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Abstract

PureCN [1] is a purity and ploidy aware copy number caller for cancer samples inspired by
the ABSOLUTE algorithm [2]. It was designed for hybrid capture sequencing data, especially
with medium-sized targeted gene panels without matching normal samples in mind (matched
whole-exome data is of course supported).
It can be used to supplement existing normalization and segmentation algorithms, i.e. the
software can start from BAM files, from target-level coverage data, from copy number log2-
ratios or from already segmented data. After the correct purity and ploidy solution was
identified, PureCN will accurately classify variants as germline vs. somatic or clonal vs.
sub-clonal.
PureCN was further designed to integrate well with industry standard pipelines [3], but it is
straightforward to generate input data from other pipelines.
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1 Introduction
This tutorial will demonstrate on a toy example how we recommend running PureCN on
targeted sequencing data. To estimate tumor purity, we jointly utilize both target-level1
coverage data and allelic fractions of single nucleotide variants (SNVs), inside - and optionally
outside - the targeted regions. Knowledge of purity will in turn allow us to accurately (i)
infer integer copy number and (ii) classify variants (somatic vs. germline, mono-clonal vs.
sub-clonal, heterozygous vs. homozygous etc.).
This requires 3 basic input files:

1. A VCF file containing germline SNPs and somatic mutations. Somatic status is not
required in case the variant caller was run without matching normal sample.

2. The tumor BAM file.
3. At least one BAM file from a normal control sample, either matched or process-

matched.
In addition, we need to know a little bit more about the assay. This is the annoying step since
here the user needs to provide some information. Most importantly, we need to know the
positions of all targets. Then we need to correct for GC-bias, for which we need GC-content
for each target. Optionally, if gene-level calls are wanted, we also need for each target a gene
symbol. We may also observe subtile differences in coverage of tumor compared to normal
due to varying proliferation rates and we can provide replication timing data to check and
correct for such a bias. To obtain best results, we can finally use a pool of normal samples
to automatically learn more about the assay and its biases and common artifacts.
The next sections will show how to do all this with PureCN alone or with the help of GATK
and/or existing copy number pipelines.
All the steps described in the following are available in easy to use command line
scripts described in a separate vignette.

2 Basic input files

2.1 VCF
Germline SNPs and somatic mutations are expected in a single VCF file. At the bare mini-
mum, this VCF should contain read depths of reference and alt alleles in an AD format field
and a DB info flag for membership in germline databases2.
Without DB flag, variant ids starting with rs are assumed to be in dbSNP. Population allele
frequencies are expected in a POP_AF info field. These frequencies are currently only used
to infer membership in germline databases when the DB flag is missing; in future versions
they will be used calculate somatic prior probabilities more accurately.
If a matched normal is available, then somatic status information is currently expected in a
SOMATIC info flag in the VCF. The VariantAnnotation package provides examples how to
add info fields to a VCF in case the used variant caller does not add this flag. If the VCF
contains a BQ format field containing base quality scores, PureCN can remove low quality
calls.
1The captured genomic regions, e.g. exons.
2The name of the flag is customizable in runAbsoluteCN
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VCF files generated by MuTect [4] should work well and in general require no post-processing.
PureCN can handle MuTect VCF files generated in both tumor-only and matched normal
mode. Beta support for MuTect 2 and FreeBayes VCFs is available.
As alternative to VCF input, read counts of common SNPs are also supported in case classifi-
cation of somatic variants is of no interest and those genotyped SNPs are already generated in
an upstream pipeline. The function readAllelicCountsFile can be used to parse a GATK4
CollectAllelicCounts file into a VCF supported by PureCN3:
@HD VN:1.6

@SQ SN:1 LN:248956422

@SQ SN:2 LN:242193529

...

@RG ID:GATK SM:Sample1

CONTIG POSITION REF_COUNT ALT_COUNT REF_NUCLEOTIDE ALT_NUCLEOTIDE

1 114515871 177 189 G A

1 150044293 119 157 T G

ac.file <- system.file("extdata", "example_allelic_counts.tsv",

package="PureCN")

vcf.ac <- readAllelicCountsFile(ac.file)

## INFO [2024-10-29 18:57:35] Found 20 variants in VCF file.

## INFO [2024-10-29 18:57:35] 20 (100.0%) variants annotated as likely germline (DB INFO flag).

## WARN [2024-10-29 18:57:36] Did not find base quality scores, will use global error rate of 0.0010 instead.

2.2 Target information
For the default segmentation function provided by PureCN, the algorithm first needs to
calculate log2-ratios of tumor vs. normal control coverage. To do this, we need to know the
locations of the captured genomic regions (targets). These are provided by the manufacturer
of your capture kit4. Please double check that the genome version of the target file matches
the reference. Usually the manufacturer provides two files: the baits file containing the
coordinates of the actual capture baits, and the target file containing the coordinates of the
actual regions we want to capture. We recommend to use the baits file (and recognize the
confusing nomenclature that we follow due to convention in established tools).
Default parameters assume that these targets do NOT include a "padding" to include flanking
regions. PureCN will automatically include variants in the 50bp flanking regions if the variant
caller was either run without interval file or with interval padding (See section 12.2).
PureCN will attempt to optimize the targets for copy number calling (similar to [5]):

• Large targets are split to obtain a higher resolution
• Targets in regions of low mappability are dropped
• Optionally, accessible regions in-between the target (off-target) regions are included

so that available coverage information in on- and off-target reads can be used by the
segmentation function. In the following, we will use intervals when something applies
to both on-target and off-target regions and targets when it only applies to on-target.

3Only the RG header line is required for extracting the sample id
4While PureCN can use a pool of normal samples to learn which intervals are reliable and which not, it is
highly recommended to provide the correct intervals. Garbage in, garbage out.
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It further annotates intervals by GC-content (how coverage is normalized is described later
in Section 3).
PureCN provides the preprocessIntervals function:
reference.file <- system.file("extdata", "ex2_reference.fa",

package = "PureCN", mustWork = TRUE)

bed.file <- system.file("extdata", "ex2_intervals.bed",

package = "PureCN", mustWork = TRUE)

mappability.file <- system.file("extdata", "ex2_mappability.bigWig",

package = "PureCN", mustWork = TRUE)

intervals <- import(bed.file)

mappability <- import(mappability.file)

preprocessIntervals(intervals, reference.file,

mappability = mappability, output.file = "ex2_gc_file.txt")

## WARN [2024-10-29 18:57:36] Found small target regions (< 100bp). Will resize them.

## INFO [2024-10-29 18:57:36] Splitting 5 large targets to an average width of 400.

## WARN [2024-10-29 18:57:36] No reptiming scores provided.

## INFO [2024-10-29 18:57:36] Calculating GC-content...

A command line script described in a separate vignette provides convenient access to this
function and also attempts to annotate the targets with gene symbols using the annotate

Targets function.

2.3 Coverage data
The calculateBamCoverageByInterval function can be used to generate the required cover-
age data from BAM files. All we need to do is providing the desired intervals (as generated
by preprocessIntervals):
bam.file <- system.file("extdata", "ex1.bam", package="PureCN",

mustWork = TRUE)

interval.file <- system.file("extdata", "ex1_intervals.txt",

package = "PureCN", mustWork = TRUE)

calculateBamCoverageByInterval(bam.file = bam.file,

interval.file = interval.file, output.file = "ex1_coverage.txt")

2.4 Third-party coverage tools
Calculating coverage from BAM files is a common task and your pipeline might already provide
this information. As alternative to calculateBamCoverageByInterval, PureCN currently sup-
ports coverage files generated by GATK3 DepthOfCoverage, GATK4 CollectFragmentCounts
and by CNVkit. By providing files with standard file extension, PureCN will automatically
detect the correct format and all following steps are the same for all tools. You will, how-
ever, still need the interval file generated in Section 2.2 and the third-party tool must use
the exact same intervals. See also FAQ Section 12.2 for recommended settings for GATK3
DepthOfCoverage.
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2.5 Third-party segmentation tools
PureCN integrates well with existing copy number pipelines. Instead of coverage data, the
user then needs to provide either already segmented data or a wrapper function. This is
described in Section 10.1.

