed for all bootstrap iterations. Defaults to 6551. see the details
section

ontos "character", GO ontologies to analyse.

GOLevels "integer", GO levels to analyse inside each one of these GO ontologies.

trace Logical. If TRUE (default), the (usually very time consuming) process is traced
along the specified GO ontologies and levels.

alpha simultaneous nominal significance level for the equivalence tests to be repeteadly
performed, defaults to 0.05

precis numerical precision in the iterative search of the equivalence threshold dissimi-
larities,

../doc/README.html
../doc/README.html

allTabs 9

Value

An object of class "distList". It is a list with as many components as GO ontologies have been
analysed. Each of these elements is itself a list with as many components as GO levels have been
analysed. Finally, the elements of these lists are objects of class "dist" with the Sorensen-Dice
equivalence threshold dissimilarity.

Methods (by class)

• allSorenThreshold(list): S3 method for class "list"

• allSorenThreshold(allTableList): S3 method for class "allTableList"

Examples

This example is highly time-consuming. It scans two GO ontologies and three
GO levels inside them to perform the equivalence test.

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

Gene lists to be explored for enrichment:
data("allOncoGeneLists")
allSorenThreshold(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
#
Much faster:
Object allTabs of class "allTableList" contains all the pairwise contingency tables of
joint enrichment for the gene lists in \code{allOncoGeneLists}, obtained along all three GO
ontologies and along GO levels 3 to 10:
data(allTabs)
dSors <- allSorenThreshold(allTabs, ontos = c("MF", "BP"), GOLevels = seq.int(4,6))
dSorsBP`level 5`

allTabs An example of an object of class "allTableList" resulting from a call to
’buildEnrichTable’

Description

The result of generating all contingency tables of mutual enrichment, in a pairwise fashion, between
the gene lists in data allOncoGeneLists along GO levels 3 to 10 for all three GO ontologies,
BP, MF and CC. Object ’allTabs’ is a list of length 3 with one element for each GO ontology:
allTabs$BP, allTabs$MF and allTabs$CC. Each one of these lists is itself a list of length 11, e.g.,
allTabsBP‘level 3‘, allTabsBP‘level 4‘, etc. to allTabsBP‘level 10‘. Finally, each one of
these lists contains all contingency tables of mutual enrichment, in a pairwise fashion, for the gene
lists in data allOncoGeneLists. These results are based on gene lists which are not automatically
updated, take them just as an illustrative example because the gene lists, and the GO, may change
along time. The present version of these data was generated under Bioconductor version 3.17.

Usage

data(allTabs)

10 boot.cancerEquivSorensen

Format

An object of class "allTableList" inheriting from class "list".

allTabsBP.4 An example of an object of class "tableList" resulting from a call to
’buildEnrichTable’

Description

The result of generating all contingency tables of mutual enrichment, in a pairwise fashion, between
the gene lists in data allOncoGeneLists. The information in these data was summarized as 2x2
contingency tables of GO terms enrichment, at level 4 of the BP ontology. These results are based
on gene lists which are not automatically updated, take them just as an illustrative example because
the gene lists, the GO and Bioconductor, may change along time. The present version of these data
was generated under Bioconductor version 3.17.

Usage

data(allTabsBP.4)

Format

An object of class "tableList" inheriting from class "list". It is a list of class "table" objects.

boot.cancerEquivSorensen

An example of object of class "AllEquivSDhtest" resulting from a call
to ’allEquivTestSorensen’

Description

The bootstrap Sorensen-Dice test performed on the cancer gene lists in data allOncoGeneLists
which is may be charged from this package. The test is iterated for all GO ontologies and for GO
levels 3 to 10. These results are not automatically updated for changes in these gene lists, take them
just as an illustrative example. The present version was obtained under Bioconductor 3.17.

Usage

data(boot.cancerEquivSorensen)

Format

An object of class "AllEquivSDhtest" inheriting from class "list". Each one of its elements, named
BP, CC and MF respectively, corresponds to a GO ontology. It is itself a list of length 8 whose
elements are named as "Level 3" to "Level 10". For each combination of ontology and level, there
is an object of class "equivSDhtestList" codifying the result of all pairwise tests between these
cancer gene lists.

boot.tStat 11

Details

For each ontology and GO level, the result contains the result of all pairwise tests of equivalence
between the cancer gene lists.

Source

http://www.bushmanlab.org/links/genelists

boot.tStat Studentized Sorensen-Dice dissimilarity statistic

Description

Efficient computation of the studentized statistic (^dis - dis) / ^se where ’dis’ stands for the "pop-
ulation" value of the Sorensen-Dice dissimilarity, ’^dis’ for its estimated value and ’^se’for the
estimate of the standard error of ’^dis’. Internally used in bootstrap computations.

Usage

boot.tStat(xBoot, dis)

Arguments

xBoot either an object of class "table", "matrix" or "numeric" representing a 2x2 con-
tingency table of joint enrichment.

dis the "known" value of the population dissimilarity.

Details

This function is repeatedly evaluated during bootstrap iterations. Given a contingency table ’x’ of
mutual enrichment (the "true" dataset):

n11 n10

n01 n00,

summarizing the status of mutual presence of enrichment in two gene lists, where the subindex ’11’
corresponds to those GO terms enriched in both lists, ’01’ to terms enriched in the second list but
not in the first one, ’10’ to terms enriched in the first list but not enriched in the second one and ’00’
to those GO terms non enriched in both gene lists, i.e., to the double negatives.

A typical bootstrap iteration consists in repeatedly generating four frequencies from a multino-
mial of parameters size = sum(n_ij), i,j = 1, 0 and probabilities (n_11/size, n_10/size, n_10/size,
n_00/size). The argument ’xBoot’ corresponds to each one of these bootstrap resamples (indiferenly
represented in form of a 2x2 "table" or "matrix" or as a numeric vector) In each bootstrap iteration,
the value of the "true" known ’dis’ is the dissimilarity which was computed from ’x’ (a constant,
known value in the full iteration) and the values of ’^dis’ and ’^se’ are internally computed from
the bootstrap data ’xBoot’.

Value

A numeric value, the result of computing (^dis - dis) / ^se.

http://www.bushmanlab.org/links/genelists

12 buildEnrichTable

BP.4 An example of an object of class "equivSDhtestList" resulting from a
call to ’equivSorensenTest’

Description

The result of all pairwise Sorensen-Dice equivalence tests between the gene lists in data allOncoGeneLists
which may be charged from this package. To perform the tests, the information in these data was
summarized as 2x2 contingency tables of GO terms enrichment, at level 4 of the BP ontology, and
the tests were performed for an equivalence limit d0 = 0.4444 and a confidence level conf.int =
0.95. These results are based on gene lists which are non automatically updated, take them just as
an illustrative example.

Usage

data(BP.4)

Format

An object of class "equivSDhtestList" inheriting from class "list". It is a list of class "equivSDhtest"
objects.

Source

http://www.bushmanlab.org/links/genelists

buildEnrichTable Creates a 2x2 enrichment contingency table from two gene lists, or all
pairwise contingency tables for a "list" of gene lists.

Description

Creates a 2x2 enrichment contingency table from two gene lists, or all pairwise contingency tables
for a "list" of gene lists.

Usage

buildEnrichTable(x, ...)

Default S3 method:
buildEnrichTable(

x,
y,
listNames = c("gene.list1", "gene.list2"),
check.table = TRUE,
geneUniverse,
orgPackg,
onto,
GOLevel,
showEnrichedIn = TRUE,

http://www.bushmanlab.org/links/genelists

buildEnrichTable 13

pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = 1,
...

)

S3 method for class 'character'
buildEnrichTable(
x,
y,
listNames = c("gene.list1", "gene.list2"),
geneUniverse,
orgPackg,
onto,
GOLevel,
showEnrichedIn = TRUE,
check.table = TRUE,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = 1,
...

)

S3 method for class 'list'
buildEnrichTable(
x,
check.table = TRUE,
geneUniverse,
orgPackg,
onto,
GOLevel,
showEnrichedIn = TRUE,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = min(detectCores() - 1, length(x) - 1),
...

)

Arguments

x either an object of class "character" (or coerzable to "character") representing a
vector of gene identifiers (e.g., ENTREZ) or an object of class "list". In this sec-
ond case, each element of the list must be a "character" vector of gene identifiers
(e.g., ENTREZ). Then, all pairwise contingency tables between these gene lists
are built.

... Additional parameters for internal use (not used for the moment)

14 buildEnrichTable

y an object of class "character" (or coerzable to "character") representing a vector
of gene identifiers (e.g., ENTREZ).

listNames a character(2) with the gene lists names originating the cross-tabulated enrich-
ment frequencies. Only in the "character" or default interface.

check.table Logical The resulting table must be checked. Defaults to TRUE.

geneUniverse character vector containing the universe of genes from where gene lists have
been extracted. This vector must be obtained from the annotation package de-
clared in orgPackg. For more details see README File.

orgPackg A string with the name of the genomic annotation package corresponding to a
specific species to be analyzed, which must be previously installed and activated.
For more details see README File.

onto string describing the ontology. Either "BP", "MF" or "CC".

GOLevel An integer, the GO ontology level.

showEnrichedIn Boolean. If TRUE (default), the cross-table of enriched and non-enriched GO
terms vs Gene Lists names (obtained from the enrichedIn function) is auto-
matically saved in the Global Environment.

pAdjustMeth string describing the adjust method, either "BH", "BY" or "Bonf", defaults to
’BH’.

pvalCutoff adjusted pvalue cutoff on enrichment tests to report

qvalCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i)
pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and
iii) qvalueCutoff on qvalues to be reported

parallel Logical. Defaults to FALSE but put it at TRUE for parallel computation.

nOfCores Number of cores for parallel computations. Only in "list" interface.

Details

The arguments ’parallel’ and ’nOfCores’ are ignored in the ’default’ and "character" interfaces,
but included for possible future developments; they only apply to the "list" interface. In the "list"
interface, ’parallel’ defaults to FALSE but there is the possibility of some time saving when the
number of gene lists (the length of ’x’ in the "list" interface) is high. The trade off between the
time spent initializing parallel computing and the possible time gain due to parallelization must be
considered in each application and computer.

