## Package 'MAQCsubset'

November 19, 2024

Title Experimental Data Package: MAQCsubset Version 1.45.0 Author VJ Carey Description Data Package automatically created on Sun Nov 19 15:59:29 2006. Maintainer VJ Carey <stvjc@channing.harvard.edu> **Depends** R (>= 2.10.0), affy (>= 1.23.4), Biobase (>= 2.5.5), lumi, methods Suggests genefilter, codelink License Artistic-2.0 biocViews ExperimentData, MicroarrayData, GEO LazyLoad true git\_url https://git.bioconductor.org/packages/MAQCsubset git\_branch devel git\_last\_commit 194a40b git\_last\_commit\_date 2024-10-29 **Repository** Bioconductor 3.21 Date/Publication 2024-11-19

## Contents

Index

| gehMAQCsubDet     | f. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
|-------------------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
| gnfCerebHi        |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| MAQCsubset .      |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |
| proboscis         |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |
| proboStruct-class |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |
|                   |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |
|                   |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 6 |

gehMAQCsubDef

#### Description

Excerpt from GE Codelink contributions to MAQC

#### Usage

```
data(gehSubRaw)
data(gehMAQCsubDef)
```

## Details

gehSubRaw is a codelink : : Codelink instance based on reading the raw GEO files: "GSM123122\\_GEH\\_1\\_A1.TXT" "GSM123123\\_GEH\\_1\\_A2.TXT" "GSM123127\\_GEH\\_1\\_B1.TXT" "GSM123128\\_GEH\\_1\\_B2.TXT" "GSM123132\\_GEH\\_1\\_C1.TXT" "GSM123133\\_GEH\\_1\\_C2.TXT" "GSM123137\\_GEH\\_1\\_D1.TXT" "GSM123138\\_GEH\\_1\\_D2.TXT"

gehMAQCsubDef is an ExpressionSet instance based on default background correction and normalization of the codelink package. The original feature names include duplicates; these were made unique by make.names with unique=TRUE.

#### Author(s)

Vince Carey <stvjc@channing.harvard.edu>

## Examples

```
data(gehMAQCsubDef)
gehMAQCsubDef
```

gnfCerebHi

*Gene lists for hi or low abundance in cerebellum according to Novartis GNF symatlas* 

#### Description

Data frames with gene lists for hi or low abundance in cerebellum according to Novartis GNF symatlas

#### Usage

```
data(gnfCerebHi)
data(gnfCerebLow)
```

## MAQCsubset

#### Details

The symatlas.gnf.org database was searched using the gcrma version of human gene atlas for genes having expression in cerebellum at least 3 times (or at most 1/3 times) median expression over all organs surveyed. The resulting gene lists were intersected with genes present on GE codelink (version used in MAQCsubset) and hgu95a.

#### Value

data.frame instances with columns providing gene name, affy probe set identifier, codelink probe identifier, illuminaHumanv1 identifier.

## Author(s)

Vince Carey <stvjc@channing.harvard.edu>

#### Examples

data(gnfCerebHi)
gnfCerebHi[1:3,]

MAQCsubset

Experimental Data Package: MAQCsubset

#### Description

selected data from the MAQC project (Nature Biotechnology, Sept. 2006)

## Usage

```
data(afxsubRMAES)
data(afxsubRMA)
data(afxsub)
```

#### Format

The format is: An ExpressionSetObject with covariates:

- site: from cel
- samp: rna src/mixture code
- repl: replicate

#### Note

afxsubRMA is an exprSet (deprecated) and afxsub is an AffyBatch. afxsubRMAES is a proper ExpressionSet instance.

ilmMAQCsubR is the result of applying lumiR to the files in the vicinity of GEO GSM122901 with filename suffixes matching those of the sampleNames in the set.

#### Examples

data(afxsubRMAES)

| proboscis | Produce a plot similar to Figure 2 of the Shippy MAQC paper (PMID |
|-----------|-------------------------------------------------------------------|
|           | 16964226).                                                        |

## Description

Produce a plot similar to Figure 2 of the Shippy MAQC paper (PMID 16964226).

#### Usage

proboscis(es, site=1, ABp=0.001, CDp=0.01, mmrad=100)

#### Arguments

| es    | ExpressionSet instance with MAQC assay results                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| site  | numeric code – site to be assessed                                                                                      |
| АВр   | ABp – p-value threshold to declare concentration of gene in sample A to be different from ehe concentration in sample B |
| CDp   | CDp – p-value threshold to declare concentration of gene in sample C to be different from the concentration in sample D |
| mmrad | numeric radius of the moving mean used to smooth the proportions differentially expressed                               |

## Details

Figure 2 of the Shippy paper consists of a collection of plots of estimated probabilities of selfconsistent monotone titration – briefly, samples are such that A has 100% USRNA, B has 100% Ambion brain, C has 75% USRNA+25% brain, D has 25% USRNA, 75% brain. Self-consistent monotone titration holds for gene g if microarray measures for that gene satisfy A > C > D > B or B > C > D > A. The estimated probability functions look like a creature sticking its nose over a wall, thus the name of this function.

#### Value

an instance of proboStruct, for which a plot and lines method are available.

#### Author(s)

Vince Carey <stvjc@channing.harvard.edu>

#### References

PMID 16964226

## proboStruct-class

### Examples

```
data(afxsubRMAES)
NN2 = proboscis(afxsubRMAES, site=2)
plot(NN2)
```

proboStruct-class Class "proboStruct"

#### Description

structure for managing proboscis plot data

#### **Objects from the Class**

Objects can be created by calls of the form new("proboStruct", ...).

## Slots

```
.Data: Object of class "list" ~~
call: Object of class "call" ~~
```

## Extends

Class "list", from data part. Class "vector", by class "list", distance 2. Class AssayData-class, by class "list", distance 2.

## Methods

plot

## Note

The proboscis plot shows how the probability of self-consistent monotone titration (SCMT) varies with the spiked difference in concentrations of two mRNA preparations in an MAQC dataset.

#### Author(s)

V Carey <stvjc@channing.harvard.edu>

#### References

For Figure 2 of Shippy et al., Using RNA sample titrations... (Nat Biotech, 24(9):1123-1131, Sep 2006)

## Examples

```
data(afxsubRMAES)
NN1 = proboscis(afxsubRMAES)
plot(NN1)
showClass("proboStruct")
```

# Index

```
* classes
    proboStruct-class, 5
* datasets
    MAQCsubset, 3
* models
    gehMAQCsubDef, 2
    gnfCerebHi, 2
    proboscis, 4
afxsub (MAQCsubset), 3
afxsubRMA (MAQCsubset), 3
afxsubRMAES (MAQCsubset), 3
ExpressionSet, 4
gehMAQCsubDef, 2
gehSubRaw (gehMAQCsubDef), 2
gnfCerebHi, 2
gnfCerebLow(gnfCerebHi), 2
ilmMAQCsubR (MAQCsubset), 3
lines,proboStruct-method
        (proboStruct-class), 5
list, 5
make.names, 2
MAQCsubset, 3
plot,proboStruct,ANY-method
        (proboStruct-class), 5
plot,proboStruct-method
        (proboStruct-class), 5
proboscis, 4
proboStruct, 4
proboStruct-class, 5
show,proboStruct-method
        (proboStruct-class), 5
vector, 5
```