2.6 Example data
We now load a few example files that we will use throughout this tutorial:
library(PureCN)

normal.coverage.file <- system.file("extdata", "example_normal.txt.gz",

package = "PureCN")

normal2.coverage.file <- system.file("extdata", "example_normal2.txt.gz",

package = "PureCN")

normal.coverage.files <- c(normal.coverage.file, normal2.coverage.file)

tumor.coverage.file <- system.file("extdata", "example_tumor.txt.gz",

package = "PureCN")

seg.file <- system.file("extdata", "example_seg.txt",

package = "PureCN")

vcf.file <- system.file("extdata", "example.vcf.gz", package = "PureCN")

interval.file <- system.file("extdata", "example_intervals.txt",

package = "PureCN")

3 Library-specific coverage bias
In coverage normalization, we distinguish between assay- and library-specific biases. Assay-
specific biases, for example due to probe density, probe capture efficiency and read mappa-
bility, are best removed with a pool of normal samples (Section 4.1, [5]). In other words, by
examining the coverage of particular intervals in a pool of normals, we can estimate how well
this assay captures these intervals and will then adjust the tumor coverage accordingly.
Other biases are library-specific, meaning a patient sample captured in different libraries may
display dramatically different coverage profiles across libraries. Data from great sequencing
centers usually show relatively small technical variance nowadays, but some biases are not
completely avoidable. The most important library-specific bias is due to GC-content, i.e.
regions of high AT- or GC-content are not always captured with exactly the same efficiency
in tumor and normals.
We usually also observe that early replicating regions have a slightly higher coverage than late
replicating regions [6, 7]. Since there is often a significant difference in proliferation rates of
tumor and normal, the pool of normals might also not completely adjust for this small bias.
A good panel of normal samples will remove both assay- and library-specific biases. We
recommend sequencing the normals in multiple batches so that the coverage normalization
has access to any expected day-to-day assay variance. This will greatly increase the normal-
ization’s capability in removing library-specific biases.
Sometimes it can be beneficial to remove library-specific biases explicitly, especially with
smaller panels of normals that might show significant differences to tumors (FFPE vs blood,
high vs low coverage, etc.).
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In the following example, we correct the raw coverage of all samples, tumor and normal, for
the two major sources of library-specific coverage biases mentioned above (Figure 1). For
GC-normalization, we use a 2-step loess normalization [8]. For the replication timing bias, a
linear model of log-transformed coverage and provided replication timing score is used.
correctCoverageBias(normal.coverage.file, interval.file,

output.file = "example_normal_loess.txt.gz", plot.bias = TRUE)
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Figure 1: Coverage before and after normalization for GC-content and replication timing. This plot shows
coverage as a function of on- and off-target GC-content and replication timing before and after normal-
ization. Each dot is an interval. The example files are already GC-normalized; real data will show more
dramatic differences.

The example coverage files are already GC-normalized. We provide a convenient command
line script for generating normalized coverage data from BAM files or from GATK coverage
files (see Quick vignette).
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4 Pool of normals

4.1 Coverage normalization
For calculating copy number log2-ratios of tumor vs. normal, PureCN requires coverage from
a process-matched normal sample. Using a normal that was sequenced using a similar, but
not identical assay, rarely works. Differently covered genomic regions simply result in too
many log2-ratio outliers. This section describes how to optimally normalize coverage against
a pool of normals.
The createNormalDatabase function builds a database of coverage files (a command line
script providing this functionality is described in a separate vignette):
normalDB <- createNormalDatabase(normal.coverage.files)

## INFO [2024-10-29 18:57:45] 576 on-target bins with low coverage in all samples.

## WARN [2024-10-29 18:57:45] You are likely not using the correct baits file!

## WARN [2024-10-29 18:57:45] Allosome coverage missing, cannot determine sex.

## WARN [2024-10-29 18:57:45] Allosome coverage missing, cannot determine sex.

## INFO [2024-10-29 18:57:45] Processing on-target regions...

## INFO [2024-10-29 18:57:46] Removing 930 intervals with low coverage in normalDB.

## INFO [2024-10-29 18:57:46] Removing 1 intervals with zero coverage in more than 3% of normalDB.

# serialize, so that we need to do this only once for each assay

saveRDS(normalDB, file = "normalDB.rds")

When using a GC-normalization in tumors, please make sure that all provided coverage files
here were also GC-normalized prior to building the database (Section 3). Internally, creat

eNormalDatabase determines the sex of the samples and trains a PCA that is later used for
denoising tumor coverage using Tangent normalization [9]:
normalDB <- readRDS("normalDB.rds")

pool <- calculateTangentNormal(tumor.coverage.file, normalDB)

This createNormalDatabase function further automatically estimates copy number log2-ratio
standard deviations. Assuming that all normal samples are in general diploid, a high variance
in log2-ratio is indicative of an interval with either common germline alterations or frequent
artifacts; high or low copy number log2-ratios in these intervals are unlikely measuring somatic
copy number events. The segmentation function can use this information to skip over such
noisy regions.

4.2 Artifact filtering
It is important to remove as many artifacts as possible, because low ploidy solutions are
typically punished more by artifacts than high ploidy solutions. High ploidy solutions are
complex and usually find ways of explaining artifacts reasonably well. The following steps
in this section are optional, but recommended since they will reduce the number of samples
requiring manual curation, especially when matching normal samples are not available.

8
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4.2.1 VCF

We recommend running MuTect with a pool of normal samples to filter common sequencing
errors and alignment artifacts from the VCF. MuTect requires a single VCF containing all nor-
mal samples, for example generated by the GATK3 CombineVariants tool (see Section 12.2).
For Mutect 2 in GATK4, please follow the somatic best practices including the generation of
a GenomicsDB containing variants from the normal samples.
It is highly recommended to provide PureCN these variant pools of normals as well; it will
help the software correcting non-reference read mapping biases. This is described in the
setMappingBiasVcf documentation. To reduce memory usuage, the normal panel VCF can
be reduced to contain only variants present in 2-3 or more samples. GenomicsDBs from
GATK4 can be provided as is, but require the installation of the genomicsdb R package from
https://github.com/nalinigans/GenomicsDB-R.
Because these pools can become huge with increasing number of normal samples, we pre-
compute the mapping bias:
# speed-up future runtimes by pre-calculating variant mapping biases

normal.panel.vcf.file <- system.file("extdata", "normalpanel.vcf.gz",

package = "PureCN")

bias <- calculateMappingBiasVcf(normal.panel.vcf.file, genome = "h19")

## INFO [2024-10-29 18:57:48] Processing variants 1 to 50000...

## INFO [2024-10-29 18:57:49] Clustering beta binomial fits...

## INFO [2024-10-29 18:57:49] Assigning (6/20) variants a clustered beta binomal fit.

saveRDS(bias, "mapping_bias.rds")

mapping.bias.file <- "mapping_bias.rds"

This function will first fit beta-binomial distributions of allelic fractions from heterozygous
variants (between fractions of 0.1 and 0.9) observed in sufficient number of samples; by default
min.normals.betafit is set to 7. Under the assumption that there are only a limited num-
ber of error modes resulting in different distributions, we next cluster those position-specific
distributions into num.betafit.clusters (default 9). Next, all variants observed heterozy-
gous in less than min.normals.betafit but equal or more than min.normals.assign.betafit

(default 3) are assigned the best fitting beta-distribution cluster.
For variants with at least min.normals (default 1) but less than min.normals.assign.betafit,
the empirical Bayes estimate described in the original PureCN paper is used where the refer-
ence and alternate counts of an average high quality SNP is added to the observed counts,
thus forcing the estimate to the average when position-specific information is limited.
Note that variants with low median coverage (min.median.coverage.betafit, default 5) are
not attempted to fit to beta-binomal distributions and instead the empirical Bayes method
is used.

4.3 Artifact filtering without a pool of normals
By default, PureCN will exclude targets with coverage below 15X from segmentation (with a
pool of normals, targets are filtered based on the coverage and variance in normal database
only). For variants in the provided VCF, the same 15X cutoff is applied. MuTect applies
more sophisticated artifact tests and flags suspicious variants. If MuTect was run in matched
normal mode, then both potential artifacts and germline variants are rejected, that means

9
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we cannot just filter by the PASS/REJECT MuTect flags. The filterVcfMuTect function
optionally reads the MuTect 1.1.7 stats file and will keep germline variants, while removing
potential artifacts. Without the stats file, PureCN will use only the filters based on read
depths as defined in filterVcfBasic. Both functions are automatically called by PureCN,
but can be easily modified and replaced if necessary.
We can also use a BED file to blacklist regions expected to be problematic, for example the
simple repeats track from the UCSC:
# Instead of using a pool of normals to find low quality regions,

# we use suitable BED files, for example from the UCSC genome browser.

# We do not download these in this vignette to avoid build failures

# due to internet connectivity problems.

downloadFromUCSC <- FALSE

if (downloadFromUCSC) {

library(rtracklayer)

mySession <- browserSession("UCSC")

genome(mySession) <- "hg19"

simpleRepeats <- track(ucscTableQuery(mySession,

track = "Simple Repeats", table = "simpleRepeat"))

export(simpleRepeats, "hg19_simpleRepeats.bed")

}

snp.blacklist <- "hg19_simpleRepeats.bed"

5 Recommended run
Finally, we can run PureCN with all that information:
ret <-runAbsoluteCN(normal.coverage.file = pool,

tumor.coverage.file = tumor.coverage.file, vcf.file = vcf.file,

genome = "hg19", sampleid = "Sample1",

interval.file = interval.file, normalDB = normalDB,

# args.setMappingBiasVcf=list(

# mapping.bias.file = mapping.bias.file

# ),

args.filterVcf=list(

# snp.blacklist = snp.blacklist,

# stats.file = mutect.stats.file

),

args.filterIntervals = list(

min.total.counts = 50

),

post.optimize = FALSE, plot.cnv = FALSE, verbose = FALSE)

## WARN [2024-10-29 18:57:50] Allosome coverage missing, cannot determine sex.

## WARN [2024-10-29 18:57:50] Allosome coverage missing, cannot determine sex.

The normal.coverage.file argument points to a coverage file obtained from either a matched
or a process-matched normal sample, but can be also a small pool of best normals (Sec-
tion 4.1).
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The normalDB argument (Section 4.1) provides a pool of normal samples and for example
allows the segmentation function to skip targets with low coverage or common germline
deletions in the pool of normals. If available, a VCF containing all variants from the normal
samples should be provided via args.setMappingBiasVcf to correct read mapping biases. The
files specified in args.filterVcf help PureCN filtering SNVs more efficiently for artifacts as
described in Sections 4.2 and 4.3. The snp.blacklist is only necessary if neither a matched
normal nor a large pool of normals is available. We set min.total.counts to a very low value
to make this toy example use all simulated intervals.
The post.optimize flag will increase the runtime by about a factor of 2-5, but might re-
turn slightly more accurate purity estimates. For high quality whole-exome data, this is
typically not necessary for copy number calling (but might be for variant classification, see
Section 6.2.1). For smaller targeted panels, the runtime increase is typically marginal and
post.optimize should be always set to TRUE.
The plot.cnv argument allows the segmentation function to generate
additional plots if set to TRUE. Finally, verbose outputs important and helpful information
about all the steps performed and is therefore set to TRUE by default.