Value

in the "character" interface, an object of class "table". It represents a 2x2 contingency table, the
cross-tabulation of the enriched GO terms in two gene lists: "Number of enriched GO terms in
list 1 (TRUE, FALSE)" x "Number of enriched Go terms in list 2 (TRUE, FALSE)". In the "list"
interface, the result is an object of class "tableList" with all pairwise tables. Class "tableList" cor-
responds to objects representing all mutual enrichment contingency tables generated in a pairwise
fashion: Given gene lists (i.e. "character" vectors of gene identifiers) l1, l2, ..., lk, an object of class
"tableList" is a list of lists of contingency tables t(i,j) generated from each pair of gene lists i and j,
with the following structure:

$l2

$l2$l1$t(2,1)

$l3

$l3$l1$t(3,1), $l3$l2$t(3,2)

../doc/README.html
../doc/README.html

cancerEquivSorensen 15

...

$lk

lkl1$t(k,1), lkl2$t(k,2), ..., lkl(k-1)t(K,k-1)

Methods (by class)

• buildEnrichTable(default): S3 default method

• buildEnrichTable(character): S3 method for class "character"

• buildEnrichTable(list): S3 method for class "list"

Examples

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

Gene lists to be explored for enrichment:
data(allOncoGeneLists)
?allOncoGeneLists

Table of joint GO term enrichment between gene lists Vogelstein and sanger,
for ontology MF at GO level 6.
vog.VS.sang <- buildEnrichTable(allOncoGeneLists[["Vogelstein"]],

allOncoGeneLists[["sanger"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",

onto = "MF", GOLevel = 6, listNames = c("Vogelstein", "sanger"))
vog.VS.sang
All tables of mutual enrichment:
all.tabs <- buildEnrichTable(allOncoGeneLists,

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "MF", GOLevel = 6)

all.tabs$waldman

cancerEquivSorensen An example of an object of class "AllEquivSDhtest" resulting from a
call to ’allEquivTestSorensen’

Description

The Sorensen-Dice test (normal asymptotic version) performed on the cancer gene lists in data
allOncoGeneLists which may be charged from this package. The test is iterated for all GO on-
tologies and for GO levels 3 to 10. These results are not automatically updated for changes in these
gene lists and Bioconductor or Go updates, take them just as an illustrative example. The present
version was obtained under Bioconductor 3.17.

Usage

data(cancerEquivSorensen)

16 completeTable

Format

An object of class "AllEquivSDhtest" inheriting from class "list". Each one of its elements, named
BP, CC and MF respectively, corresponds to a GO ontology. It is itself a list of length 8 whose
elements are named as "Level 3" to "Level 10". For each combination of ontology and level, there
is an object of class "equivSDhtestList" codifying the result of all pairwise tests between these
cancer gene lists.

Details

For each ontology and GO level, the result contains the result of all pairwise tests of equivalence
between the cancer gene lists.

Source

http://www.bushmanlab.org/links/genelists

completeTable Reformats and completes (if necessary) a 2x2 enrichment contingency
table for its appropriate use in package goSorensen. It is internally
used by function ’buildEnrichTable’..

Description

Reformats and completes (if necessary) a 2x2 enrichment contingency table for its appropriate use
in package goSorensen. It is internally used by function ’buildEnrichTable’..

Usage

completeTable(x, listNames)

Arguments

x an object of class "table".

listNames a character(2) with the gene lists names. enrichment frequencies.

Value

a complete contingency table to use in package goSorensen.

http://www.bushmanlab.org/links/genelists

dSorensen 17

dSorensen Computation of the Sorensen-Dice dissimilarity

Description

Computation of the Sorensen-Dice dissimilarity

Usage

dSorensen(x, ...)

S3 method for class 'table'
dSorensen(x, check.table = TRUE, ...)

S3 method for class 'matrix'
dSorensen(x, check.table = TRUE, ...)

S3 method for class 'numeric'
dSorensen(x, check.table = TRUE, ...)

S3 method for class 'character'
dSorensen(x, y, check.table = TRUE, ...)

S3 method for class 'list'
dSorensen(x, check.table = TRUE, ...)

S3 method for class 'tableList'
dSorensen(x, check.table = TRUE, ...)

Arguments

x either an object of class "table", "matrix" or "numeric" representing a 2x2 con-
tingency table, or a "character" vector (a set of gene identifiers) or "list" or
"tableList" object. See the details section for more information.

... extra parameters for function buildEnrichTable.
check.table Boolean. If TRUE (default), argument x is checked to adequately represent a

2x2 contingency table, by means of function nice2x2Table.
y an object of class "character" representing a vector of valid gene identifiers (e.g.,

ENTREZ).

Details

Given a 2x2 arrangement of frequencies (either implemented as a "table", a "matrix" or a "numeric"
object):

n11 n10

n01 n00,

this function computes the Sorensen-Dice dissimilarity

n10 + n01

2n11 + n10 + n01
.

18 dSorensen

The subindex ’11’ corresponds to those GO terms enriched in both lists, ’01’ to terms enriched in
the second list but not in the first one, ’10’ to terms enriched in the first list but not enriched in
the second one and ’00’ corresponds to those GO terms non enriched in both gene lists, i.e., to the
double negatives, a value which is ignored in the computations.

In the "numeric" interface, if length(x) >= 3, the values are interpreted as (n11, n01, n10, n00),
always in this order and discarding extra values if necessary. The result is correct, regardless the
frequencies being absolute or relative.

If x is an object of class "character", then x (and y) must represent two "character" vectors of valid
gene identifiers (e.g., ENTREZ). Then the dissimilarity between lists x and y is computed, after
internally summarizing them as a 2x2 contingency table of joint enrichment. This last operation
is performed by function buildEnrichTable and "valid gene identifiers (e.g., ENTREZ)" stands
for the coherency of these gene identifiers with the arguments geneUniverse and orgPackg of
buildEnrichTable, passed by the ellipsis argument ... in dSorensen.

If x is an object of class "list", the argument must be a list of "character" vectors, each one repre-
senting a gene list (character identifiers). Then, all pairwise dissimilarities between these gene lists
are computed.

If x is an object of class "tableList", the Sorensen-Dice dissimilarity is computed over each one of
these tables. Given k gene lists (i.e. "character" vectors of gene identifiers) l1, l2, ..., lk, an object of
class "tableList" (typically constructed by a call to function buildEnrichTable) is a list of lists of
contingency tables t(i,j) generated from each pair of gene lists i and j, with the following structure:

$l2

$l2$l1$t(2,1)

$l3

$l3$l1$t(3,1), $l3$l2$t(3,2)

...

$lk

lkl1$t(k,1), lkl2$t(k,2), ..., lkl(k-1)t(k,k-1)

Value

In the "table", "matrix", "numeric" and "character" interfaces, the value of the Sorensen-Dice dis-
similarity. In the "list" and "tableList" interfaces, the symmetric matrix of all pairwise Sorensen-
Dice dissimilarities.

Methods (by class)

• dSorensen(table): S3 method for class "table"

• dSorensen(matrix): S3 method for class "matrix"

• dSorensen(numeric): S3 method for class "numeric"

• dSorensen(character): S3 method for class "character"

• dSorensen(list): S3 method for class "list"

• dSorensen(tableList): S3 method for class "tableList"

See Also

buildEnrichTable for constructing contingency tables of mutual enrichment, nice2x2Table for
checking contingency tables validity, seSorensen for computing the standard error of the dissim-
ilarity, duppSorensen for the upper limit of a one-sided confidence interval of the dissimilarity,
equivTestSorensen for an equivalence test.

duppSorensen 19

Examples

Gene lists 'atlas' and 'sanger' in 'allOncoGeneLists' dataset. Table of joint enrichment
of GO terms in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
?tab_atlas.sanger_BP3
dSorensen(tab_atlas.sanger_BP3)

Table represented as a vector:
conti4 <- c(56, 1, 30, 471)
dSorensen(conti4)
or as a plain matrix:
dSorensen(matrix(conti4, nrow = 2))

This function is also appropriate for proportions:
dSorensen(conti4 / sum(conti4))

conti3 <- c(56, 1, 30)
dSorensen(conti3)

Sorensen-Dice dissimilarity from scratch, directly from two gene lists:
(These examples may be considerably time consuming due to many enrichment
tests to build the contingency tables of joint enrichment)
data(allOncoGeneLists)
?allOncoGeneLists

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

(Time consuming, building the table requires many enrichment tests:)
dSorensen(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
onto = "BP", GOLevel = 3,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")

Essentially, the above code makes the same as:
tab_atlas.sanger_BP3 <- buildEnrichTable(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
onto = "BP", GOLevel = 3,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
dSorensen(tab_atlas.sanger_BP3)
(Quite time consuming, all pairwise dissimilarities:)
dSorensen(allOncoGeneLists,
onto = "BP", GOLevel = 3,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")

duppSorensen Upper limit of a one-sided confidence interval (0, dUpp] for the
Sorensen-Dice dissimilarity

Description

Upper limit of a one-sided confidence interval (0, dUpp] for the Sorensen-Dice dissimilarity

20 duppSorensen

Usage

duppSorensen(x, ...)

S3 method for class 'table'
duppSorensen(
x,
dis = dSorensen.table(x, check.table = FALSE),
se = seSorensen.table(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'matrix'
duppSorensen(
x,
dis = dSorensen.matrix(x, check.table = FALSE),
se = seSorensen.matrix(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'numeric'
duppSorensen(
x,
dis = dSorensen.numeric(x, check.table = FALSE),
se = seSorensen.numeric(x, check.table = FALSE),
conf.level = 0.95,
z.conf.level = qnorm(1 - conf.level),
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'character'
duppSorensen(
x,
y,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

duppSorensen 21

S3 method for class 'list'
duppSorensen(
x,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'tableList'
duppSorensen(
x,
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

Arguments

x either an object of class "table", "matrix" or "numeric" representing a 2x2 con-
tingency table, or a "character" (a set of gene identifiers) or "list" or "tableList"
object. See the details section for more information.

... additional arguments for function buildEnrichTable.

dis Sorensen-Dice dissimilarity value. Only required to speed computations if this
value is known in advance.

se standard error estimate of the sample dissimilarity. Only required to speed com-
putations if this value is known in advance.

conf.level confidence level of the one-sided confidence interval, a numeric value between
0 and 1.

z.conf.level standard normal (or bootstrap, see arguments below) distribution quantile at the
1 - conf.level value. Only required to speed computations if this value is
known in advance. Then, the argument conf.level is ignored.

boot boolean. If TRUE, z.conf.level is computed by means of a bootstrap ap-
proach instead of the asymptotic normal approach. Defaults to FALSE.

nboot numeric, number of initially planned bootstrap replicates. Ignored if boot ==
FALSE. Defaults to 10000.

check.table Boolean. If TRUE (default), argument x is checked to adequately represent
a 2x2 contingency table. This checking is performed by means of function
nice2x2Table.

y an object of class "character" representing a vector of gene identifiers (e.g., EN-
TREZ).

