fgsea
is an R-package for fast preranked gene set enrichment analysis (GSEA). The performance is achieved by using an algorithm for cumulative GSEA-statistic calculation. This allows to reuse samples between different gene set sizes. See the preprint for algorithmic details.
Loading example pathways and gene-level statistics:
Running fgsea:
fgseaRes <- fgsea(pathways = examplePathways,
stats = exampleRanks,
minSize=15,
maxSize=500,
nperm=10000)
The resulting table contains enrichment scores and p-values:
## pathway pval padj ES
## 1: 5990980_Cell_Cycle 0.0001237317 0.002083067 0.5388497
## 2: 5990979_Cell_Cycle,_Mitotic 0.0001270003 0.002083067 0.5594755
## 3: 5991210_Signaling_by_Rho_GTPases 0.0001325205 0.002083067 0.4238512
## 4: 5991454_M_Phase 0.0001372307 0.002083067 0.5576247
## 5: 5991023_Metabolism_of_carbohydrates 0.0001385809 0.002083067 0.4944766
## 6: 5991209_RHO_GTPase_Effectors 0.0001388118 0.002083067 0.5248796
## NES nMoreExtreme size leadingEdge
## 1: 2.686396 0 369 66336,66977,12442,107995,66442,19361,
## 2: 2.748593 0 317 66336,66977,12442,107995,66442,12571,
## 3: 2.015763 0 231 66336,66977,20430,104215,233406,107995,
## 4: 2.554097 0 173 66336,66977,12442,107995,66442,52276,
## 5: 2.245572 0 160 11676,21991,15366,58250,12505,20527,
## 6: 2.379476 0 157 66336,66977,20430,104215,233406,107995,
It takes about ten seconds to get results with significant hits after FDR correction:
## [1] 77
One can make an enrichment plot for a pathway:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]],
exampleRanks) + labs(title="Programmed Cell Death")
Or make a table plot for a bunch of selected pathways:
Please, be aware that fgsea
function takes about O(nk^{3/2}) time, where n is number of permutations and k is a maximal size of the pathways. That means that setting maxSize
parameter with a value of ~500 is strongly recommended.
Also, fgsea
is parallelized using BiocParallel
package. By default the first registered backend returned by bpparam()
is used. To tweak the parallelization one can either specify BPPARAM
parameter used for bclapply
of set nproc
parameter, which is a shorthand for setting BPPARAM=MulticoreParam(workers = nproc)
.
For convenience there is reactomePathways
function that obtains pathways from Reactome for given set of genes. Package reactome.db
is required to be installed.
pathways <- reactomePathways(names(exampleRanks))
fgseaRes <- fgsea(pathways, exampleRanks, nperm=1000, maxSize=500)
head(fgseaRes)
## pathway pval
## 1: Apoptosis 0.001533742
## 2: Hemostasis 0.011842105
## 3: Intrinsic Pathway for Apoptosis 0.001748252
## 4: Cleavage of Growing Transcript in the Termination Region 0.348284960
## 5: PKB-mediated events 0.745596869
## 6: PI3K Cascade 0.888382688
## padj ES NES nMoreExtreme size
## 1: 0.02691308 0.5163094 2.0818792 0 67
## 2: 0.09701661 0.2901862 1.4079592 8 298
## 3: 0.02691308 0.6758615 2.2513379 0 29
## 4: 0.66447392 -0.2577034 -1.0604061 131 50
## 5: 0.89497310 0.6268022 0.8397351 380 1
## 6: 0.96320048 -0.2148882 -0.6760628 389 18
## leadingEdge
## 1: 58801,14958,97165,22352,12043,14103,
## 2: 12306,12505,71946,16184,14062,16185,
## 3: 58801,12043,12367,14940,14942,12018,
## 4: 67332,331401,225027,68011,74737,57317,
## 5: 18576
## 6: 19247,18607,75669,327826,14180,14182,
One can also start from .rnk
and .gmt
files as in original GSEA:
rnk.file <- system.file("extdata", "naive.vs.th1.rnk", package="fgsea")
gmt.file <- system.file("extdata", "mouse.reactome.gmt", package="fgsea")
Loading ranks:
ranks <- read.table(rnk.file,
header=TRUE, colClasses = c("character", "numeric"))
ranks <- setNames(ranks$t, ranks$ID)
str(ranks)
## Named num [1:12000] -63.3 -49.7 -43.6 -41.5 -33.3 ...
## - attr(*, "names")= chr [1:12000] "170942" "109711" "18124" "12775" ...
Loading pathways:
## List of 6
## $ 1221633_Meiotic_Synapsis : chr [1:64] "12189" "13006" "15077" "15078" ...
## $ 1368092_Rora_activates_gene_expression : chr [1:9] "11865" "12753" "12894" "18143" ...
## $ 1368110_Bmal1:Clock,Npas2_activates_circadian_gene_expression : chr [1:16] "11865" "11998" "12753" "12952" ...
## $ 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane : chr [1:55] "11461" "11465" "11651" "11652" ...
## $ 186574_Endocrine-committed_Ngn3+_progenitor_cells : chr [1:4] "18012" "18088" "18506" "53626"
## $ 186589_Late_stage_branching_morphogenesis_pancreatic_bud_precursor_cells: chr [1:4] "11925" "15205" "21410" "246086"
And runnig fgsea:
## pathway
## 1: 1221633_Meiotic_Synapsis
## 2: 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane
## 3: 442533_Transcriptional_Regulation_of_Adipocyte_Differentiation_in_3T3-L1_Pre-adipocytes
## 4: 508751_Circadian_Clock
## 5: 5334727_Mus_musculus_biological_processes
## 6: 573389_NoRC_negatively_regulates_rRNA_expression
## pval padj ES NES nMoreExtreme size
## 1: 0.5482234 0.7203114 0.2885754 0.9422634 323 27
## 2: 0.6827697 0.8277870 0.2387284 0.8542766 423 39
## 3: 0.1132530 0.2674334 -0.3640706 -1.3572976 46 31
## 4: 0.7843478 0.8825758 0.2516324 0.7411287 450 17
## 5: 0.3578501 0.5518425 0.2469065 1.0596758 252 106
## 6: 0.3843478 0.5821058 0.3607407 1.0624836 220 17
## leadingEdge
## 1: 15270,12189,71846,19357
## 2: 17918,19341,20336,22628,22627,20619,
## 3: 20602,327987,59024,67381,70208,12537,
## 4: 20893,59027,19883
## 5: 60406,19361,15270,20893,12189,68240,
## 6: 60406,20018,245688,20017