6 Output

6.1 Plots
We now create a few output files:
file.rds <- "Sample1_PureCN.rds"

saveRDS(ret, file = file.rds)

pdf("Sample1_PureCN.pdf", width = 10, height = 11)

plotAbs(ret, type = "all")

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## Warning in par(par.mar): argument 1 does not name a graphical parameter

dev.off()

## pdf

## 2
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The RDS file now contains the serialized return object of the runAbsoluteCN call. The PDF
contains helpful plots for all local minima, sorted by likelihood. The first plot in the generated
PDF is displayed in Figure 2 and shows the purity and ploidy local optima, sorted by final
likelihood score after fitting both copy number and allelic fractions.
plotAbs(ret, type = "overview")
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Figure 2: Overview. The colors visualize the copy number fitting score from low (blue) to high (red). The
numbers indicate the ranks of the local optima. Yellow fonts indicate that the corresponding solutions were
flagged, which does not necessarily mean the solutions are wrong. The correct solution (number 1) of this
toy example was flagged due to large amount of LOH.

We now look at the main plots of the maximum likelihood solution in more detail.
plotAbs(ret, 1, type = "hist")

## Warning in par(par.mar): argument 1 does not name a graphical parameter

## NULL

Figure 3 displays a histogram of tumor vs. normal copy number log2-ratios for the maximum
likelihood solution (number 1 in Figure 2). The height of a bar in this plot is proportional
to the fraction of the genome falling into the particular log2-ratio copy number range. The
vertical dotted lines and numbers visualize the, for the given purity/ploidy combination,
expected log2-ratios for all integer copy numbers from 0 to 7. It can be seen that most
of the log2-ratios of the maximum likelihood solution align well to expected values for copy
numbers of 0, 1, 2 and 4.
plotAbs(ret, 1, type = "BAF")

Germline variant data are informative for calculating integer copy number because unbalanced
maternal and paternal chromosome numbers in the tumor portion of the sample lead to
unbalanced germline allelic fractions. Figure 4 shows the allelic fractions of predicted germline
SNPs. The goodness of fit (GoF) is provided on an arbitrary scale in which 100% corresponds
to a perfect fit and 0% to the worst possible fit. The latter is defined as a fit in which allelic
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Figure 3: Log-ratio histogram.

fractions on average differ by 0.2 from their expected fractions. Note that this does not take
purity into account and low purity samples are expected to have a better fit. In the middle
panel, the corresponding copy number log2-ratios are shown. The lower panel displays the
calculated integer copy numbers, corrected for purity and ploidy. We can zoom into particular
chromosomes (Figure 5).
plotAbs(ret, 1, type = "BAF", chr = "chr19")

plotAbs(ret, 1, type = "AF")

Finally, Figure 6 provides more insight into how well the variants fit the expected values.
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Figure 4: B-allele frequency plot. Each dot is a (predicted) germline SNP. The first panel shows the allelic
fractions as provided in the VCF file. The alternating grey and white background colors visualize odd and
even chromosome numbers, respectively. The black lines visualize the expected (not the average!) allelic
fractions in the segment. These are calculated using the estimated purity and the total and minor segment
copy numbers. These are visualized in black and grey, respectively, in the second and third panel. The sec-
ond panel shows the copy number log2-ratios, the third panel the integer copy numbers.
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Figure 5: Chromosome plot. Similar to Figure 4, but zoomed into a particular chromosome. The grey dots
in the middle panel visualize copy number log2-ratios of targets without heterozygous SNPs, which are
omitted from the previous genome-wide plot. The x-axis now indicates genomic coordinates in kbps.
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Figure 6: Allele fraction plots. Each dot is again a (predicted) germline SNP. The shapes visualize the
different SNV groups based on prior and posterior probabilities. The labels show the expected values for
all called states; 2m1 would be diploid, heterozygous, 2m2 diploid, homozygous. The relationship of allelic
fraction and coverage is shown in the top right panel. This plot normally also shows somatic mutations
in two additional panels, with the left panel showing the same plot as for germline SNPs and the bottom
right panel a histogram of cellular fraction of predicted somatic mutations. This toy example contains only
germline SNPs however.
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6.2 Data structures
The R data file (file.rds) contains gene-level copy number calls, SNV status and LOH calls.
The purity/ploidy combinations are sorted by likelihood and stored in ret$results.
names(ret)

## [1] "candidates" "results" "input" "version"

We provide convenient functions to extract information from this data structure and show
their usage in the next sections. We recommend using these functions instead of accessing
the data directly since data structures might change in future versions.

6.2.1 Prediction of somatic status and cellular fraction

To understand allelic fractions of particular SNVs, we must know the (i) somatic status, the
(ii) tumor purity, the (iii) local copy number, as well as the (iv) number of chromosomes
harboring the mutations or SNPs. One of PureCN main functions is to find the most likely
combination of these four values. We further assign posterior probabilities to all possible
combinations or states. Availability of matched normals reduces the search space by already
providing somatic status.
The predictSomatic function provides access to these probabilities. For predicted somatic
mutations, this function also provides cellular fraction estimates [10], i.e. the fraction of
tumor cells with mutation. Fractions significantly below 1 indicate sub-clonality:
head(predictSomatic(ret), 3)

## chr start end ID REF ALT SOMATIC.M0

## 1 chr1 114515871 114515871 chr1114515871xxx G A 4.046059e-102

## 2 chr1 150044293 150044293 chr1150044293xxx T G 8.631774e-92

## 3 chr1 158449835 158449835 chr1158449835xxx A G 1.248635e-147

## SOMATIC.M1 SOMATIC.M2 SOMATIC.M3 SOMATIC.M4 SOMATIC.M5 SOMATIC.M6

## 1 8.420377e-39 2.107876e-07 5.330398e-310 0 0 0

## 2 4.835490e-39 2.452234e-10 4.617747e-312 0 0 0

## 3 2.177662e-62 5.337189e-15 5.337599e-314 0 0 0

## SOMATIC.M7 GERMLINE.M0 GERMLINE.M1 GERMLINE.M2 GERMLINE.M3

## 1 0 1.607523e-69 6.946405e-16 0.9999998 7.018564e-308

## 2 0 3.623805e-64 1.081334e-18 1.0000000 3.778064e-306

## 3 0 1.172374e-105 5.100431e-30 1.0000000 1.157132e-305

## GERMLINE.M4 GERMLINE.M5 GERMLINE.M6 GERMLINE.M7 GERMLINE.CONTHIGH

## 1 0 0 0 0 5.799092e-42

## 2 0 0 0 0 1.891829e-20

## 3 0 0 0 0 1.087505e-25

## GERMLINE.CONTLOW GERMLINE.HOMOZYGOUS ML.SOMATIC POSTERIOR.SOMATIC ML.M

## 1 8.219408e-289 0 FALSE 2.107876e-07 2

## 2 2.345594e-243 0 FALSE 2.452234e-10 2

## 3 0.000000e+00 0 FALSE 5.337189e-15 2

## ML.C ML.M.SEGMENT M.SEGMENT.POSTERIOR M.SEGMENT.FLAGGED ML.AR AR

## 1 2 0 1 FALSE 0.825 0.755183

## 2 2 0 1 FALSE 0.825 0.817078

## 3 2 0 1 FALSE 0.825 0.834266

## AR.ADJUSTED MAPPING.BIAS ML.LOH CN.SUBCLONAL CELLFRACTION

## 1 0.7775993 0.9711724 TRUE FALSE NA
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## 2 0.8413316 0.9711724 TRUE FALSE NA

## 3 0.8590298 0.9711724 TRUE FALSE NA

## CELLFRACTION.95.LOWER CELLFRACTION.95.UPPER ALLELIC.IMBALANCE FLAGGED

## 1 NA NA -17.46605 FALSE

## 2 NA NA -20.15393 FALSE

## 3 NA NA -33.34446 FALSE

## log.ratio depth prior.somatic prior.contamination on.target seg.id

## 1 0.2842136 184 9.9e-05 0.01 1 1

## 2 -0.1686186 138 9.9e-05 0.01 1 1

## 3 0.4596841 217 9.9e-05 0.01 1 1

## pon.count gene.symbol

## 1 0 HIPK1

## 2 0 VPS45

## 3 0 <NA>

The output columns are explained in Table 1.
To annotate the input VCF file with these values:
vcf <- predictSomatic(ret, return.vcf = TRUE)

writeVcf(vcf, file = "Sample1_PureCN.vcf")

For optimal classification results:
• Set post.optimize = TRUE since small inaccuracies in purity can decrease the classifi-

cation performance significantly
• Provide args.setMappingBias a pool of normal VCF to obtain position-specific map-

ping bias information
• Exclude variants in regions of low mappability
• Use a somatic posterior probability cutoff of 0.8 and 0.2 for somatic and germline

variants, respectively. This appears to be a good compromise of call rate and accuracy.
If the beta-binomial model was selected in the model argument of runAbsoluteCN with
small panel of normals, these cutoffs might need to be relaxed to get acceptable call
rates.