Details

This function computes the upper limit of a one-sided confidence interval for the Sorensen-Dice
dissimilarity, given a 2x2 arrangement of frequencies (either implemented as a "table", a "matrix"
or a "numeric" object):

22 duppSorensen

n11 n10

n01 n00,

The subindex ’11’ corresponds to those GO terms enriched in both lists, ’01’ to terms enriched in
the second list but not in the first one, ’10’ to terms enriched in the first list but not enriched in
the second one and ’00’ corresponds to those GO terms non enriched in both gene lists, i.e., to the
double negatives, a value which is ignored in the computations, except if boot == TRUE.

In the "numeric" interface, if length(x) >= 4, the values are interpreted as (n11, n01, n10, n00),
always in this order and discarding extra values if necessary.

Arguments dis, se and z.conf.level are not required. If known in advance (e.g., as a consequence
of previous computations with the same data), providing its value may speed the computations.

By default, z.conf.level corresponds to the 1 - conf.level quantile of a standard normal N(0,1)
distribution, as the studentized statistic (^d - d) / ^se) is asymptotically N(0,1). In the studentized
statistic, d stands for the "true" Sorensen-Dice dissimilarity, ^d to its sample estimate and ^se for the
estimate of its standard error. In fact, the normal is its limiting distribution but, for finite samples,
the true sampling distribution may present departures from normality (mainly with some inflation
in the left tail). The bootstrap method provides a better approximation to the true sampling dis-
tribution. In the bootstrap approach, nboot new bootstrap contingency tables are generated from
a multinomial distribution with parameters size = n = n11 + n01 + n10 + n00 and probabilities
(n11/n, n01/n, n10, n00/n). Sometimes, some of these generated tables may present so low fre-
quencies of enrichment that make them unable for Sorensen-Dice computations. As a consequence,
the number of effective bootstrap samples may be lower than the number of initially planned boot-
strap samples nboot. Computing in advance the value of argument z.conf.level may be a way to
cope with these departures from normality, by means of a more adequate quantile function. Alter-
natively, if boot == TRUE, a bootstrap quantile is internally computed.

If x is an object of class "character", then x (and y) must represent two "character" vectors of
valid gene identifiers (e.g., ENTREZ). Then the confidence interval for the dissimilarity between
lists x and y is computed, after internally summarizing them as a 2x2 contingency table of joint
enrichment. This last operation is performed by function buildEnrichTable and "valid gene
identifiers (e.g., ENTREZ)" stands for the coherency of these gene identifiers with the arguments
geneUniverse and orgPackg of buildEnrichTable, passed by the ellipsis argument ... in dUppSorensen.

In the "list" interface, the argument must be a list of "character" vectors, each one representing a
gene list (character identifiers). Then, all pairwise upper limits of the dissimilarity between these
gene lists are computed.

In the "tableList" interface, the upper limits are computed over each one of these tables. Given
gene lists (i.e. "character" vectors of gene identifiers) l1, l2, ..., lk, an object of class "tableList"
(typically constructed by a call to function buildEnrichTable) is a list of lists of contingency
tables t(i,j) generated from each pair of gene lists i and j, with the following structure:

$l2

$l2$l1$t(2,1)

$l3

$l3$l1$t(3,1), $l3$l2$t(3,2)

...

$lk

lkl1$t(k,1), lkl2$t(k,2), ..., lkl(k-1)t(k,k-1)

duppSorensen 23

Value

In the "table", "matrix", "numeric" and "character" interfaces, the value of the Upper limit of the
confidence interval for the Sorensen-Dice dissimilarity. When boot == TRUE, this result also haves
a an extra attribute: "eff.nboot" which corresponds to the number of effective bootstrap replicats,
see the details section. In the "list" and "tableList" interfaces, the result is the symmetric matrix of
all pairwise upper limits.

Methods (by class)

• duppSorensen(table): S3 method for class "table"

• duppSorensen(matrix): S3 method for class "matrix"

• duppSorensen(numeric): S3 method for class "numeric"

• duppSorensen(character): S3 method for class "character"

• duppSorensen(list): S3 method for class "list"

• duppSorensen(tableList): S3 method for class "tableList"

See Also

buildEnrichTable for constructing contingency tables of mutual enrichment, nice2x2Table for
checking contingency tables validity, dSorensen for computing the Sorensen-Dice dissimilarity,
seSorensen for computing the standard error of the dissimilarity, equivTestSorensen for an
equivalence test.

Examples

Gene lists 'atlas' and 'sanger' in 'Cangenes' dataset. Table of joint enrichment
of GO terms in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
?tab_atlas.sanger_BP3
duppSorensen(tab_atlas.sanger_BP3)
dSorensen(tab_atlas.sanger_BP3) + qnorm(0.95) * seSorensen(tab_atlas.sanger_BP3)
Using the bootstrap approximation instead of the normal approximation to
the sampling distribution of (^d - d) / se(^d):
duppSorensen(tab_atlas.sanger_BP3, boot = TRUE)

Contingency table as a numeric vector:
duppSorensen(c(56, 1, 30, 47))
duppSorensen(c(56, 1, 30))

Upper confidence limit for the Sorensen-Dice dissimilarity, from scratch,
directly from two gene lists:
(These examples may be considerably time consuming due to many enrichment
tests to build the contingency tables of mutual enrichment)
data(allOncoGeneLists)
?allOncoGeneLists

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

Computing the Upper confidence limit:
duppSorensen(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
onto = "CC", GOLevel = 5,

24 enrichedIn

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
Even more time consuming (all pairwise values):
duppSorensen(allOncoGeneLists,
onto = "CC", GOLevel = 5,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")

enrichedIn This function builds a cross-tabulation of enriched (TRUE) and non-
enriched (FALSE) GO terms vs. gene lists

Description

This function builds a cross-tabulation of enriched (TRUE) and non-enriched (FALSE) GO terms
vs. gene lists

Usage

enrichedIn(x, ...)

Default S3 method:
enrichedIn(

x,
geneUniverse,
orgPackg,
onto,
GOLevel,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = 1,
...

)

S3 method for class 'character'
enrichedIn(
x,
geneUniverse,
orgPackg,
onto,
GOLevel,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = 1,
...

)

S3 method for class 'list'
enrichedIn(

enrichedIn 25

x,
geneUniverse,
orgPackg,
onto,
GOLevel,
pAdjustMeth = "BH",
pvalCutoff = 0.01,
qvalCutoff = 0.05,
parallel = FALSE,
nOfCores = min(detectCores() - 1, length(x)),
...

)

Arguments

x either an object of class "character" (or coerzable to "character") or "list". In the
"character" interface, these values should represent Entrez gene (or, in general,
feature) identifiers. In the "list" interface, each element of the list must be a
"character" vector of Entrez identifiers

... Additional parameters

geneUniverse character vector containing the universe of genes from where gene lists have
been extracted. This vector must be obtained from the annotation package de-
clared in orgPackg. For more details see README File.

orgPackg A string with the name of the genomic annotation package corresponding to a
specific species to be analyzed, which must be previously installed and activated.
For more details see README File.

onto string describing the ontology. Belongs to c(’BP’, ’MF’, ’CC’)

GOLevel GO level, an integer

pAdjustMeth string describing the adjust method. Belongs to c(’BH’, ’BY’, ’Bonf’)

pvalCutoff adjusted pvalue cutoff on enrichment tests to report

qvalCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i)
pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and
iii) qvalueCutoff on qvalues to be reported

parallel Logical. Only in "list" interface. Defaults to FALSE but put it at TRUE for
parallel computation

nOfCores Number of cores for parallel computations. Only in "list" interface

Details

The arguments ’parallel’ and ’nOfCores’ are ignored in the ’default’ and "character" interfaces
because (in the present implementation) parallelisation is only applied to repeated calls to function
’clusterProfiler::enrichGO’ which, in turn, does not provide for the possibility of parallelisation.
They only apply to the "list" interface.

Value

In the "character" interface, a length k vector of TRUE/FALSE values corresponding to enrichment
or not, where k stands for the total number of GO terms at level ’GOLev’ in ontology ’onto’. In the
"list" interface, a boolean matrix of TRUE/FALSE values indicating enrichment or not, with k rows
and s columns, where k corresponds to the total number of GO terms at level ’GOLev’ in ontology
’onto’ and s corresponds to the length of "list" ’x’.

../doc/README.html
../doc/README.html

26 equivTestSorensen

Methods (by class)

• enrichedIn(default): S3 default method

• enrichedIn(character): S3 method for class "character"

• enrichedIn(list): S3 method for class "list"

Examples

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

Gene lists to be explored for enrichment:
data(allOncoGeneLists)
?allOncoGeneLists

Computing the cross table:
enrichd <- enrichedIn(allOncoGeneLists[["Vogelstein"]],

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "MF", GOLevel = 6)

enrichd

Cross table of enriched GO terms (GO ontology MF, level 6) for all gene
lists in 'allOncoGeneLists':
enrichedAllOncoMF.6 <- enrichedIn(allOncoGeneLists,

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "MF", GOLevel = 6)

enrichedAllOncoMF.6

equivTestSorensen Equivalence test based on the Sorensen-Dice dissimilarity

Description

Equivalence test based on the Sorensen-Dice dissimilarity, computed either by an asymptotic nor-
mal approach or by a bootstrap approach.

Usage

equivTestSorensen(x, ...)

S3 method for class 'table'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'matrix'

equivTestSorensen 27

equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'numeric'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'character'
equivTestSorensen(
x,
y,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'list'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,
...

)

S3 method for class 'tableList'
equivTestSorensen(
x,
d0 = 1/(1 + 1.25),
conf.level = 0.95,
boot = FALSE,
nboot = 10000,
check.table = TRUE,

28 equivTestSorensen

...
)

Arguments

x either an object of class "table", "matrix", "numeric", "character", "list" or "tableList".
See the details section for more information.

