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Introduction

Large amounts of data for metagenomics, especially the earliest studies on 16S ribosomal RNA
gene, are produced by high-throughput screening methods. These are processed in the form
of quantitative comparisons (between two microbiomes’ conditions) of reads’ counts. Reads’
counts are interpreted as a taxon’s abundance in a microbial community under given conditions,
such as a medical treatments or environmental changes. The comparative analysis of such
microbiomes with a baseline condition permits to identify a list of microbes (classified in species,
genus or higher-order taxa) that are differential in abundance among the conditions. The
taxonomic classification of 16S rRNA sequences is generally dependent on two strategies to
assign sequences into populations: one is the phylotype-based method that assigns sequences
to taxa based on the similarity to a reference database; the other is the operational taxonomic
unit (OTU)-based method which does not rely on the association to known taxa, but consists
of the definition of clusters of sequences sharing high similarity among them (typically a 97%
identity threshold). These clusters are identified by an OTU_ID, and where possible associated
to a species. The phylotype-based method limits the taxonomic classification of novel sequences
from previously unknown taxa and is less sensitive to the sequencing errors[1]. The OTU-based
method overcomes the limitations of phylotype-based method and permits the classification of
OTUs down to the species level, as typically an OTU is thought of as representing a species,
and for this the OTU-based method necessarily relies on a reference data set including species.

eudysbiome applies the OTU-based classification by mapping OTUs’ unclassified repre-
sentative sequences (produced via microbiome analysis pipelines such as emphMothur[2] or
QIIME [3] during the generation of the OTUs) to a selection of classified representative se-
quences of OTUs, obtained from clustering the truncated SILVA[4] Small subunit (16S/18S,
SSU) ribosomal RNA (rRNA) reference dataset at 97% similarity. This representative dataset
is built within QIIME and included in our package. In this mapping, each entry in the repre-
sentative dataset is associated to a taxonomic path containing the taxonomy rank designations
from kingdom to species.

In order to translate the GI microbiome variations into potential clinical interpretation, it is
helpful to assess whether the variation leads towards a microbiome that is more or less synergis-
tic with the host, i.e. more or less pathogenic. To achieve this goal, in addition to the standard
taxonomic annotation (classification, from now on) described above, this package annotates
species as harmful/harmless based on their ability to contribute to mammals’ host diseases
(as indicated in literature) and hence based on their pathogenic potential (annotation from
now on). Several assumptions are needed to achieve this goal, due to the quickly growing, but
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still limited amount of information currently available on microbes in our GI. First, the number
of unknown (uncultured, ambiguous, unclassified, etc.) species resulting from the classification
process leads to the practical impossibility to assess the pathogenic potential directly on the
annotated species. For this reason, the analysis is run at the genus level, annotated based
on the annotated species. The rationale used throughout the annotation process relies on the
assumption that larger and successful efforts have been devoted to the study of pathogens, and
we have observed that classified species that are not explicitly (literature based) annotated as
harmful, can be safely annotated as harmless. Genera are then further annotated as harmful,
in a conservative fashion, if at least one species in the genus is pathogenic or less pathogenic
otherwise. This outputs the reference table harmGenera offered in the package, and allows for
direct annotation of classified genera. However, to achieve a more precise annotation, it is
recommended to provide (or compute via our package tableSpecies function) the data frame
genus-species, to control for the very stringent harmful annotation. In fact, if, in the data to be
analyzed, species are provided in addition to the genus, the package checks whether the genera
defined as harmful in the annotation table actually include the harmful species. In this case the
genus is coherently annotated as harmful. However, if the harmful species are not present in
the data to be analyzed, the genus provides in fact a harmless contribution, and it is annotated
as such. Similarly, if the genus turns out to include none known species, we discard the one
listed in the harmGenera table from the analysis while annotate the others as harmless.

Finally, the package statistically measures the eubiotic (harmless genera increase or harm-
ful genera decrease) or dysbiotic (harmless genera decrease or harmful genera increase) rel-
evance of a given treatment or environmental change in terms of its ability to modify the
harmful/harmless frequencies.