• Add a Cosmic.CNT info field to the VCF or provide a COSMIC VCF in runAbsoluteCN

(see Section 10.2).
Note that the posterior probabilities assume that the purity and ploidy combination
is correct. Before classifying variants, it is thus recommended to manually curate
flagged samples.

6.2.2 Amplifications and deletions

To call amplifications, we recommend using a cutoff of 6 for focal amplifications and a cutoff
of 7 otherwise. For homozygous deletions, a cutoff of 0.5 is useful to allow some heterogeneity
in copy number.
For samples that failed PureCN calling we recommended using common log2-ratio cutoffs to
call amplifications, for example 0.9.
This strategy is implemented in the callAlterations function:
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Table 1: predictSomatic output columns.

Column name Description
chr, start, end Variant coordinates
ID The variant ID as provided in the VCF
REF, ALT The reference and alt alleles
SOMATIC.M* Posterior probabilities for all somatic states. M0 to M7 are mul-

tiplicity values, i.e. the number of chromosomes harboring the
mutation (e.g. 1 heterozygous, 2 homozygous if copy number
C is 2). SOMATIC.M0 represents a sub-clonal state (somatic
mutations by definition have a multiplicity larger than 0).

GERMLINE.M* Posterior probabilities for all heterozygous germline states
GERMLINE.CONTHIGH Posterior probability for contamination. This state corresponds

to homozygous germline SNPs that were not filtered out because
reference alleles from another individual were sequenced, resulting
in allelic fractions smaller than 1.

GERMLINE.CONTLOW Posterior probability for contamination. This state corresponds to
non-reference alleles only present in the contamination.

GERMLINE.HOMOZYGOUS Posterior probability that SNP is homozygous in normal. Requires
the model.homozygous option in runAbsoluteCN. See Section 8.

ML.SOMATIC TRUE if the maximum likelihood state is a somatic state
POSTERIOR.SOMATIC The posterior probability that the variant is somatic (sum of all

somatic state posterior probabilities)
ML.M Maximum likelihood multiplicity
ML.C Maximum likelihood integer copy number
ML.M.SEGMENT Maximum likelihood minor segment copy number
M.SEGMENT.POSTERIOR Posterior probability of ML.M.SEGMENT
M.SEGMENT.FLAGGED Segment flag indicating ML.M.SEGMENT is unreliable, either

due to low posterior probability (< 0.5) or few variants (<
min.variants.segment). Indels are always flagged.

ML.AR Expected allelic fraction of the maximum likelihood state
AR Observed allelic fraction (as provided in VCF)
AR.ADJUSTED Observed allelic fraction adjusted for mapping bias
ML.LOH TRUE if variant is most likely in LOH
CN.SUBCLONAL TRUE if copy number segment is sub-clonal
CELLFRACTION Fraction of tumor cells harboring the somatic mutation [10]
CELLFRACTION.95.LOWER Lower 95% of confidence interval
CELLFRACTION.95.UPPER Upper 95% of confidence interval
ALLELIC.IMBALANCE Log-likelihood that variant is in allelic balance. Requires position-

specific mapping bias information to be reliable.
FLAGGED Flag indicating that call is unreliable (currently only due to high

mapping bias and high pool of normal counts)
log.ratio The copy number log2-ratio (tumor vs. normal) for this variant
depth The total sequencing depth at this position
prior.somatic Prior probability of variant being somatic
prior.contamination Prior probability that variant is contamination from another indi-

vidual
on.target 1 for variants within intervals, 2 for variants in flanking regions,

0 for off-target variants
seg.id Segment id
pon.count Number of hits in the mapping.bias.file

gene.symbol Gene symbol if available
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gene.calls <- callAlterations(ret)

head(gene.calls)

## chr start end C C.flagged seg.mean seg.id

## EIF2A chr3 150270143 150301699 6 FALSE 1.3859 5

## MIR548H2 chr3 151531951 151538241 6 FALSE 1.3859 5

## AADAC chr3 151542451 151545961 6 FALSE 1.3859 5

## GPNMB chr7 23286477 23313844 7 FALSE 1.4462 19

## SH2D4B chr10 82329910 82403838 0 FALSE -1.4863 26

## SLC35G1 chr10 95653791 95661248 0 FALSE -1.2007 28

## number.targets gene.mean gene.min gene.max focal breakpoints

## EIF2A 13 1.5643189 0.7544062 2.1392167 TRUE 0

## MIR548H2 3 0.8261594 0.4682628 1.2000253 TRUE 0

## AADAC 2 0.7851630 0.6864438 0.8838822 TRUE 1

## GPNMB 11 1.4462179 0.9397072 1.8200775 TRUE 0

## SH2D4B 6 -1.4862885 -1.5836964 -1.4113313 FALSE 0

## SLC35G1 3 -1.5817134 -1.8066816 -1.4493561 FALSE 0

## type num.snps M M.flagged loh

## EIF2A AMPLIFICATION 0 NA NA NA

## MIR548H2 AMPLIFICATION 0 NA NA NA

## AADAC AMPLIFICATION 0 NA NA NA

## GPNMB AMPLIFICATION 0 NA NA NA

## SH2D4B DELETION 2 0 TRUE TRUE

## SLC35G1 DELETION 0 NA NA NA

It is also often useful to filter the list further by known biology, for example to exclude non-
focal amplifications of tumor suppressor genes. The Sanger Cancer Gene Census [11] for
example provides such a list.
The output columns of callAlterations are explained in Table 2.

6.2.3 Amplifications in low purity samples

The default callAlterations is not suited for samples of very low purity below 10% such as
frequently observed in cfDNA samples. To call high level amplifications in samples between
4 to 10%, we recommend a simple z-score approach implemented in callAmplificationsIn

LowPurity. This will calculate gene-level log2 copy number ratio standard deviations in all
normal samples that are then used to obtain gene-level cutoffs for amplifications in tumor
samples. The output of this function is nearly identical to callAlterations with additional
columns explained in Table 3.
gene.calls.zscore <- callAmplificationsInLowPurity(ret, normalDB)

## WARN [2024-10-29 18:59:11] Extensive noise in tumor compared to normals.

head(gene.calls.zscore)

## chr start end C C.flagged number.targets gene.mean

## EIF2A chr3 150270143 150301699 NA FALSE 13 1.5643189

## MIR548H2 chr3 151531951 151538241 NA FALSE 3 0.8261594

## FTLP10 chr4 69056959 69078196 NA FALSE 3 0.5852635

## FGF5 chr4 81187979 81207827 NA FALSE 3 1.0400133

## SPP1 chr4 88898048 88904049 NA FALSE 5 0.7200921

## PPM1K chr4 89183747 89199736 NA FALSE 6 0.8253634
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Table 2: callAlterations output columns.

Column name Description
chr, start, end Gene coordinates
C Segment integer copy number. See also seg.id.
C.flagged Flagged when segment interval weights are low. Requires

normalDB. In case multiple segments overlap, C.flagged will be
TRUE when any segment is flagged.

seg.mean Segment mean of copy number log2-ratios (not adjusted for pu-
rity/ploidy). See also seg.id.

seg.id Segment id. In case multiple segments overlap, seg.id will point
to the smallest overlapping segment and the column breakpoints

will be non-zero.
number.targets Number of targets annotated with this symbol
gene.* Gene copy number log2-ratios (not adjusted for purity/ploidy).

gene.mean is weighted by interval weights when these are avail-
able.

focal TRUE for focal amplification, as defined by the fun.focal argu-
ment in runAbsoluteCN

breakpoints Number of breakpoints between start and end

type Amplification or deletion
num.snps Number of SNPs in this segment informative for LOH detection

(requires VCF)
M minor copy number of segment (requires VCF)
M.flagged flag indicating that M is unreliable (requires VCF)
loh TRUE if segment is in LOH, FALSE if not and NA if number of SNPs

is insufficient (requires VCF)

## gene.min gene.max breakpoints p.value percentile.genome

## EIF2A 0.7544062 2.139217 0 0 100.00000

## MIR548H2 0.4682628 1.200025 0 0 95.05495

## FTLP10 0.4369763 1.262028 0 0 90.76923

## FGF5 0.8330433 1.249963 0 0 98.35165

## SPP1 0.4282286 1.061844 0 0 92.30769

## PPM1K 0.1361852 1.456415 0 0 94.94505

## percentile.chromosome type

## EIF2A 100.00000 AMPLIFICATION

## MIR548H2 95.65217 AMPLIFICATION

## FTLP10 77.50000 AMPLIFICATION

## FGF5 97.50000 AMPLIFICATION

## SPP1 82.50000 AMPLIFICATION

## PPM1K 92.50000 AMPLIFICATION

# filter to known amplifications

known.calls.zscore <- gene.calls.zscore[ gene.calls.zscore$gene.symbol %in%

c("AR", "BRAF", "CCND1", "CCNE1", "CDK4", "CDK6", "EGFR", "ERBB2", "FGFR1",

"FGFR2", "KIT", "KRAS", "MCL1", "MDM2", "MDM4", "MET", "MYC", "PDGFRA",

"PIK3CA", "RAF1"),]

21



Copy number calling and SNV classification using targeted short read sequencing

Since this algorithm is intended to rescue known high-level amplifications in very low tumor
purities, we recommend using a liberal p-value cutoff, but restricting the search to a limited
set of genes.