... extra parameters for function buildEnrichTable.

d0 equivalence threshold for the Sorensen-Dice dissimilarity, d. The null hypothe-
sis states that d >= d0, i.e., inequivalence between the compared gene lists and
the alternative that d < d0, i.e., equivalence or dissimilarity irrelevance (up to a
level d0).

conf.level confidence level of the one-sided confidence interval, a value between 0 and 1.

boot boolean. If TRUE, the confidence interval and the test p-value are computed
by means of a bootstrap approach instead of the asymptotic normal approach.
Defaults to FALSE.

nboot numeric, number of initially planned bootstrap replicates. Ignored if boot ==
FALSE. Defaults to 10000.

check.table Boolean. If TRUE (default), argument x is checked to adequately represent a
2x2 contingency table (or an aggregate of them) or gene lists producing a correct
table. This checking is performed by means of function nice2x2Table.

y an object of class "character" representing a list of gene identifiers (e.g., EN-
TREZ).

Details

This function computes either the normal asymptotic or the bootstrap equivalence test based on
the Sorensen-Dice dissimilarity, given a 2x2 arrangement of frequencies (either implemented as a
"table", a "matrix" or a "numeric" object):

n11 n10

n01 n00,

The subindex ’11’ corresponds to those GO terms enriched in both lists, ’01’ to terms enriched in
the second list but not in the first one, ’10’ to terms enriched in the first list but not enriched in
the second one and ’00’ corresponds to those GO terms non enriched in both gene lists, i.e., to the
double negatives, a value which is ignored in the computations.

In the "numeric" interface, if length(x) >= 4, the values are interpreted as (n11, n01, n10, n00),
always in this order and discarding extra values if necessary.

If x is an object of class "character", then x (and y) must represent two "character" vectors of valid
gene identifiers (e.g., ENTREZ). Then the equivalence test is performed between x and y, after
internally summarizing them as a 2x2 contingency table of joint enrichment. This last operation
is performed by function buildEnrichTable and "valid gene identifiers (e.g., ENTREZ)" stands
for the coherency of these gene identifiers with the arguments geneUniverse and orgPackg of
buildEnrichTable, passed by the ellipsis argument ... in equivTestSorensen.

If x is an object of class "list", each of its elements must be a "character" vector of gene identifiers
(e.g., ENTREZ). Then all pairwise equivalence tests are performed between these gene lists.

Class "tableList" corresponds to objects representing all mutual enrichment contingency tables gen-
erated in a pairwise fashion: Given gene lists l1, l2, ..., lk, an object of class "tableList" (typically

equivTestSorensen 29

constructed by a call to function buildEnrichTable) is a list of lists of contingency tables tij gen-
erated from each pair of gene lists i and j, with the following structure:

$l2

$l2$l1$t21

$l3

$l3$l1$t31, $l3$l2$t32

...

lkl1$tk1, lkl2$tk2, ..., lkl(k-1)tk(k-1)

If x is an object of class "tableList", the test is performed over each one of these tables.

The test is based on the fact that the studentized statistic (^d - d) / ^se is approximately distributed
as a standard normal. ^d stands for the sample Sorensen-Dice dissimilarity, d for its true (unknown)
value and ^se for the estimate of its standard error. This result is asymptotically correct, but the true
distribution of the studentized statistic is not exactly normal for finite samples, with a heavier left
tail than expected under the Gaussian model, which may produce some type I error inflation. The
bootstrap method provides a better approximation to this distribution. In the bootstrap approach,
nboot new bootstrap contingency tables are generated from a multinomial distribution with parame-
ters size = n = (n11+n01+n10+n00) and probabilities (n11/n, n01/n, n10, n00/n). Sometimes,
some of these generated tables may present so low frequencies of enrichment that make them un-
able for Sorensen-Dice computations. As a consequence, the number of effective bootstrap samples
may be lower than the number of initially planned ones, nboot, but our simulation studies con-
cluded that this makes the test more conservative, less prone to reject a truly false null hypothesis
of inequivalence, but in any case protects from inflating the type I error.

In a bootstrap test result, use getNboot to access the number of initially planned bootstrap replicates
and getEffNboot to access the number of finally effective bootstrap replicates.

Value

For all interfaces (except for the "list" and "tableList" interfaces) the result is a list of class "equivS-
Dhtest" which inherits from "htest", with the following components:

statistic the value of the studentized statistic (dSorensen(x) - d0) / seSorensen(x)

p.value the p-value of the test

conf.int the one-sided confidence interval (0, dUpp]

estimate the Sorensen dissimilarity estimate, dSorensen(x)

null.value the value of d0

stderr the standard error of the Sorensen dissimilarity estimate, seSorensen(x), used as denomina-
tor in the studentized statistic

alternative a character string describing the alternative hypothesis

method a character string describing the test

data.name a character string giving the names of the data

enrichTab the 2x2 contingency table of joint enrichment whereby the test was based

For the "list" and "tableList" interfaces, the result is an "equivSDhtestList", a list of objects with all
pairwise comparisons, each one being an object of "equivSDhtest" class.

30 equivTestSorensen

Methods (by class)

• equivTestSorensen(table): S3 method for class "table"

• equivTestSorensen(matrix): S3 method for class "matrix"

• equivTestSorensen(numeric): S3 method for class "numeric"

• equivTestSorensen(character): S3 method for class "character"

• equivTestSorensen(list): S3 method for class "list"

• equivTestSorensen(tableList): S3 method for class "tableList"

See Also

nice2x2Table for checking and reformatting data, dSorensen for computing the Sorensen-Dice
dissimilarity, seSorensen for computing the standard error of the dissimilarity, duppSorensen
for the upper limit of a one-sided confidence interval of the dissimilarity. getTable, getPvalue,
getUpper, getSE, getNboot and getEffNboot for accessing specific fields in the result of these
testing functions. update for updating the result of these testing functions with alternative equiva-
lence limits, confidence levels or to convert a normal result in a bootstrap result or the reverse.

Examples

Gene lists 'atlas' and 'sanger' in 'allOncoGeneLists' dataset. Table of joint enrichment
of GO terms in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
equivTestSorensen(tab_atlas.sanger_BP3)
Bootstrap test:
equivTestSorensen(tab_atlas.sanger_BP3, boot = TRUE)

Equivalence tests from scratch, directly from gene lists:
(These examples may be considerably time consuming due to many enrichment
tests to build the contingency tables of mutual enrichment)
data(allOncoGeneLists)
?allOncoGeneLists

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

Computing the equivalence test:
equivTestSorensen(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 3)
Bootstrap instead of normal approximation test:
equivTestSorensen(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 3,
boot = TRUE)

Essentially, the above code makes:
ctab_atlas.sanger_BP3 <- buildEnrichTable(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 3)
ctab_atlas.sanger_BP3
equivTestSorensen(ctab_atlas.sanger_BP3)
equivTestSorensen(ctab_atlas.sanger_BP3, boot = TRUE)

getDissimilarity 31

(Note that building first the contingency table may be advantageous to save time!)
The object tab_atlas.sanger_BP3 and ctab_atlas.sanger_BP3 are exactly the same

All pairwise equivalence tests:
equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 3)

Equivalence test on a contingency table represented as a numeric vector:
equivTestSorensen(c(56, 1, 30, 47))
equivTestSorensen(c(56, 1, 30, 47), boot = TRUE)
equivTestSorensen(c(56, 1, 30))
Error: all frequencies are needed for bootstrap:
try(equivTestSorensen(c(56, 1, 30), boot = TRUE), TRUE)

getDissimilarity Access to the estimated Sorensen-Dice dissimilarity in one or more
equivalence test results

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’) this function returns the estimated dissimilarities in the tests.

Usage

getDissimilarity(x, ...)

S3 method for class 'equivSDhtest'
getDissimilarity(x, ...)

S3 method for class 'equivSDhtestList'
getDissimilarity(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getDissimilarity(x, onto, GOLevel, listNames, simplify = TRUE, ...)

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

32 getDissimilarity

Details

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is a single numeric value, the Sorensen-Dice dissimilarity. For an object of class "equivSDht-
estList" (i.e. all pairwise tests for a set of gene lists), if simplify = TRUE (the default), the resulting
value is a vector with the dissimilarities in all those tests, or the symmetric matrix of all dissimilar-
ities if simplify = TRUE. If x is an object of class "allEquivSDtest" (i.e., the test iterated along GO
ontologies and levels), the preceding result is returned in the form of a list along the ontologies, lev-
els and pairs of gene lists specified by the arguments onto, GOlevel and listNames (or all present
in x for missing arguments).

Methods (by class)

• getDissimilarity(equivSDhtest): S3 method for class "equivSDhtest"

• getDissimilarity(equivSDhtestList): S3 method for class "equivSDhtestList"

• getDissimilarity(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
(But results may vary according to GO updating)
getDissimilarity(waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology:
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
getDissimilarity(BP.4)
getDissimilarity(BP.4, simplify = FALSE)

Equivalence test iterated over all GO ontologies and levels 3 to 10:
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,

getEffNboot 33

geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db")
All Sorensen-Dice dissimilarities:
getDissimilarity(cancerEquivSorensen)
getDissimilarity(cancerEquivSorensen, simplify = FALSE)

Dissimilarities only for some GO ontologies, levels or pairs of gene lists:
getDissimilarity(cancerEquivSorensen, GOLevel = "level 6")
getDissimilarity(cancerEquivSorensen, GOLevel = 6)
getDissimilarity(cancerEquivSorensen, GOLevel = seq.int(4,6))
getDissimilarity(cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getDissimilarity(cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getDissimilarity(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getDissimilarity(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getDissimilarity(cancerEquivSorensen, GOLevel = "level 6", onto = "BP",

listNames = c("waldman", "sanger"))
getDissimilarity(cancerEquivSorensenBP`level 4`)

getEffNboot Access to the number of effective bootstrap replicates in one or more
equivalence test results (only for their bootstrap version)

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’), this function returns the number of effective bootstrap replicates. Obviously,
this only applies to calls of these functions with the parameter boot = TRUE, otherwise it returns a
NA value. See the details section for further explanation.

Usage

getEffNboot(x, ...)

S3 method for class 'equivSDhtest'
getEffNboot(x, ...)

S3 method for class 'equivSDhtestList'
getEffNboot(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getEffNboot(x, onto, GOLevel, listNames, simplify = TRUE, ...)

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

34 getEffNboot

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

In the bootstrap version of the equivalence test, resampling is performed generating new bootstrap
contingency tables from a multinomial distribution based on the "real", observed, frequencies of
mutual enrichment. In some bootstrap resamples, the generated contingency table of mutual en-
richment may have very low frequencies of enrichment, which makes it unable for Sorensen-Dice
computations. Then, the number of effective bootstrap resamples may be lower than those initially
planned. To get the number of initially planned bootstrap resamples use function getNboot.