• The package requires as inputs:

– a FASTA-formatted 16S rRNA sequence file to be classified to the species level;

– the list of microbe genera, for example, a list of differential genera identified by the
comparative analysis to be annotated as harmful/harmless;

– the microbial abundance variations, a simple difference of the differential genera
abundance (defined as ∆g) in the two conditions to be compared, as defined above
in Introduction;

– a table qualifying the genera as harmful/harmless, as defined by literature. Such a
table, manually curated, is included in this package, but is by no means exhaustive:
continuous advances in microbiology make this input incomplete and flexible; we
encourage users to share expansions of this table.

• The package outputs:

– Species-classification results, a *.taxonomy file which contains a taxonomic path
for each 16S rRNA sequence and a *.tax.summary file which contains a taxonomic
outline indicating the number of sequences that were found at each level (kingdom
to species);

– optional, a two-column Genus-Species data frame extracted from the assigned tax-
onomic paths in *.taxonomy file, which includes only the differential genera (as
inputs);
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Comparison EI DI Row Total
C1 a b a+b
C2 c d c+d

Column Total a+c b+d a+b+c+d(=n)

Table 1: Contingency Table

– a graphical output of the genus abundance difference-∆g across the tested conditions
(y-axis) and their harmful/harmless nature (negative/positive x-axis);

– a contingency table showing as frequencies the cumulated contributions to an eubi-
otic/dystbiotic microbiome (see Table 1, columns, namely EI and DI) under different
conditions (comparisons between a condition and a reference, listed in rows, namely
C1 and C2). The eubiotic impact (EI) is quantified by the |∆g| cumulation of increas-
ing harmless genera and decreasing harmful genera, while the dysbiotic impact (DI)
is quantified by the reverse, i.e. |∆g| accumulation of decreasing harmless genera
and increasing harmful genera;

– the results (probability) of testing the null hypothesis that there is no difference in
the proportions of frequencies of EI between C1 and C2 using Fisher exact test (two
sided) or Chi-squared test[5], computed as the probability that the proportion of
frequencies in EI under C1 ( a

a+b) is different from that in DI under C2 ( c
c+d). The

results of the one-sided Fisher’s exact test[5] assess whether C1 is more likely to be
associated to a eubiotic microbiome than C2, and is computed as the probability
that the proportion of EI under C1 is higher than C2.

Methods

1 Representative Sequences

To achieve the Species-level classification, we recommend classifying the unknown 16S rRNA
sequences to a well-curated representative dataset of 16S rRNA reference sequences, such
as Greengene and SILVA representative sets (as recommended by Mothur with very strin-
gent 99% similarity and QIIME with 97% similarity ). We here use the SILVA represen-
tative set created by clustering at 97% sequence identity, to guarantee a fast Species-level
classification and also require less computational resources when assigning sequences to a
reference dataset, both requirements are crucial to allow automation of this classification
step, as we offer in this package. The representative dataset “Silva_119_rep_set97.fna" is
downloaded in latest version SILVA119 provided by QIIME team from (https://www.arb-
silva.de/no_cache/download/archive/qiime). A taxonomic mapping file “Silva_119_rep_set97_taxonomy.txt",
mapping each entry in the representative dataset to a taxonomy rank designation, was also
downloaded and prepared into the input format to Mothur, which is included in our package
for the usage of further sequence classification.
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2 Taxonomy Assignment

The assignment requires a FASTA-formatted input of unclassified sequence, a representative
sequence file and a taxonomic mapping file for the representative sequences(Section 1). Given
a set of unclassified 16S rRNA sequences, e.g. a set of OTU representative sequences, we assign
the taxonomic paths to these sequences by calling the classify.seqs command in Mothur
(http://www.mothur.org/). Of the two alternative methods (Wang and k-Nearest Neighbor
(knn)) provided in the classify.seqs command for the taxonomic assignment, we use Wang ’s,
implemented by the RDP classifier. This method queries both the unclassified and reference
sequences k-mer by k-mer (subsequences of length k) and assigns the unclassified sequences to
the appropriate taxa based on the highest matching probability. To calculate the confidence
of the assignments, bootstrapping by random replacement of 1/8 (k = 8) of the k-mers in the
unclassified sequence is used.