Table 3: callAmplificationsInLowPurity output columns not already explained in Table 2.

Column name Description
p.value P-value of observing such a gene-level log2-ratio in normal sam-

ples
percentile.genome Percentile of gene-level log2-ratio in the tumor sample. Useful for

distinguishing focal amplifications from broad gains.
percentile.chromosome Same as percentile.genome, but for the chromosome

6.2.4 Find genomic regions in LOH

The gene.calls data.frame described above provides gene-level LOH information. To find
the corresponding genomic regions in LOH, we can use the callLOH function:
loh <- callLOH(ret)

head(loh)

## chr start end arm C M type seg.mean

## 1 chr1 114515871 121535434 p 2 0 WHOLE ARM COPY-NEUTRAL LOH 0.1173894

## 2 chr1 124535434 247419499 q 2 0 WHOLE ARM COPY-NEUTRAL LOH 0.1173894

## 3 chr2 10262881 92326171 p 1 0 WHOLE ARM LOH -0.4517019

## 4 chr2 95326171 231775678 q 1 0 WHOLE ARM LOH -0.4517019

## 5 chr2 236403331 239039169 q 2 0 COPY-NEUTRAL LOH 0.0579000

## 6 chr3 11888043 90504854 p 2 1 0.1056000

## num.mark num.snps M.flagged maf.expected maf.observed

## 1 886 11 FALSE 0.1750000 0.1767647

## 2 886 11 FALSE 0.1750000 0.1767647

## 3 657 13 FALSE 0.2592593 0.2751720

## 4 657 13 FALSE 0.2592593 0.2751720

## 5 86 2 TRUE 0.1750000 0.1719800

## 6 403 1 TRUE 0.5000000 0.4685382

The output columns are explained in Table 4.
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Table 4: callLOH output columns.

Column name Description
chr, start, end Segment coordinates
arm Chromosome arm
C Segment integer copy number
M Minor integer copy number (M +N = C,M ≤ N)
type LOH type if M = 0
seg.mean Segment mean of copy number log2-ratios (not adjusted for pu-

rity/ploidy)
num.mark Number of intervals in this segment (following DNAcopy naming

convention)
num.snps Number of SNPs in this segment informative for LOH detection
M.flagged flag indicating that M is unreliable (due to small number of variants

defined by min.variants.segment or because of ambiguous M call)
maf.expected Expected minor allele frequency of heterozygous SNPs in this seg-

ment
maf.observed Median of observed minor allele frequency of heterozygous SNPs

in this segment

7 Curation
For prediction of variant status (germline vs. somatic, sub-clonal vs. clonal, homozygous
vs. heterozygous), it is important that both purity and ploidy are correct. We provide
functionality for curating results:
createCurationFile(file.rds)

This will generate a CSV file in which the correct purity and ploidy values can be manually
entered. It also contains a column "Curated", which should be set to TRUE, otherwise the file
will be overwritten when re-run.
Then in R, the correct solution (closest to the combination in the CSV file) can be loaded
with the readCurationFile function:
ret <- readCurationFile(file.rds)

This function has various handy features, but most importantly it will re-order the local
optima so that the curated purity and ploidy combination is ranked first. This means
plotAbs(ret,1,type="hist") would show the plot for the curated purity/ploidy combination,
for example.
The default curation file will list the maximum likelihood solution:
read.csv("Sample1_PureCN.csv")

## Sampleid Purity Ploidy Sex Contamination Flagged Failed Curated

## 1 Sample1 0.65 1.728527 ? 0 TRUE FALSE FALSE

## Comment

## 1 EXCESSIVE LOSSES;EXCESSIVE LOH
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PureCN currently only flags samples with warnings, it does not mark any samples as failed.
The Failed column in the curation file can be used to manually flag samples for exclusion in
downstream analyses. See Table 5 for an explanation of all flags.

Table 5: createCurationFile flags.

Flag Description
EXCESSIVE LOH > 50% of genome in LOH and ploidy <

2.6
EXCESSIVE LOSSES ≥ 1% of genome deleted
HIGH AT- OR GC-DROPOUT High GC-bias exceeding cutoff in

max.dropout

HIGH PURITY (when model.homozygous=FALSE). For
very high purity samples, it is recom-
mended to set model.homozygous=TRUE.
See Section 8.

LOW PURITY Purity < 30%
LOW BOOTSTRAP VALUE bootstrapResults identified multiple

plausible solutions
NOISY LOG-RATIO Log-ratio standard deviation >

max.logr.sdev

NOISY SEGMENTATION More than max.segments

NON-ABERRANT ≥ 99% of genome has identical copy
number and ≥ 0.5% has second most
common state

POLYGENOMIC ≥ 0.75× max.non.clonal fraction of the
genome in sub-clonal state

POOR GOF GoF < min.gof

POTENTIAL SAMPLE CONTAMINATION Significant portion of variants present in
germline databases are potentially cross-
contaminated

RARE KARYOTYPE Ploidy < 1.5 or > 4.5

8 Cell lines
Default parameters assume some normal contamination. In 100% pure samples without
matching normal samples such as cell lines, we cannot distinguish homozygous SNPs from
LOH by looking at single allelic fractions alone. It is thus necessary to keep homozygous
variants and include this uncertainty in the likelihood model. This is done by setting the
runAbsoluteCN argument model.homozygous=TRUE. If matched normals are available, then
variants homozygous in normal are automatically removed since they are uninformative.
For technical reasons, the maximum purity PureCN currently models is 0.99. We recommend
setting test.purity=seq(0.9,0.99,by=0.01) in runAbsoluteCN for cell lines.
Please note that in order to detect homozygous deletions in 100% pure samples, you will need
to provide a normalDB in runAbsoluteCN to filter low quality targets efficiently (Section 5).
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9 Maximizing the number of heterozygous SNPs
It is possible to use SNPs in off-target reads in the variant fitting step by running MuTect
without interval file and then setting the filterVcfBasic argument remove.off.target.snvs
to FALSE. We recommend a large pool of normals in this case and then generating SNP
blacklists as described in Sections 4.2 and 4.3. Remember to also run all the normals in
MuTect without interval file.
An often better alternative to including all off-target reads is only including variants in the
flanking regions of targets (between 50-100bp). This will usually significantly increase the
number of heterozygous SNPs (see Section 12.2). These SNPs are automatically added if
the variant caller was run without interval file or with interval padding.

10 Advanced usage

10.1 Custom normalization and segmentation
Copy number normalization and segmentation are crucial for obtaining good purity and ploidy
estimates. If you have a well-tested pipeline that produces clean results for your data, you
might want to use PureCN as add-on to your pipeline. By default, we will use DNAcopy [12]
to segment normalized target-level coverage log2-ratios. It is straightforward to replace the
default with other methods and the segmentationCBS function can serve as an example.
The next section describes how to replace the default segmentation. For the probably more
uncommon case that only the coverage normalization is performed by third-party tools, see
Section 10.1.2.

10.1.1 Custom segmentation

It is possible to provide already segmented data, which is especially recommended when
third-party segmentation tools are not written in R. Otherwise it is usually however better to
customize the default segmentation function, since the algorithm then has access to the raw
log2-ratio distribution5. The expected file format for already segmented copy number data
parsed by readSegmentationFile is6:

ID chrom loc.start loc.end num.mark seg.mean

Sample1 1 61723 5773942 2681 0.125406444072723

Sample1 1 5774674 5785170 10 -0.756511807441712

Since its likelihood model is exon-based, PureCN currently still requires an interval file to gen-
erate simulated target-level log2-ratios from a segmentation file. For simplicity, this interval
file is expected either via the tumor.coverage.file or via the interval.file argument (see
Figure 7). Note that PureCN will re-segment the simulated log2-ratios using the default seg
mentationCBS function, in particular to identify regions of copy-number neutral LOH and to
cluster segments with similar allelic imbalance and log2-ratio. The provided interval file should
therefore cover all significant copy number alterations7. Please check that the log2-ratios are
similar to the ones obtained by the default PureCN segmentation and normalization.
5If the third-party tool provides target-level log2-ratios, then these can be provided via the log.ratio argu-
ment in addition to seg.file though. See also Section 10.1.2.
6This segmentation file can contain multiple samples, in which case the provided sampleid must match a
sample in the column ID
7If this behaviour is not wanted, because maybe the custom function already identifies CNNLOH reliably,
segmentationCBS can be replaced with a minimal version.
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retSegmented <- runAbsoluteCN(seg.file = seg.file,

interval.file = interval.file, vcf.file = vcf.file,

max.candidate.solutions = 1, genome = "hg19",

test.purity = seq(0.3,0.7,by = 0.05), verbose = FALSE,

plot.cnv = FALSE)

## WARN [2024-10-29 18:59:50] Allosome coverage missing, cannot determine sex.

## WARN [2024-10-29 18:59:50] Allosome coverage missing, cannot determine sex.

The max.candidate.solutions and test.purity arguments are set to non-default values to
reduce the runtime of this vignette.
plotAbs(retSegmented, 1, type = "BAF")
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Figure 7: B-allele frequency plot for segmented data. This plot shows the maximum likelihood solution for
an example where segmented data are provided instead of coverage data. Note that the middle panel shows
no variance in log2-ratios, since only segment-level log2-ratios are available.