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is a single numeric value, the number of effective bootstrap replicates, or NA if bootstrapping
has not been performed. For an object of class "equivSDhtestList" (i.e. all pairwise tests for a set of
gene lists), if simplify = TRUE (the default), the resulting value is a vector with the number of ef-
fective bootstrap replicates in all those tests, or the symmetric matrix of all these values if simplify
= TRUE. If x is an object of class "allEquivSDtest" (i.e., the test iterated along GO ontologies and
levels), the preceding result is returned in the form of a list along the ontologies, levels and pairs of
gene lists specified by the arguments onto, GOlevel and listNames (or all present in x for missing
arguments).

Methods (by class)

• getEffNboot(equivSDhtest): S3 method for class "equivSDhtest"

• getEffNboot(equivSDhtestList): S3 method for class "equivSDhtestList"

• getEffNboot(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

See Also

getNboot

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
#

getNboot 35

(But results may vary according to GO updating)

Not a bootstrap test, first upgrade to a bootstrap test:
boot.waldman_atlas.BP.4 <- upgrade(waldman_atlas.BP.4, boot = TRUE)

getEffNboot(waldman_atlas.BP.4)
getEffNboot(boot.waldman_atlas.BP.4)
getNboot(boot.waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
boot.BP.4 <- upgrade(BP.4, boot = TRUE)
getEffNboot(BP.4)
getEffNboot(boot.BP.4)
getNboot(boot.BP.4)
getEffNboot(boot.BP.4, simplify = FALSE)

Bootstrap equivalence test iterated over all GO ontologies and levels 3 to 10.
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db",
boot = TRUE)
boot.cancerEquivSorensen <- upgrade(cancerEquivSorensen, boot = TRUE)
Number of effective bootstrap replicates for all tests:
getEffNboot(boot.cancerEquivSorensen)
getEffNboot(boot.cancerEquivSorensen, simplify = FALSE)

Number of effective bootstrap replicates for specific GO ontologies, levels or pairs
of gene lists:
getEffNboot(boot.cancerEquivSorensen, GOLevel = "level 6")
getEffNboot(boot.cancerEquivSorensen, GOLevel = 6)
getEffNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6))
getEffNboot(boot.cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getEffNboot(boot.cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getEffNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getEffNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getEffNboot(boot.cancerEquivSorensen, GOLevel = "level 6", onto = "BP",
listNames = c("waldman", "sanger"))
getEffNboot(boot.cancerEquivSorensenBP`level 4`)

getNboot Access to the number of initially planned bootstrap replicates in one
or more equivalence test results (only in their bootstrap version)

36 getNboot

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’ with the parameter boot = TRUE), this function returns the number of initially
planned bootstrap replicates in these equivalence tests, which may be greater than the number of
finally effective or valid bootstrap replicates. See the details section for more information on this.

Usage

getNboot(x, ...)

S3 method for class 'equivSDhtest'
getNboot(x, ...)

S3 method for class 'equivSDhtestList'
getNboot(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getNboot(x, onto, GOLevel, listNames, simplify = TRUE, ...)

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

In the bootstrap version of the equivalence test, resampling is performed generating new bootstrap
contingency tables from a multinomial distribution based on the "real", observed, frequencies of
mutual enrichment. In some bootstrap iterations, the generated contingency table of mutual en-
richment may have very low frequencies of enrichment, which makes it unable for Sorensen-Dice
computations. Then, the number of effective bootstrap resamples may be lower than those initially
planned. To get the number of effective bootstrap resamples use function getEffNboot.

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the re-
turned value is a single numeric value, the number of initially planned bootstrap replicates, or NA if
bootstrapping has not been performed. For an object of class "equivSDhtestList" (i.e. all pairwise
tests for a set of gene lists), if simplify = TRUE (the default), the resulting value is a vector with the
number of initially bootstrap replicates in all those tests, or the symmetric matrix of all these values

getNboot 37

if simplify = TRUE. If x is an object of class "allEquivSDtest" (i.e., the test iterated along GO on-
tologies and levels), the preceding result is returned in the form of a list along the ontologies, levels
and pairs of gene lists specified by the arguments onto, GOlevel and listNames (or all present in
x for missing arguments).

Methods (by class)

• getNboot(equivSDhtest): S3 method for class "equivSDhtest"

• getNboot(equivSDhtestList): S3 method for class "equivSDhtestList"

• getNboot(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

See Also

getEffNboot

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
#
(But results may vary according to GO updating)

Not a bootstrap test, first upgrade to a bootstrap test:
boot.waldman_atlas.BP.4 <- upgrade(waldman_atlas.BP.4, boot = TRUE)

getNboot(waldman_atlas.BP.4)
getNboot(boot.waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
boot.BP.4 <- upgrade(BP.4, boot = TRUE)
getNboot(BP.4)
getNboot(boot.BP.4)
getNboot(boot.BP.4, simplify = FALSE)

Bootstrap equivalence test iterated over all GO ontologies and levels 3 to 10.
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,

38 getPvalue

geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db",
boot = TRUE)
boot.cancerEquivSorensen <- upgrade(cancerEquivSorensen, boot = TRUE)
All numbers of bootstrap replicates:
getNboot(boot.cancerEquivSorensen)
getNboot(boot.cancerEquivSorensen, simplify = FALSE)

Number of bootstrap replicates for specific GO ontologies, levels or pairs of gene lists:
getNboot(boot.cancerEquivSorensen, GOLevel = "level 6")
getNboot(boot.cancerEquivSorensen, GOLevel = 6)
getNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6))
getNboot(boot.cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getNboot(boot.cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getNboot(boot.cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getNboot(boot.cancerEquivSorensen, GOLevel = "level 6", onto = "BP",
listNames = c("waldman", "sanger"))
getNboot(boot.cancerEquivSorensenBP`level 4`)

getPvalue Access to the p-value of one or more equivalence test results

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’) this function returns the p-values of the tests.

Usage

getPvalue(x, ...)

S3 method for class 'equivSDhtest'
getPvalue(x, ...)

S3 method for class 'equivSDhtestList'
getPvalue(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getPvalue(x, onto, GOLevel, listNames, simplify = TRUE, ...)

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

getPvalue 39

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is a single numeric value, the test p-value. For an object of class "equivSDhtestList" (i.e. all
pairwise tests for a set of gene lists), if simplify = TRUE (the default), the resulting value is a
vector with the p-values in all those tests, or the symmetric matrix of all p-values if simplify =
TRUE. If x is an object of class "allEquivSDtest" (i.e., the test iterated along GO ontologies and
levels), the preceding result is returned in the form of a list along the ontologies, levels and pairs of
gene lists specified by the arguments onto, GOlevel and listNames (or all present in x for missing
arguments).

Methods (by class)

• getPvalue(equivSDhtest): S3 method for class "equivSDhtest"

• getPvalue(equivSDhtestList): S3 method for class "equivSDhtestList"

• getPvalue(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
(But results may vary according to GO updating)
getPvalue(waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
getPvalue(BP.4)
getPvalue(BP.4, simplify = FALSE)

Equivalence test iterated over all GO ontologies and levels 3 to 10:
data(cancerEquivSorensen)

40 getSE

?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db")
All p-values:
getPvalue(cancerEquivSorensen)
getPvalue(cancerEquivSorensen, simplify = FALSE)

P-values only for some GO ontologies, levels or pairs of gene lists:
getPvalue(cancerEquivSorensen, GOLevel = "level 6")
getPvalue(cancerEquivSorensen, GOLevel = 6)
getPvalue(cancerEquivSorensen, GOLevel = seq.int(4,6))
getPvalue(cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getPvalue(cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getPvalue(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getPvalue(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getPvalue(cancerEquivSorensen, GOLevel = "level 6", onto = "BP",

listNames = c("waldman", "sanger"))
getPvalue(cancerEquivSorensenBP`level 4`)

getSE Access to the estimated standard error of the sample Sorensen-Dice
dissimilarity in one or more equivalence test results

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’) this function returns the estimated standard errors of the sample dissimilarities
in the tests.

Usage

getSE(x, ...)

S3 method for class 'equivSDhtest'
getSE(x, ...)

S3 method for class 'equivSDhtestList'
getSE(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getSE(x, onto, GOLevel, listNames, simplify = TRUE, ...)

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... additional parameters.

getSE 41

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is a single numeric value, the standard error of the Sorensen-Dice dissimilarity estimate. For
an object of class "equivSDhtestList" (i.e. all pairwise tests for a set of gene lists), if simplify =
TRUE (the default), the resulting value is a vector with the dissimilarity standard errors in all those
tests, or the symmetric matrix of all these values if simplify = TRUE. If x is an object of class
"allEquivSDtest" (i.e., the test iterated along GO ontologies and levels), the preceding result is
returned in the form of a list along the ontologies, levels and pairs of gene lists specified by the
arguments onto, GOlevel and listNames (or all present in x for missing arguments).

Methods (by class)

• getSE(equivSDhtest): S3 method for class "equivSDhtest"

• getSE(equivSDhtestList): S3 method for class "equivSDhtestList"

• getSE(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
(But results may vary according to GO updating)
getSE(waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology:
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)

42 getTable

getSE(BP.4)
getSE(BP.4, simplify = FALSE)

Equivalence test iterated over all GO ontologies and levels 3 to 10:
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db")
All standard errors of the Sorensen-Dice dissimilarity estimates:
getSE(cancerEquivSorensen)
getSE(cancerEquivSorensen, simplify = FALSE)

Standard errors for some GO ontologies, levels or pairs of gene lists:
getSE(cancerEquivSorensen, GOLevel = "level 6")
getSE(cancerEquivSorensen, GOLevel = 6)
getSE(cancerEquivSorensen, GOLevel = seq.int(4,6))
getSE(cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getSE(cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getSE(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getSE(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getSE(cancerEquivSorensen, GOLevel = "level 6", onto = "BP",

listNames = c("waldman", "sanger"))
getSE(cancerEquivSorensenBP`level 4`)

getTable Access to the contingency table of mutual enrichment of one or more
equivalence test results

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’) this function returns the contingency tables from which the tests were per-
formed.

Usage

getTable(x, ...)

S3 method for class 'equivSDhtest'
getTable(x, ...)

S3 method for class 'equivSDhtestList'
getTable(x, ...)

S3 method for class 'AllEquivSDhtest'
getTable(x, onto, GOLevel, listNames, ...)

getTable 43

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or 4:6.

Value

An object of class "table", the 2x2 enrichment contingeny table of mutual enrichment in two gene
lists, built to perform the equivalence test based on the Sorensen-Dice dissimilarity.