> library("eudysbiome")
> input.fasta = "Unclassified.fasta"
> # using the extracted fasta and taxonomy as template
> assignTax(fasta = input.fasta,ksize = 8, iters = 100,
+ cutoff = 80, processors=1, dir.out = "assignTax_out")

The parameters, k-size (length k), iterates (bootstrap iterations) and processors (num-
ber of central processing units) are used as defaults in Mothur. We set a cutoff of bootstrap
confidence score to 80, which means a minimum 80% sequences were assigned to the same tax-
onomy, a higher value gives a more strict and accurate taxonomy assignment. A *.taxonomy file
and a *.tax.summary file of the classification results are outputd into the assginTax directory.
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3 Genus-Species Table Construction

To identify only the species under certain genera from the *.taxonomy file, the tableSpecies
function constructs a two-column Genus-Species data frame, where one column refers to the
provided genera while the other refers to the species included in these genera.

> genera = c("Lactobacillus","Bacteroides")
> #species = tableSpecies(tax.file = "*.taxonomy", microbe = genera)

4 Microbe Annotation

A differential genera list (input) can be annotated as harmless or harmful by the function
microAnnotate based on our manually curated table named harmGenera in this package. The
table lists the harmful genera based on the pathogenic or opportunistic pathogenic species
included in the genera, using a stringent approach: one armful species is sufficient to define
the genus harmful (this is what indeed matters to the eubiotic/dysbiotic trend). Although a
genus list is acceptable and can be processed with this genera annotation table, we recommend
inputting for the data to be analyzed the Genus-Species data frame, as in the diffGenera
table below to gain a more accurate annotation. In fact, if the species abundances are known,
it is possible to discard a genus in case none of the taxonomically annotated species is present
in the dataset (only unknown ones), or mark as harmless a genus that would be harmful by
annotation table, in case the harmful species is not present in the dataset under study. For
example, genus1 will be annotated as harmful if any of the three species (1, 2 and 3) under this
genus is annotated as harmful, otherwise, genus1 will be annotated as harmless. For the data
lacking of Species-level classifications, we suggest to do the classification and construct such a
Genus-Species table for better annotation by functions described above (Section 3).

> library("eudysbiome")
> data(diffGenera)
> head(diffGenera)

Genus Species
1 genus1 species1
2 genus1 species2
3 genus1 species3
4 genus2 species1
5 genus2 species2
6 genus3 species1

> data(harmGenera)
> annotation = microAnnotate(diffGenera, annotated.micro = harmGenera)

5 Cartesian Plane Plot

The function Cartesian accepts either a data frame or a numeric matrix of ∆g, whose rows rep-
resent differential genera and columns represent condition comparisons, these are the argument
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to produce the cartesian plane (4 quadrants (see details below and in Figure 1 below). The
∆gs are log-2 converted and redundantly represented by the height on the y-axis and the dots
diameter. Because of its definition, the increase of harmless (1st cartesian quadrant) and/or
the decrease of harmful (3rd cartesian quadrant) define microbiome variation that are eubiotic
(beneficial) and highlighted by a blue box, and the decrease of harmless (2nd quadrant) and/or
the increase of harmful (4th quadrant) as dysbiotic (non-beneficial) and highlighted by a yellow
box. The unknown genera are removed from the plot.

For example below, a data frame data is constructed from the microDiff dataset with ∆g
of ten differential genera among comparisons A vs C, B vs C and D vs C, where A, B and D
are three conditions and C is a control. The genera are annotated as harmless, harmful or
unknown in micro.ano based on the output by the microAnnotate function, and comparisons
are defined as A-C (A vs C), B-C (B vs C), and D-C (D vs C) in comp.ano and indicated by the
column names of the input data if no other comp.anno is specified. Eubiotic changes associated
to conditions A, B, D compared to control C are plotted in the up-utmost right and bottom-
utmost left quadrants (increase of harmless and decrease of harmful genera) and dysbiotic
variations are plotted on the bottom-utmost right and up-utmost left quadrants (increase of
harmful and decrease of harmless genera) in Figure 1.