10.1.2 Custom normalization

If third-party tools such as GATK4 are used to calculate target-level copy number log2-ratios,
and PureCN should be used for segmentation and purity/ploidy inference only, it is possible
to provide these log2-ratios:
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# We still use the log2-ratio exactly as normalized by PureCN for this

# example

log.ratio <- calculateLogRatio(readCoverageFile(normal.coverage.file),

readCoverageFile(tumor.coverage.file))

retLogRatio <- runAbsoluteCN(log.ratio = log.ratio,

interval.file = interval.file, vcf.file = vcf.file,

max.candidate.solutions = 1, genome = "hg19",

test.purity = seq(0.3, 0.7, by = 0.05), verbose = FALSE,

normalDB = normalDB, plot.cnv = FALSE)

## WARN [2024-10-29 19:00:10] Allosome coverage missing, cannot determine sex.

## WARN [2024-10-29 19:00:10] Allosome coverage missing, cannot determine sex.

Again, the max.candidate.solutions and test.purity arguments are set to non-default
values to reduce the runtime of this vignette. Note that this example uses a pool of normals
to filter low quality targets. Interval coordinates are again expected in either a interval.file

or a tumor.coverage.file.
The readLogRatioFile function provides support for parsing GATK3 -style and GATK4 De-
noiseReadCounts formats:
# GATK3-style

Target log_ratio

1:3682750-3683489 0.109473

1:3690585-3691264 0.126205

# GATK4

@HD VN:1.6

@SQ SN:1 LN:248956422

@SQ SN:2 LN:242193529

...

CONTIG START END LOG2_COPY_RATIO

1 3682750 3683489 0.109473

1 3690585 3691264 0.126205

It is highly recommended to compare the log2-ratios obtained by PureCN and the third-party
tool, since some pipelines automatically adjust log2-ratios for a default purity value.

10.2 COSMIC annotation
If a matched normal is not available, it is also helpful to provide runAbsoluteCN the COSMIC
database [13] via cosmic.vcf.file (or via a Cosmic.CNT INFO field in the VCF). While this
has limited effect on purity and ploidy estimation due the sparsity of hotspot mutations, it
often helps in the manual curation to compare how well high confidence germline (based on
dbSNP membership or POPAF) vs. somatic (COSMIC) variants fit a particular purity/ploidy
combination.
For variant classification (Section 6.2.1), providing COSMIC annotation also avoids that
hotspot mutations in germline databases get assigned a very low prior probability of being
somatic.
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10.3 ExAC and gnomAD annotation
PureCN is not automatically annotating input VCFs with data from common germline
databases such as ExAC. See Section 2.1 for ways to tell PureCN where to find either a
summary binary flag (i.e. likely germline yes/no) or population allele frequencies.

10.4 Mutation burden
The predictSomatic function described in Section 6.2.1 can be used to efficiently remove
private germline mutations. This in turn allows the calculation of mutation burden for un-
matched tumor samples. A wrapper function for this specific task is included as callMuta

tionBurden:
callableBed <- import(system.file("extdata", "example_callable.bed.gz",

package = "PureCN"))

callMutationBurden(ret, callable = callableBed)

## somatic.ontarget somatic.all private.germline.ontarget

## 1 0 0 0

## private.germline.all callable.bases.ontarget callable.bases.flanking

## 1 0 1493367 2194877

## callable.bases.all somatic.rate.ontarget somatic.rate.ontarget.95.lower

## 1 3063762 0 0

## somatic.rate.ontarget.95.upper private.germline.rate.ontarget

## 1 2.470173 0

## private.germline.rate.ontarget.95.lower

## 1 0

## private.germline.rate.ontarget.95.upper

## 1 2.470173

The callableBed file should be a file parsable by rtracklayer . This file can specify genomic
regions that are callable, for example as obtained by GATK3 CallableLoci. This is optional,
but if provided can be used to accurately calculate mutation rates per megabase. Variants
outside the callable regions are not counted. Private germline rates should be fairly constant
across samples; outliers here should be manually inspected.
The output columns are explained in Table 6.

10.5 Chromosomal Instability
Chromosomal Instability (CIN) is usually defined as the fraction of the genome that is altered.
The callCIN function can be used to estimate this fraction.
Parameters define regions that are altered. First, allele.specific defines whether only total
vs. both minor and major copy number define a state. Copy number neutral LOH would
count as altered only when this parameter is set to TRUE. Second, reference.state defines
the unaltered copy number state. This can be either normal for 2/1, or dominant for the most
common state. While technically potentially wrong, the latter is robust to errors in ploidy and
is thus recommended without careful manual curation. Similarly, setting allele.specific

to FALSE makes this metric more robust to purity and ploidy errors, but usually to a much
lesser extend.
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Table 6: callMutationBurden output columns.

Column name Description
somatic.ontarget Number of mutations in target regions
somatic.all Total number of mutations. Depending

on input VCF and runAbsoluteCN argu-
ments, this might include calls in flanking
regions and off-targets reads.

private.germline.ontarget Number of private germline SNPs in tar-
gets. For matched tumor/normal sam-
ples, this is the number of variants an-
notated as somatic, but classified as
germline.

private.germline.all Total number of private germline SNPs
callable.bases.ontarget Number of callable on-target bases
callable.bases.flanking Number of callable on-target and flanking

bases
callable.bases.all Total number of callable bases. With

default parameters includes off-target re-
gions that were ignored by runAbso

luteCN.
somatic.rate.ontarget Somatic mutations per megabase in tar-

get regions
somatic.rate.ontarget.95.lower Lower 95% of confidence interval
somatic.rate.ontarget.95.upper Upper 95% of confidence interval
private.germline.rate.ontarget Private germline mutations per megabase

in target regions
private.germline.rate.ontarget.95.lower Lower 95% of confidence interval
private.germline.rate.ontarget.95.upper Upper 95% of confidence interval

It is recommended to test for a relationship of tumor purity and CIN and if necessary exclude
low purity samples with uncertain CIN.
# All 4 possible ways to calculate fraction of genome altered

cin <- data.frame(

cin = callCIN(ret, allele.specific = FALSE, reference.state = "normal"),

cin.allele.specific = callCIN(ret, reference.state = "normal"),

cin.ploidy.robust = callCIN(ret, allele.specific = FALSE),

cin.allele.specific.ploidy.robust = callCIN(ret)

)

10.6 Detect cross-sample contamination
It is important to correctly handle heterozygous common SNPs that do not have an expected
allelic fraction of 0.5 in normal samples. These can be SNPs in poor quality regions (as
already described, see Section 4.2.1), but also SNPs from cross-sample contaminated DNA.
Without matched normals, detection of those problematic SNPs is not trivial.
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For cross-sample contamination, PureCN by default always tests for a 1% contamination and
assigns common SNPs to a contamination state when allelic fractions are either close to 0 or
close to 1 and when this cannot be explained by CNAs. The main purpose of these states is
to provide a bin for common SNPs that for artifactual reasons do not fit any other state.
This tool applies a simple heuristic to flag samples for cross-contamination: Given the cov-
erage and putative contamination rate based on allelic fractions of potentially contaminated
SNPs, how many SNPs do we expect to detect based on our power to detect variants at that
contamination rate? If the expected number is much higher than observed, then significant
contamination is unlikely; observed SNPs close to 0 or 1 are more likely artifacts or the con-
tamination rate is much lower than the minimum tested. Otherwise PureCN will perform a
post-optimization in which contamination rate is optimized in additional variant fitting steps.
Cross-sample contamination can also result in increased observed heterozygosity on chrX for
males, which in turn often results in a PureCN warning that sex inferred from coverage and
VCF are in conflict.
By default, cross-contamination is tested in the range from 1 to 7.5%. Catastrophic failures
with higher contamination might not get flagged.

10.7 Power to detect somatic mutations
As final quality control step, we can test if coverage and tumor purity are sufficent to detect
mono-clonal or even sub-clonal somatic mutations. We strictly follow the power calculation
by Carter et al. [2].
The following Figure 8 shows the power to detect mono-clonal somatic mutations as a function
of tumor purity and sequencing coverage (reproduced from [2]):
purity <- c(0.1,0.15,0.2,0.25,0.4,0.6,1)

coverage <- seq(5,35,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)

calculatePowerDetectSomatic(coverage = cv, purity = p, ploidy = 2,

verbose = FALSE)$power))

# Figure S7b in Carter et al.

plot(coverage, power[[1]], col = 1, xlab = "Sequence coverage",

ylab = "Detection power", ylim = c(0, 1), type = "l")

for (i in 2:length(power)) lines(coverage, power[[i]], col = i)

abline(h = 0.8, lty = 2, col = "grey")

legend("bottomright", legend = paste("Purity", purity),

fill = seq_along(purity))

Figure 9 then shows the same plot for sub-clonal mutations present in 20% of all tumor cells:
coverage <- seq(5,350,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)

calculatePowerDetectSomatic(coverage = cv, purity = p, ploidy = 2,

cell.fraction = 0.2, verbose = FALSE)$power))

plot(coverage, power[[1]], col = 1, xlab = "Sequence coverage",

ylab="Detection power", ylim = c(0, 1), type = "l")

for (i in 2:length(power)) lines(coverage, power[[i]], col = i)
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Figure 8: Power to detect mono-clonal somatic mutations. Reproduced from [2].