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is an object of class "table", the 2x2 enrichment contingeny table of mutual enrichment in two
gene lists, built to perform the equivalence test based on the Sorensen-Dice dissimilarity. For an
object of class "equivSDhtestList" (i.e. all pairwise tests for a set of gene lists), the resulting value
is a list with all the tables built in all those tests. If x is an object of class "allEquivSDtest" (i.e.,
the test iterated along GO ontologies and levels), the preceding result is returned as a list along the
ontologies, levels and pairs of gene lists specified by the arguments onto, GOlevel and listNames
(or all ontologies, levels or pairs of gene lists present in x if one or more of these arguments are
missing).

Methods (by class)

• getTable(equivSDhtest): S3 method for class "equivSDhtest"

• getTable(equivSDhtestList): S3 method for class "equivSDhtestList"

• getTable(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
(But results may vary according to GO updating)
getTable(waldman_atlas.BP.4)

All pairwise equivalence tests at level 4 of the BP ontology
data(BP.4)

44 getUpper

?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
getTable(BP.4)

Equivalence test iterated over all GO ontologies and levels 3 to 10:
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db")
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
All 2x2 contingecy tables of joint enrichment:
getTable(cancerEquivSorensen)
Contingency tables only for some GO ontologies, levels or pairs of gene lists:
getTable(cancerEquivSorensen, GOLevel = "level 6")
getTable(cancerEquivSorensen, GOLevel = 6)
getTable(cancerEquivSorensen, GOLevel = seq.int(4,6), listNames = c("waldman", "sanger"))
getTable(cancerEquivSorensen, GOLevel = "level 6", onto = "BP")
getTable(cancerEquivSorensen, GOLevel = "level 6", onto = "BP",

listNames = c("waldman", "sanger"))

getUpper Access to the upper limit of the one-sided confidence intervals for the
Sorensen-Dice dissimilarity in one or more equivalence test results

Description

Given objects representing the result(s) of one or more equivalence tests (classes "equivSDhtest",
"equivSDhtestList" or "allEquivSDtest", i.e., the result of functions ’equivTestSorensen’ and ’allE-
quivTestSorensen’) this function returns the upper limits of the one-sided confidence intervals [0,
dU] for the Sorensen-Dice dissimilarity.

Usage

getUpper(x, ...)

S3 method for class 'equivSDhtest'
getUpper(x, ...)

S3 method for class 'equivSDhtestList'
getUpper(x, simplify = TRUE, ...)

S3 method for class 'AllEquivSDhtest'
getUpper(x, onto, GOLevel, listNames, simplify = TRUE, ...)

getUpper 45

Arguments

x an object of class "equivSDhtest" or "equivSDhtestList" or "allEquivSDtest".

... Additional parameters.

simplify logical, if TRUE the result is simplified, e.g., returning a vector instead of a
matrix.

onto character, a vector with one or more of "BP", "CC" or "MF", ontologies to ac-
cess.

GOLevel numeric or character, a vector with one or more GO levels to access. See the
details section and the examples.

listNames character(2), the names of a pair of gene lists.

Details

Argument GOLevel can be of class "character" or "numeric". In the first case, the GO levels must be
specified like "level 6" or c("level 4", "level 5", "level 6") In the second case ("numeric"),
the GO levels must be specified like6 or seq.int(4,6).

Value

A numeric value, the upper limit of the one-sided confidence interval for the Sorensen-Dice dissim-
ilarity.

When x is an object of class "equivSDhtest" (i.e., the result of a single equivalence test), the returned
value is a single numeric value, the upper limit of the one-sided confidence interval for the Sorensen-
Dice dissimilarity. For an object of class "equivSDhtestList" (i.e. all pairwise tests for a set of gene
lists), if simplify = TRUE (the default), the resulting value is a vector with the upper limit of the one-
sided confidence intervals in all those tests, or the symmetric matrix of all these values if simplify
= TRUE. If x is an object of class "allEquivSDtest" (i.e., the test iterated along GO ontologies and
levels), the preceding result is returned in the form of a list along the ontologies, levels and pairs of
gene lists specified by the arguments onto, GOlevel and listNames (or all present in x for missing
arguments).

Methods (by class)

• getUpper(equivSDhtest): S3 method for class "equivSDhtest"

• getUpper(equivSDhtestList): S3 method for class "equivSDhtestList"

• getUpper(AllEquivSDhtest): S3 method for class "AllEquivSDhtest"

Examples

Dataset 'allOncoGeneLists' contains the result of the equivalence test between gene lists
'waldman' and 'atlas', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
(But results may vary according to GO updating)
getUpper(waldman_atlas.BP.4)

46 gosorensen

All pairwise equivalence tests at level 4 of the BP ontology:
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
getUpper(BP.4)
getUpper(BP.4, simplify = FALSE)

Equivalence test iterated over all GO ontologies and levels 3 to 10:
data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
This may correspond to code like:
(By default, the tests are iterated over all GO ontologies and for levels 3 to 10)
cancerEquivSorensen <- allEquivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs,
orgPackg = "org.Hs.eg.db")
All upper confidence limits for the Sorensen-Dice dissimilarities:
getUpper(cancerEquivSorensen)
getUpper(cancerEquivSorensen, simplify = FALSE)

Upper confidence limits only for some GO ontologies, levels or pairs of gene lists:
getUpper(cancerEquivSorensen, GOLevel = "level 6")
getUpper(cancerEquivSorensen, GOLevel = 6)
getUpper(cancerEquivSorensen, GOLevel = seq.int(4,6))
getUpper(cancerEquivSorensen, GOLevel = "level 6", simplify = FALSE)
getUpper(cancerEquivSorensen, GOLevel = "level 6", listNames = c("waldman", "sanger"))
getUpper(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP")
getUpper(cancerEquivSorensen, GOLevel = seq.int(4,6), onto = "BP", simplify = FALSE)
getUpper(cancerEquivSorensen, GOLevel = "level 6", onto = "BP",

listNames = c("waldman", "sanger"))
getUpper(cancerEquivSorensenBP`level 4`)

gosorensen gosorensen: A package for making inference on gene lists based on
the Sorensen-Dice dissimilarity

Description

Given two lists of genes, and a set of Gene Ontology (GO) items (e.g., all GO items in a given level
of a given GO ontology) one may explore some aspects of their biological meaning by constructing
a 2x2 contingency table, the cross-tabulation of: number of these GO items non-enriched in both
gene lists (n00), items enriched in the first list but not in the second one (n10), items non-enriched
in the first list but enriched in the second (n10) and items enriched in both lists (n11). Then,
one may express the degree of similarity or dissimilarity between the two lists by means of an
appropriate index computed on these frequency tables of concordance or non-concordance in GO
items enrichment. In our opinion, an appropriate index is the Sorensen-Dice index which ignores
the double negatives n00: if the total number of candidate GO items under consideration grows
(e.g., all items in a deep level of an ontology) likely n00 will also grow artificially. On the other

hclustThreshold 47

hand, intuitively the degree of similarity between both lists must be directly related to the degree of
concordance in the enrichment, n11.

Details

gosorensen package provides the following functions:

enrichedIn Build a cross-tabulation of enriched and non-enriched GO terms vs. gene lists
buildEnrichTable Build an enrichment contingency table from two or more gene lists
allBuildEnrichTable Iterate ’buildEnrichTable’ along the specified GO ontologies and GO levels
nice2x2Table Check for validity an enrichment contingency table
dSorensen Compute the Sorensen-Dice dissimilarity
seSorensen Standard error estimate of the sample Sorensen-Dice dissimilarity
duppSorensen Upper limit of a one-sided confidence interval (0,dUpp] for the population dissim-

ilarity
equivTestSorensen Equivalence test between two gene lists, based on the Sorensen-Dice dissimi-

larity
allEquivTestSorensen Iterate equivTestSorensen along GO ontologies and GO levels
getDissimilarity, getPvalue, getSE, getTable, getUpper, getNboot, getEffNboot Accessor func-

tions to some fields of an equivalence test result
upgrade Updating the result of an equivalence test, e.g., changing the equivalence limit
sorenThreshold For a given level (2, 3, ...) in a GO ontology (BP, MF or CC), compute the

equivalence threshold dissimilarity matrix.
allSorenThreshold Iterate ’sorenThreshold’ along the specified GO ontologies and GO levels.
hclustThreshold From a Sorensen-Dice threshold dissimilarity matrix, generate an object of class

"hclust"
allHclustThreshold Iterate ’hclustThreshold’ along the specified GO ontologies and GO levels
pruneClusts Remove all NULL or unrepresentable as a dendrogram "equivClustSorensen" ele-

ments in an object of class "equivClustSorensenList"

All these functions are generic, adequate for different (S3) classes representing the before cited GO
term enrichment cross-tabulations.

hclustThreshold From a Sorensen-Dice threshold dissimilarity matrix, generate an ob-
ject of class "hclust"

Description

From a Sorensen-Dice threshold dissimilarity matrix, generate an object of class "hclust"

Usage

hclustThreshold(
x,
onTheFlyDev = NULL,
method = "complete",
jobName = paste("Equivalence cluster", method, sep = "_"),
ylab = "Sorensen equivalence threshold dissimilarity",
...

)

48 nice2x2Table

Arguments

x an object of class "dist" with the Sorensen-Dice equivalence threshold dissimi-
larities matrix

onTheFlyDev character, name of the graphical device where to immediately display the result-
ing diagram. The appropriate names depend on the operating system. Defaults
to NULL and then nothing is displayed

method character, one of the admissible methods in function hclust. Defaults to "com-
plete"

jobName character, main plot name, defaults to paste("Equivalence cluster", onto,
ontoLevel, method, sep = "_")

ylab character, label of the vertical axis of the plot, defaults to "Sorensen equivalence
threshold dissimilarity"

... additional arguments to hclust

Value

An object of class equivClustSorensen, descending from class hclust

Examples

Gene lists to analyse:
data("allOncoGeneLists")

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

First, compute the Sorensen-Dice threshold equivalence dissimilarity
for ontology BP at level 4:
Very time consuming, it requires building all joint enrichment contingency tables
dOncBP4 <- sorenThreshold(allOncoGeneLists, onto = "BP", GOLevel = 4,

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
Better (much faster), using the previously tabulated contingency tables:
data("allTabsBP.4")
dOncBP4 <- sorenThreshold(allTabsBP.4)
clust.threshold <- hclustThreshold(dOncBP4)
plot(clust.threshold, main = "AllOnco genelists, BP ontology at level 4",

ylab = "Sorensen equivalence threshold")
With the same data, an UPGMA dendrogram:
clust.threshold <- hclustThreshold(dOncBP4, method = "average")
plot(clust.threshold, main = "AllOnco genelists, BP ontology at level 4",

ylab = "Sorensen equivalence threshold")

nice2x2Table Checks for validity data representing an enrichment contingency table
generated from two gene lists

Description

Checks for validity data representing an enrichment contingency table generated from two gene lists

nice2x2Table 49

Usage

nice2x2Table(x)

S3 method for class 'table'
nice2x2Table(x)

S3 method for class 'matrix'
nice2x2Table(x)

S3 method for class 'numeric'
nice2x2Table(x)

Arguments

x either an object of class "table", "matrix" or "numeric".