> data(microDiff)
> microDiff

$data
A vs C B vs C D vs C

genus1 99 551 0
genus2 0 57 -290
genus3 441 -303 41
genus4 300 -1624 -1138
genus5 -77 200 -1240
genus6 15 0 -190
genus7 0 5 0
genus8 -106 0 206
genus9 -145 10 0
genus10 1277 90 -58

$micro.anno
[1] "harmless" "unknown" "harmless" "harmful" "unknown" "harmful"
[7] "harmless" "harmful" "harmful" "harmless"

$comp.anno
[1] "A-C" "B-C" "D-C"

> attach(microDiff)
> par(mar = c(5,4.1,5.1,5))
> Cartesian(data ,micro.anno = micro.anno,comp.anno= comp.anno,
+ unknown=TRUE,point.col = c("blue","purple","orange"))
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Figure 1: Cartesian plane of the harmful/harmless annotated genera (on the x-axis) and
their abundance variations among the condition comparisons (log2 (∆g), y-axis). The eubiotic
microbiome impact is highlighted by a dark blue box while the dysbiotic one is highlighted by
a yellow box.
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Condition Eubiotic Impact Dysbiotic Impact
A-C 2068 315
B-C 2270 313
D-C 1369 264

Table 2: Condition-impact contingency table of microbial frequencies

6 Contingency Table Construction

This function computes the frequencies of the contingency table as the cumulated |∆g| clas-
sified by each couple formed by a condition and an impact (eubiotic/dysbiotic, see Table 1).
This outputs the significance of the association (contingency) between conditions and impacts
by contingencyTest. For example, the benefits of conditions A, B, D are measured by the
increase ∆g of harmless genera and the decrease ∆g of harmful genera in the comparisons to C,
while the non-beneficial impact is evaluated in reverse by the decrease ∆g of harmless genera
and the increase ∆g of harmful genera. Absolute values of ∆g are cumulated as frequencies
and used into the contingency table (Table 2).

> microCount = contingencyCount(data ,micro.anno = micro.anno,
+ comp.anno= comp.anno)

7 Contingency test for count data

To elaborate the significance of the association between conditions and eubiotic/dysbiotic im-
pacts, Chi-squared test and Fisher’s exact test (one- and two- sided) are performed on the
frequencies from contingencyCount for testing the null hypothesis that conditions are equally
likely to lead to a more eubiotic microbiome when compared to the control while the alternative
hypothesis is that this probability is not equal or one condition is more likely to be associated
to an eubiotic microbiomes than the other (only with Fisher test, one-sided). Taking Table 2
as an example, we hypothesize that the proportion of eubiotic frequencies are different (Chi-
squared and two-sided Fisher test) between condition comparisons A-C, B-C and D-C or even
higher (one-sided Fisher test) in one comparison than the other, and we want to test whether
this difference is negligible or refers to a significant association between the condition and the
(GI) microbiome composition modification. Both Fisher and Chi-squared tests are performed
by the contingencyTest function and significance values are output in tables.

> microTest = contingencyTest(microCount,alternative ="greater")
> microTest["Chisq.p"]

$Chisq.p
Chisq.Pvalue

A-C:B-C 0.261245444
A-C:D-C 0.010267809
B-C:D-C 0.000233087

> microTest["Fisher.p"]
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$Fisher.p
Fisher.Pvalue_greater

A-C:B-C 0.8866246202
A-C:D-C 0.0052786178
B-C:D-C 0.0001289438
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Session Information
The session information records the versions of all the packages used in the generation of the
present document.

• R Under development (unstable) (2024-10-21 r87258), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: eudysbiome 1.37.0

• Loaded via a namespace (and not attached): BiocGenerics 0.53.0, BiocParallel 1.41.0, Biostrings 2.75.0,
GenomeInfoDb 1.43.0, GenomeInfoDbData 1.2.13, GenomicRanges 1.59.0, IRanges 2.41.0, R.methodsS3 1.8.2,
R.oo 1.26.0, R.utils 2.12.3, R6 2.5.1, Rcpp 1.0.13, Rsamtools 2.23.0, S4Vectors 0.45.0, UCSC.utils 1.3.0,
XVector 0.47.0, bitops 1.0-9, codetools 0.2-20, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 1.8.9, parallel 4.5.0,
plyr 1.8.9, stats4 4.5.0, tools 4.5.0, zlibbioc 1.53.0
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