abline(h = 0.8, lty = 2, col = "grey")

legend("bottomright", legend = paste("Purity", purity),

fill = seq_along(purity))
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Figure 9: Power to detect sub-clonal somatic mutations present in 20% of all tumor cells. Reproduced
from [2].
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11 Limitations
PureCN currently assumes a completely diploid normal genome. For human samples, it tries
to detect sex by calculating the coverage ratio of chromosomes X and Y and will then remove
sex chromosomes in male samples8. For non-human samples, the user needs to manually
remove all non-diploid chromosomes from the coverage data and specify sex="diploid" in
the PureCN call.
While PureCN supports and models sub-clonal somatic copy number alterations, it currently
assumes that the majority of alterations are mono-clonal. For most clinical samples, this is
reasonable, but very heterogeneous samples are likely not possible to call without manual
curation. Poly-genomic tumors are often called as high ploidy or low purity. The former
usually happens when sub-clonal losses are called as 2 copies and mono-clonal losses correctly
as 1 copy. The latter when sub-clonal losses are called mono-clonal, which only happens when
there are far more sub-clonal than mono-clonal losses. Please note however that unless purities
are very high, algorithms that model poly-genomic tumors do not necessarily have a higher
call rate, since they tend to overfit noisy samples or similarly confuse true high-ploidy with
poly-genomic tumors. Due to the lack of signal, manual curation is also recommended in low
purity samples or very quiet genomes.

12 Support
If you encounter bugs or have problems running PureCN, please post them at

• https://support.bioconductor.org/p/new/post/?tag_val=PureCN or
• https://github.com/lima1/PureCN/issues.

If PureCN throws user errors, then there is likely a problem with the input files. If the error
message is not self-explanatory, feel free to seek help at the support site.
In your report, please add the outputs of the runAbsoluteCN call (with verbose=TRUE, or
the *.log file in PureCN.R) and sessionInfo(). Please also check that your problem is not
already covered in the following sections.
For general feedback such as suggestions for improvements, feature requests, complaints, etc.
please do not hesitate to send us an email.

12.1 Checklist
• Used the correct interval files provided by the manufacturer of the capture kit and the

genome version of the interval file matches the reference. Ideally used the baits file,
not the targets file (in Agilent data, the baits files are called "covered" and the targets
are "regions").

• For hybrid capture data, included off-target reads in the coverage calculation
• BAM files were generated following established best practices and tools finished suc-

cessfully.
• Checked standard QC metrics such as AT/GC dropout and duplication rates.

8Loss of Y chromosome (LOY) can result in wrong female calls, especially in high purity samples or if LOY
is in both tumor and contaminating normal cells. The software throws a warning in this case when germline
SNPs are provided.
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• Tumor and normal data were obtained using the same capture kit and pipeline.
• Coverage data of tumor and normal were GC-normalized.
• The VCF file contains germline variants (i.e. not only somatic calls).
• Maximized the number of high coverage heterozygous SNPs, for example by running

MuTect with a 50-75bp interval padding (Section 9). The runAbsoluteCN output lists
the percentage of targets with variants and this should be around 10-15%. Ultra-
deep sequencing data can provide good SNP allelic fractions in the 100-200bp flanking
regions.

• If a pool of normal samples is available, followed the steps in Section 4.2.
• Read the output of runAbsoluteCN with verbose = TRUE, fixed all warnings.
• If third-party segmentation tools are used, checked that normalized log2-ratios are not

biased, i.e. very similar compared to PureCN log2-ratios (some pipelines already adjust
for a default normal contamination).

• Followed the best practices described in the Quick vignette

12.2 FAQ
If the ploidy is frequently too high, please check:

• Does the log2-ratio histogram (Figure 3) look noisy? If yes, then
• Is the coverage sufficient? Tumor coverages below 80X can be difficult, especially

in low purity samples. Normal coverages below 50X might result in high variance
of log2-ratios. See Section 4.1 for finding a good normal sample for log2-ratio
calculation.

• Is the coverage data of both tumor and normal GC-normalized? If not, see correct

CoverageBias. It can be safe to skip the normalization, with large panels of nor-
mals potentially even slighly beneficial, but make sure that GC-normalization was
either skipped or performed in both tumor sample and normal coverage database.

• Is the quality of both tumor and normal sufficient? A high AT or GC-dropout might
result in high variance of log2-ratios. Challenging FFPE samples also might need
parameter tuning of the segmentation function. See segmentationCBS. A high
expected tumor purity allows more aggressive segmentation parameters, such as
prune.hclust.h=0.2 or higher.

• Was the correct target interval file used (genome version and capture kit, see
Section 2.4)? If unsure, ask the help desk of your sequencing center.

• Were the normal samples run with the same assay and pipeline?
• Did you provide runAbsoluteCN all the recommended files as described in Sec-

tion 5?
• For whole-genome data, you will get better results using a specialized third-party

segmentation method as described in section 10.1, since our default is optimized
for targeted sequencing. In general, you should probably start with tools optimized
for WGS data, such as Battenberg [14], ABSOLUTE [2], ACEseq [7], or TitanCNA
[8]. We are planning to incorporate proper support for WGS once high coverage
diagnostic WGS becomes more common.
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• Otherwise, if log2-ratio peaks are clean as in Figure 3:
• Was MuTect run without a matched normal? If yes, then make sure to provide

either a pool of normal VCF or a SNP blacklist (if no pool of normal samples is
available) as described in Sections 4.2 and 4.3.

• A high fraction of sub-clonal copy-number alterations might also result in a low
ranking of correct low ploidy solutions (see Section 11).

If the ploidy is frequently too low:

• PureCN with default parameters is conservative in calling genome duplications.
• This should only affect low purity samples (< 35%), since in higher purity samples the

duplication signal is usually strong enough to reliably detect it.
• In whole-exome data, it is usually safe to decrease the max.homozygous.loss default,

since such large losses are rare.

Will PureCN work with my data?

• PureCN was designed for medium-sized (>2-3Mb) targeted panels. The more data,
the better, best results are typically achieved in whole-exome data.

• The number of heterozygous SNPs is also important (>1000 per sample). Copy number
baits enriched in SNPs are therefore very helpful (see Section 9).

• Some users got acceptable results with small (<1Mb) panels. Try to find a perfect off-
target bin width (average.off.target.width in preprocessIntervals) and maximize
the number of heterozygous SNPs by including as much padding as possible. Keep in
mind that without tiling baits, you will only have a poor resolution to detect LOH.

• Coverages below 80X are difficult unless purities are high and coverages are even.
• PureCN also needs process-matched normal samples, again, the more the better.
• Samples with tumor purities below 15-20% usually cannot be analyzed with this algo-

rithm and PureCN might return very wrong purity estimates. In high coverage samples
with low duplication rates, this limit can be close to 10%.

• Whole-genome data is not officially supported and specialized tools will likely provide
better results. Third-party segmentation tools designed for this data type would be
again required.

• Amplicon sequencing data is also not officially supported. If the assay contains tiling
probes (at least with 1Mb spacing) and uses a barcode protocol that reduces PCR
bias of measured allelic fractions, then this method might produce acceptable results.
Setting the model argument of runAbsoluteCN to betabin is recommended. Specialized
segmentation tools might be again better than our default.

• This tool was originally designed for single sample pipelines. It becomes more common
to have multiple biopsies per patient and sharing information across biopsies might be
beneficial. Other tools worth checking out are lumosVar 2.0 [15] and SuperFreq [16].

If you have trouble generating input data PureCN accepts, please check:
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• For problems related to generating valid coverage data, either consult the GATK man-
ual for the DepthOfCoverage or CollectFragmentCounts tools or Section 2.3 for the
equivalent function in PureCN. If you use DepthOfCoverage and off-target intervals as
generated by IntervalFile.R (See Quick vignette), make sure to run it with parameters
-omitDepthOutputAtEachBase and -interval_merging OVERLAPPING_ONLY.

• Currently only VCF files generated by MuTect 1 are officially supported and well tested.
A minimal example MuTect call would be:

$JAVA7 -Xmx6g -jar $MUTECT \

--analysis_type MuTect -R $REFERENCE \

--dbsnp $DBSNP_VCF \

--cosmic $COSMIC_VCF \

-I:normal $BAM_NORMAL \

-I:tumor $BAM_TUMOR \

-o $OUT/${ID}_bwa_mutect_stats.txt \

-vcf $OUT/${ID}_bwa_mutect.vcf

The normal needs to be matched; without matched normal, only provide the tumor
BAM file (do NOT provide a process-matched normal here). The default output file
is the stats or call-stats file; this can be provided in addition to the required VCF
file via args.filterVcf in runAbsoluteCN. If provided, it may help PureCN filter
artifacts. This requires MuTect in version 1.1.7. This version is currently available at
https://software.broadinstitute.org/gatk/download/mutect and requires Java 1.7 (it
does not work with Java 1.8).
Note that this MuTect VCF will contain variants in off-target reads. By default, PureCN
will remove variants outside the provided targets and their 50bp flanking regions. We
highly recommend finding good values for each assay. A good cutoff will maximize the
number of heterozygous SNPs and keep only an acceptable number of lower quality
calls. This cutoff is set via interval.padding in args.filterVcf. See Section 9.