Details

In the "table" and "matrix" interfaces, the input parameter x must correspond to a two-dimensional
array:

n11 n10

n01 n00,

These values are interpreted (always in this order) as n11: number of GO terms enriched in both
lists, n01: GO terms enriched in the second list but not in the first one, n10: terms not enriched in
the second list but enriched in the first one and double negatives, n00. The double negatives n00 are
ignored in many computations concerning the Sorensen-Dice index.

In the "numeric" interface, the input x must correspond to a numeric of length 3 or more, in the
same order as before.

Value

boolean, TRUE if x nicely represents a 2x2 contingency table interpretable as the cross-tabulation
of the enriched GO terms in two gene lists: "Number of enriched terms in list 1 (TRUE, FALSE)"
x "Number of enriched terms in list 2 (TRUE, FALSE)". In this function, "nicely representing a
2x2 contingency table" is interpreted in terms of computing the Sorensen-Dice dissimilarity and
associated statistics. Otherwise the execution is interrupted.

Methods (by class)

• nice2x2Table(table): S3 method for class "table"

• nice2x2Table(matrix): S3 method for class "matrix"

• nice2x2Table(numeric): S3 method for class "numeric"

Examples

conti <- as.table(matrix(c(27, 36, 12, 501, 43, 15, 0, 0, 0), nrow = 3, ncol = 3,
dimnames = list(c("a1","a2","a3"),

c("b1", "b2","b3"))))
tryCatch(nice2x2Table(conti), error = function(e) {return(e)})
conti2 <- conti[1,seq.int(1, min(2,ncol(conti))), drop = FALSE]

50 pbtGeneLists

conti2
tryCatch(nice2x2Table(conti2), error = function(e) {return(e)})

conti3 <- matrix(c(12, 210), ncol = 2, nrow = 1)
conti3
tryCatch(nice2x2Table(conti3), error = function(e) {return(e)})

conti4 <- c(32, 21, 81, 1439)
nice2x2Table(conti4)
conti4.mat <- matrix(conti4, nrow = 2)
conti4.mat
conti5 <- c(32, 21, 81)
nice2x2Table(conti5)

conti6 <- c(-12, 21, 8)
tryCatch(nice2x2Table(conti6), error = function(e) {return(e)})

conti7 <- c(0, 0, 0, 32)
tryCatch(nice2x2Table(conti7), error = function(e) {return(e)})

pbtGeneLists 14 gene lists possibly related with kidney transplant rejection

Description

An object of class "list" of length 14. A non up-to-date subset of the University of Alberta pathogenesis-
based transcripts sets (PBTs) that were generated by using Affymetrix Microarrays. Take them just
as an illustrative example.

Usage

data(pbtGeneLists)

Format

An object of class "list" of length 5. Each one of its elements is a "character" vector of ENTREZ
gene identifiers.

Source

https://www.ualberta.ca/medicine/institutes-centres-groups/atagc/research/gene-lists.
html

https://www.ualberta.ca/medicine/institutes-centres-groups/atagc/research/gene-lists.html
https://www.ualberta.ca/medicine/institutes-centres-groups/atagc/research/gene-lists.html

pruneClusts 51

pruneClusts Remove all NULL or unrepresentable as a dendrogram "equivClust-
Sorensen" elements in an object of class "equivClustSorensenList"

Description

Remove all NULL or unrepresentable as a dendrogram "equivClustSorensen" elements in an object
of class "equivClustSorensenList"

Usage

pruneClusts(x)

Arguments

x An object of class "equivClustSorensenList" descending from "iterEquivClust"
which itself descends from class "list". See the details section.

Details

"equivClustSorensenList" objects are lists whose components are one or more of BP, CC or MF,
the GO ontologies. Each of these elements is itself a list whose elements correspond to GO lev-
els. Finally, the elements of these lists are objects of class "equivClustSorensen", descending from
"equivClust" which itself descends from "hclust".

Value

An object of class "equivClustSorensenList".

seSorensen Standard error of the sample Sorensen-Dice dissimilarity, asymptotic
approach

Description

Standard error of the sample Sorensen-Dice dissimilarity, asymptotic approach

Usage

seSorensen(x, ...)

S3 method for class 'table'
seSorensen(x, check.table = TRUE, ...)

S3 method for class 'matrix'
seSorensen(x, check.table = TRUE, ...)

S3 method for class 'numeric'
seSorensen(x, check.table = TRUE, ...)

52 seSorensen

S3 method for class 'character'
seSorensen(x, y, check.table = TRUE, ...)

S3 method for class 'list'
seSorensen(x, check.table = TRUE, ...)

S3 method for class 'tableList'
seSorensen(x, check.table = TRUE, ...)

Arguments

x either an object of class "table", "matrix" or "numeric" representing a 2x2 con-
tingency table, or a "character" (a set of gene identifiers) or "list" or "tableList"
object. See the details section for more information.

... extra parameters for function buildEnrichTable.

check.table Boolean. If TRUE (default), argument x is checked to adequately represent
a 2x2 contingency table. This checking is performed by means of function
nice2x2Table.

y an object of class "character" representing a vector of gene identifiers (e.g., EN-
TREZ).

Details

This function computes the standard error estimate of the sample Sorensen-Dice dissimilarity, given
a 2x2 arrangement of frequencies (either implemented as a "table", a "matrix" or a "numeric" ob-
ject):

n11 n10

n01 n00,

The subindex ’11’ corresponds to those GO terms enriched in both lists, ’01’ to terms enriched in
the second list but not in the first one, ’10’ to terms enriched in the first list but not enriched in
the second one and ’00’ corresponds to those GO terms non enriched in both gene lists, i.e., to the
double negatives, a value which is ignored in the computations.

In the "numeric" interface, if length(x) >= 3, the values are interpreted as (n11, n01, n10), always
in this order.

If x is an object of class "character", then x (and y) must represent two "character" vectors of valid
gene identifiers (e.g., ENTREZ). Then the standard error for the dissimilarity between lists x and
y is computed, after internally summarizing them as a 2x2 contingency table of joint enrichment.
This last operation is performed by function buildEnrichTable and "valid gene identifiers (e.g.,
ENTREZ)" stands for the coherency of these gene identifiers with the arguments geneUniverse
and orgPackg of buildEnrichTable, passed by the ellipsis argument ... in seSorensen.

In the "list" interface, the argument must be a list of "character" vectors, each one representing a
gene list (character identifiers). Then, all pairwise standard errors of the dissimilarity between these
gene lists are computed.

If x is an object of class "tableList", the standard error of the Sorensen-Dice dissimilarity estimate
is computed over each one of these tables. Given k gene lists (i.e. "character" vectors of gene
identifiers) l1, l2, ..., lk, an object of class "tableList" (typically constructed by a call to function
buildEnrichTable) is a list of lists of contingency tables t(i,j) generated from each pair of gene
lists i and j, with the following structure:

seSorensen 53

$l2

$l2$l1$t(2,1)

$l3

$l3$l1$t(3,1), $l3$l2$t(3,2)

...

$lk

lkl1$t(k,1), lkl2$t(k,2), ..., lkl(k-1)t(k,k-1)

Value

In the "table", "matrix", "numeric" and "character" interfaces, the value of the standard error of the
Sorensen-Dice dissimilarity estimate. In the "list" and "tableList" interfaces, the symmetric matrix
of all standard error dissimilarity estimates.

Methods (by class)

• seSorensen(table): S3 method for class "table"

• seSorensen(matrix): S3 method for class "matrix"

• seSorensen(numeric): S3 method for class "numeric"

• seSorensen(character): S3 method for class "character"

• seSorensen(list): S3 method for class "list"

• seSorensen(tableList): S3 method for class "tableList"

See Also

buildEnrichTable for constructing contingency tables of mutual enrichment, nice2x2Table for
checking the validity of enrichment contingency tables, dSorensen for computing the Sorensen-
Dice dissimilarity, duppSorensen for the upper limit of a one-sided confidence interval of the dis-
similarity, equivTestSorensen for an equivalence test.

Examples

Gene lists 'atlas' and 'sanger' in 'Cangenes' dataset. Table of joint enrichment
of GO terms in ontology BP at level 3.
data(tab_atlas.sanger_BP3)
tab_atlas.sanger_BP3
dSorensen(tab_atlas.sanger_BP3)
seSorensen(tab_atlas.sanger_BP3)

Contingency table as a numeric vector:
seSorensen(c(56, 1, 30, 47))
seSorensen(c(56, 1, 30))

(These examples may be considerably time consuming due to many enrichment
tests to build the contingency tables of mutual enrichment)
data(allOncoGeneLists)
?allOncoGeneLists

Standard error of the sample Sorensen-Dice dissimilarity, directly from
two gene lists, from scratch:
seSorensen(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
onto = "BP", GOLevel = 3,

54 sorenThreshold

geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
Essentially, the above code makes the same as:
ctab_atlas.sanger_BP3 <- buildEnrichTable(allOncoGeneLists$atlas, allOncoGeneLists$sanger,
onto = "BP", GOLevel = 3,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
ctab_atlas.sanger_BP3
seSorensen(ctab_atlas.sanger_BP3)
tab_atlas.sanger_BP3 and ctab_atlas.sanger_BP3 have exactly the same result.

All pairwise standard errors (quite time consuming):
seSorensen(allOncoGeneLists,
onto = "BP", GOLevel = 3,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")

sorenThreshold For a given level (2, 3, ...) in a GO ontology (BP, MF or CC), compute
the equivalence threshold dissimilarity matrix.

Description

For a given level (2, 3, ...) in a GO ontology (BP, MF or CC), compute the equivalence threshold
dissimilarity matrix.

Usage

sorenThreshold(x, ...)