• Support for GATK4 and Mutect2 is in beta. Version 4.1.7.0 and higher as well as
specifying the -genotype-germline-sites flag in Mutect2 is required. Please follow
the Broad Best Practices as closely as possible as we only test those workflows.

• For VCFs generated by other callers, the required dbSNP annotation can be added for
example with bcftools:

bcftools annotate --annotation $DBSNP_VCF \

--columns ID --output $OUT/${ID}_bwa_dbsnp.vcf.gz --output-type z \

$OUT/${ID}_bwa.vcf.gz

• To generate a mappability file with the GEM library:
• Calculate mappability, set kmer size to length of mapped reads.

REFERENCE="hg38.fa"

PREF=`basename $REFERENCE .fa`
THREADS=4

KMER=100

gem-indexer -T ${THREADS} -c dna -i ${REFERENCE} -o ${PREF}_index

gem-mappability -T ${THREADS} -I ${PREF}_index.gem -l ${KMER} \

-o ${PREF}_${KMER} -m 2 -e 2

gem-2-wig -I ${PREF}_index.gem -i ${PREF}_${KMER}.mappability \
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-o ${PREF}_${KMER}

• Convert to bigWig format, for example using the UCSC wigToBigWig tool:
cut -f1,2 ${REFERENCE}.fai > ${PREF}.sizes

wigToBigWig ${PREF}_${KMER}.wig ${PREF}.sizes ${PREF}_${KMER}.bw

• To generate the normal panel VCF (normal.panel.vcf.file) with GATK3 :
• Run MuTect on the normal with -I:tumor $BAM_NORMAL and optionally with the

-artifact_detection_mode flag.
• Remove the empty none sample from the VCF:

$JAVA -Xmx6g -jar $GATK3 \

--analysis_type SelectVariants -R $REFERENCE \

--exclude_sample_expressions none \

-V $OUT/${ID}_bwa_mutect_artifact_detection_mode.vcf \

-o $OUT/${ID}_bwa_mutect_artifact_detection_mode_no_none.vcf

• Merge the VCFs:
CMD="java -Xmx12g -jar $GATK3 -T CombineVariants --minimumN 3 -R $REFERENCE"

for VCF in $OUT/*bwa_mutect_artifact_detection_mode_no_none.vcf;

do

CMD="$CMD --variant $VCF"

done

CMD="$CMD -o $OUT/normals_merged_min3.vcf"

echo $CMD > $OUT/merge_normals_min3.sh

bgzip $OUT/normals_merged_min3.vcf

tabix $OUT/normals_merged_min3.vcf.gz

Questions related to the output.

• Where is the major and minor segment copy number? The minor copy number is
ML.M.SEGMENT in predictSomatic (Table 1) and M in callAlterations (Table 2) and
callLOH (Table 4). The major copy number is simply the total copy number (column
C or ML.C in predictSomatic) minus the minor copy number.

• Why are there two different amplification output files? See Section 6.2.2. Gene-
level p-values are not very useful for calling high-level amplifications in tissue samples
with significant amount of tumor cells because even regions of single gains will have
significant read pile-ups. These p-values can be however useful in low purity samples
commonly observed in cfDNA samples. There is no corresponding file for homozygous
deletions since detecting those is usually impossible in very low purity samples.

Questions related to pool of normals. As described in detail in Sections 4.1 and 4.2, a
pool of normal samples is used in PureCN for coverage normalization (to adjust for target-
specific capture biases) and for artifact filtering. A few recommendations:

• Matched normals are obviously perfect for identifying most alignment artifacts and map-
ping biases. While not critical, we still recommend generating a normal.panel.vcf.file

for MuTect and calculateMappingBiasVcf using the available normals.
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• Without matched normals, we need process-matched normals for coverage normaliza-
tion. We recommend more than 5 from 2-3 different library preparation and sequencing
batches. The more, the better.

• If you are able to add new normal samples over time capturing potential subtle changes
in the lab, do so!

• These normals used for coverage normalization should be ideally sequenced to at least
half the coverage as the tumor samples. This is completely different from matched
normals for germline calling where 30-40X provide sufficient power to detect heterozy-
gosity.

• For artifact removal, the more normals available, the more rare artifacts are removed.
We recommend at least 10, 50 or more are ideal. The more artifacts are removed, the
less likely PureCN output requires manual curation (Section 4.2).

• For position-specific mapping bias correction, the more normals are available, the more
rare SNPs will have reliable mapping bias estimates. This requires again at least about
10 normals to be useful, 100 or more are ideal.

• With smaller pool of normals, we additionally recommend filtering SNPs from low
quality regions (Section 4.3).

• It is worth trying the beta-binomial function instead of the default in the model argument
of runAbsoluteCN. This will incorporate uncertainty of observed variant allelic fractions
in the variant fitting step. The more normals, the more SNPs will have reliable estimates
of allelic fraction overdispersion.

• Do I really need a pool of normals? I only have tumor samples. Unfortunately, yes. If
you used a commercial capture kit, you might be able to obtain control samples from
the vendor or the public domain. This is not optimal, but usually better than nothing.

• It is safe to include multiple normals from the same individual. Fewer common germline
CNVs in createNormalDatabase and fewer SNPs in calculateMappingBiasVcf will be
detected. But especially when the controls were sequenced in multiple batches, these
replicates will still provide useful information for coverage normalization.

Questions related to manual curation. PureCN, like most other related tools, essentially
finds the most simple explanation of the data. There are three major problems with this
approach:

• First, hybrid capture data can be noisy and the algorithm must distinguish signal from
noise; if the algorithm mistakes noise for signal, then this often results in wrong high
ploidy calls (see Sections 4.2 and 4.3). If all steps in this vignette were followed, then
PureCN should ignore common artifacts. Noisy samples thus often have outlier ploidy
values and are often automatically flagged by PureCN. The correct solution is in most
of these cases ranked second or third.

• The second problem is that signal can be sparse, i.e. when the tumor purity is very low
or when there are only few somatic events. Manual curation is often easy in the latter
case. For example when small losses are called as homozygous, but corresponding
germline allele-frequencies are unbalanced (a complete loss would result in balanced
germline allele frequencies, since only normal DNA is left). Future versions might
improve calling in these cases by underweighting uninformative genomic regions.
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• The third problem is that tumor evolution is fast and complex and very difficult to
incorporate into general likelihood models. Sometimes multiple solutions explain the
data equally well, but one solution is then often clearly more consistent with known
biology, for example LOH in tumor suppressor genes such as TP53. A basic under-
standing of both the algorithm and the tumor biology of the particular cancer type
are thus important for curation. Fortunately, in most cancer types, such ambiguity is
rather rare. See also Section 11.

Questions related to matched normals.

Coverage normalization: Even when matched normals are available, we recommend build-
ing a normal database for coverage normalization. This usually produces cleaner cov-
erage profiles than the matched normal ([9]).

VCFs: When matched normals are available, simply provide this information to the vari-
ant caller and make sure that germline SNPs are not filtered out. PureCN should
automatically find the matched information.

Questions related to off-target reads. Hybrid capture assays usually provide a significant
amount of reads mapping outside the captured regions. This means these assays provide
shallow whole genome sequencing data for free. PureCN makes it straightforward to use that
information, but it might not always make sense to do so:

• Does the assay contain a fairly large number of big gaps (>1Mb) between neighboring
baits? For whole exome data or targeted panels with copy number tiling probes, the
answer can be no.

• Off-target reads are usually less affected by library-specific biases (Section 3) than on-
target reads. In noisy data, off-target reads can thus provide relatively clean additional
information.

• Very efficient assays with low off-target mapping might not provide a large number of
reads in useful window sizes (usually below 0.2Mb), especially when total sequencing
coverages are rather low. This can result in off-target data that are significantly noisier
than on-target data.

• It is recommended to check the runAbsoluteCN output for the standard deviations of
log2 copy number ratios for both on- and off-target reads. If the off-target noise is
consistently larger than the on-target noise, you can try increasing the off-target bin
width - and vice versa make it smaller when the on-target noise is larger.

Questions related to GC normalization.

• Explicit GC-normalization is useful whenever a significant difference in tumor and nor-
mal controls is suspected. One example would be FFPE tumors normalized with blood
controls. Otherwise the normalization using the panel of normals should automatically
remove any GC bias.

• Smaller panels of normals might also benefit from explicit GC-normalization.
• Otherwise it is safe skip the GC-normalization. In the command line tools, set -skip-

gc-norm in Coverage.R.

If all or most of the samples are flagged as:
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Noisy segmentation: The default of 300 for max.segments is calibrated for high quality
and high coverage whole-exome data. For whole-genome data or lower coverage data,
this value needs to be re-calibrated. In case the copy number data looks indeed noisy,
please see the first FAQ. Please be aware that PureCN will apply more aggressive
segmentation parameters when the number of segments exceeds this cutoff. If the high
segment count is real, this might confound downstream analyses.

High AT/GC dropout: If the data are GC-normalized, then there might be issues with
either the target intervals or the provided GC content. Please double check that all
files are correct and that all the coverage files are GC-normalized (Section 3).

Sex mismatch of coverage and VCF: If the panel contains baits for chromosome Y, then
the interval file was probably generated without mappability file (Section 2.2). Similarly
when third-party tools were used for coverage normalization and segmentation, this
usually means probes on chromosome Y were not filtered for mappability. Cross-sample
contamination (Section 10.6) can also cause sex mismatches.
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