S3 method for class 'list'
sorenThreshold(
x,
onto,
GOLevel,
geneUniverse,
orgPackg,
boot = FALSE,
nboot = 10000,
boot.seed = 6551,
trace = TRUE,
alpha = 0.05,
precis = 0.001,
...

)

S3 method for class 'tableList'
sorenThreshold(
x,
boot = FALSE,
nboot = 10000,
boot.seed = 6551,
trace = TRUE,
alpha = 0.05,
precis = 0.001,

sorenThreshold 55

...
)

Arguments

x either an object of class "list" or class "tableList". See the details section for
more information.

... additional arguments to buildEnrichTable

onto character, GO ontology ("BP", "MF" or "CC") under consideration

GOLevel integer (2, 3, ...) level of a GO ontology where the GO profiles are built

geneUniverse character vector containing the universe of genes from where geneLists have
been extracted. This vector must be extracted from the annotation package de-
clared in orgPackg. For more details see README File.

orgPackg A string with the name of the genomic annotation package corresponding to a
specific species to be analyzed, which must be previously installed and activated.
For more details see README File.

boot boolean. If TRUE, the p-values are computed by means of a bootstrap approach
instead of the asymptotic normal approach. Defaults to FALSE.

nboot numeric, number of initially planned bootstrap replicates. Ignored if boot ==
FALSE. Defaults to 10000

boot.seed starting random seed for all bootstrap iterations. Defaults to 6551. see the details
section

trace boolean, the full process must be traced? Defaults to TRUE

alpha simultaneous nominal significance level for the equivalence tests to be repeteadly
performed, defaults to 0.05

precis numerical precision in the iterative search of the equivalence threshold dissimi-
larities, defaults to 0.001

Details

If x is an object of class "list", each of its elements must be a "character" vector of gene identifiers
(e.g., ENTREZ). Then all pairwise threshold dissimilarities between these gene lists are obtained.

Class "tableList" corresponds to objects representing all mutual enrichment contingency tables gen-
erated in a pairwise fashion: Given gene lists l1, l2, ..., lk, an object of class "tableList" (typically
constructed by a call to function buildEnrichTable) is a list of lists of contingency tables tij gen-
erated from each pair of gene lists i and j, with the following structure:

$l2

$l2$l1$t21

$l3

$l3$l1$t31, $l3$l2$t32

...

lkl1$tk1, lkl2$tk2, ..., lkl(k-1)tk(k-1)

If x is an object of class "tableList", the threshold dissimilarity is obtained over each one of these
tables.

If boot == TRUE, all series of nboot bootstrap replicates start from the same random seed, provided
by the argument boot.seed, except if boot == NULL.

../doc/README.html
../doc/README.html

56 tab_atlas.sanger_BP3

Do not confuse the resulting threshold dissimilarity matrix with the Sorensen-Dice dissimilarities
computed in each equivalence test.

The dimension of the resulting matrix may be less than the number of original gene lists being
compared, as the process may not converge for some pairs of gene lists.

Value

An object of class "dist", the equivalence threshold dissimilarity matrix based on the Sorensen-Dice
dissimilarity.

Methods (by class)

• sorenThreshold(list): S3 method for class "list"

• sorenThreshold(tableList): S3 method for class "tableList"

Examples

Gene lists to be explored for enrichment:
data(allOncoGeneLists)

Obtaining ENTREZ identifiers for the gene universe of humans:
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")

This example is quite time consuming:
sorenThreshold(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db")
Much faster:
Object \code{allTabsBP.4} of class "tableList" contains all the pairwise contingency
tables of joint enrichment for the gene lists in \code{allOncoGeneLists}, for the BP
GO ontology at level 4:
data("allTabsBP.4")
sorenThreshold(allTabsBP.4)

tab_atlas.sanger_BP3 Cross-tabulation of enriched GO terms at level 3 of ontology BP in
two gene lists

Description

From the "Cancer gene list" of Bushman Lab, a collection of gene lists related with cancer, for gene
lists "Atlas" and "Sanger", this dataset is the cross-tabulation of all GO terms of ontology BP at
level 3 which are: Enriched in both lists, enriched in sanger but not in atlas, non-enriched in sanger
but enriched in atlas and non-enriched in both lists. Take it just as an illustrative example, non up-
to-date for changes in the gene lists or changes in the GO. The present version was obtained under
Bioconductor 3.17.

Usage

data(tab_atlas.sanger_BP3)

upgrade 57

Format

An object of class "table" representing a 2x2 contingency table.

Source

http://www.bushmanlab.org/links/genelists

upgrade Update the result of a Sorensen-Dice equivalence test.

Description

Recompute the test (or tests) from an object of class "equivSDhtest", "equivSDhtestList" or "AllE-
quivSDhtest" (i.e.,the output of functions "equivTestSorensen" or "allEquivTestSorensen"). Using
the same table or tables of enrichment frequencies in ’x’, obtain again the result of the equivalence
test for new values of any of the parameters d0 or conf.level or boot or nboot or check.table.

Usage

upgrade(x, ...)

S3 method for class 'equivSDhtest'
upgrade(x, ...)

S3 method for class 'equivSDhtestList'
upgrade(x, ...)

S3 method for class 'AllEquivSDhtest'
upgrade(x, ...)

Arguments

x an object of class "equivSDhtest", "equivSDhtestList" or "AllEquivSDhtest".

... any valid parameters for function "equivTestSorensen" for its interface "table",
to recompute the test(s) according to these parameters.

Value

An object of the same class than x.

Methods (by class)

• upgrade(equivSDhtest): S3 method for class "equivSDhtest"

• upgrade(equivSDhtestList): S3 method for class "equivSDhtestList"

• upgrade(AllEquivSDhtest): S3 method for class "allEquivSDhtest"

http://www.bushmanlab.org/links/genelists

58 waldman_atlas.BP.4

Examples

Result of the equivalence test between gene lists 'waldman' and 'atlas', in dataset
'allOncoGeneLists', at level 4 of the BP ontology:
data(waldman_atlas.BP.4)
waldman_atlas.BP.4
class(waldman_atlas.BP.4)
This may correspond to the result of code like:
data(allOncoGeneLists)
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")
waldman_atlas.BP.4 <- equivTestSorensen(
allOncoGeneLists[["waldman"]], allOncoGeneLists[["atlas"]],
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4, listNames = c("waldman", "atlas"))
upgrade(waldman_atlas.BP.4, d0 = 1/(1 + 10/9)) # d0 = 0.4737
upgrade(waldman_atlas.BP.4, d0 = 1/(1 + 2*1.25)) # d0 = 0.2857
upgrade(waldman_atlas.BP.4, d0 = 1/(1 + 2*1.25), conf.level = 0.99)

All pairwise equivalence tests at level 4 of the BP ontology
data(BP.4)
?BP.4
class(BP.4)
This may correspond to a call like:
data(allOncoGeneLists)
library(org.Hs.eg.db)
humanEntrezIDs <- keys(org.Hs.eg.db, keytype = "ENTREZID")
BP.4 <- equivTestSorensen(allOncoGeneLists,
geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db",
onto = "BP", GOLevel = 4)
upgrade(BP.4, d0 = 1/(1 + 2*1.25)) # d0 = 0.2857

data(cancerEquivSorensen)
?cancerEquivSorensen
class(cancerEquivSorensen)
upgrade(cancerEquivSorensen, d0 = 1/(1 + 2*1.25)) # d0 = 0.2857

waldman_atlas.BP.4 An example of an object of class "equivSDhtest" resulting from a call
to function ’equivSorensenTest’

Description

The Sorensen-Dice equivalence test between the gene lists "waldman" and "atlas" taken from
dataset allOncoGeneLists which may be charged from this package. To perform the test, the
information in these gene lists was summarized by means of contingency tables of mutual GO term
enrichment, for all GO terms at level 4 of the BP ontology. The tests were performed for an equiva-
lence limit d0 = 0.4444 and a confidence level conf.int = 0.95. Based on a version of these gene lists
that may be non up-to-date, take just as an illustrative example. The present result was obtained
under Bioconductor 3.17.

Usage

data(waldman_atlas.BP.4)

waldman_atlas.BP.4 59

Format

An object of class "equivSDhtest" inheriting from class "list".

Source

http://www.bushmanlab.org/links/genelists

http://www.bushmanlab.org/links/genelists

Index

∗ datasets
allOncoGeneLists, 7
allTabs, 9
allTabsBP.4, 10
boot.cancerEquivSorensen, 10
BP.4, 12
cancerEquivSorensen, 15
pbtGeneLists, 50
tab_atlas.sanger_BP3, 56
waldman_atlas.BP.4, 58

allBuildEnrichTable, 3
allEquivTestSorensen, 4
allHclustThreshold, 6
allOncoGeneLists, 7, 9, 10, 12, 15, 58
allSorenThreshold, 7
allTabs, 9
allTabsBP.4, 10

boot.cancerEquivSorensen, 10
boot.tStat, 11
BP.4, 12
buildEnrichTable, 12, 18, 22, 23, 28, 29, 52,

53, 55

cancerEquivSorensen, 15
completeTable, 16

dSorensen, 17, 23, 30, 53
duppSorensen, 18, 19, 30, 53

enrichedIn, 24
equivTestSorensen, 18, 23, 26, 53

getDissimilarity, 31
getEffNboot, 30, 33, 37
getNboot, 30, 34, 35
getPvalue, 30, 38
getSE, 30, 40
getTable, 30, 42
getUpper, 30, 44
gosorensen, 46

hclustThreshold, 47

nice2x2Table, 18, 23, 30, 48, 53

pbtGeneLists, 50
pruneClusts, 51

seSorensen, 18, 23, 30, 51
sorenThreshold, 54

tab_atlas.sanger_BP3, 56

update, 30
upgrade, 57

waldman_atlas.BP.4, 58

60

	allBuildEnrichTable
	allEquivTestSorensen
	allHclustThreshold
	allOncoGeneLists
	allSorenThreshold
	allTabs
	allTabsBP.4
	boot.cancerEquivSorensen
	boot.tStat
	BP.4
	buildEnrichTable
	cancerEquivSorensen
	completeTable
	dSorensen
	duppSorensen
	enrichedIn
	equivTestSorensen
	getDissimilarity
	getEffNboot
	getNboot
	getPvalue
	getSE
	getTable
	getUpper
	gosorensen
	hclustThreshold
	nice2x2Table
	pbtGeneLists
	pruneClusts
	seSorensen
	sorenThreshold
	tab_atlas.sanger_BP3
	upgrade
	waldman_atlas.BP.4
	Index

