Contents

0.1 Load Data

Below we compare the results of annotating variants via VariantAnnotation specifically repeating a subset of the steps in vignette Introduction to VariantAnnotation. We compare using data from 1,000 Genomes Phase 1 Variants:

0.1.1 VCF Data

First we read in the data from the VCF file:

library(VariantAnnotation)
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
vcf <- renameSeqlevels(vcf, c("22"="chr22"))
vcf
## class: CollapsedVCF 
## dim: 10376 5 
## rowRanges(vcf):
##   GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER
## info(vcf):
##   DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND, CIP...
## info(header(vcf)):
##              Number Type    Description                                     
##    LDAF      1      Float   MLE Allele Frequency Accounting for LD          
##    AVGPOST   1      Float   Average posterior probability from MaCH/Thunder 
##    RSQ       1      Float   Genotype imputation quality from MaCH/Thunder   
##    ERATE     1      Float   Per-marker Mutation rate from MaCH/Thunder      
##    THETA     1      Float   Per-marker Transition rate from MaCH/Thunder    
##    CIEND     2      Integer Confidence interval around END for imprecise ...
##    CIPOS     2      Integer Confidence interval around POS for imprecise ...
##    END       1      Integer End position of the variant described in this...
##    HOMLEN    .      Integer Length of base pair identical micro-homology ...
##    HOMSEQ    .      String  Sequence of base pair identical micro-homolog...
##    SVLEN     1      Integer Difference in length between REF and ALT alleles
##    SVTYPE    1      String  Type of structural variant                      
##    AC        .      Integer Alternate Allele Count                          
##    AN        1      Integer Total Allele Count                              
##    AA        1      String  Ancestral Allele, ftp://ftp.1000genomes.ebi.a...
##    AF        1      Float   Global Allele Frequency based on AC/AN          
##    AMR_AF    1      Float   Allele Frequency for samples from AMR based o...
##    ASN_AF    1      Float   Allele Frequency for samples from ASN based o...
##    AFR_AF    1      Float   Allele Frequency for samples from AFR based o...
##    EUR_AF    1      Float   Allele Frequency for samples from EUR based o...
##    VT        1      String  indicates what type of variant the line repre...
##    SNPSOURCE .      String  indicates if a snp was called when analysing ...
## geno(vcf):
##   SimpleList of length 3: GT, DS, GL
## geno(header(vcf)):
##       Number Type   Description                      
##    GT 1      String Genotype                         
##    DS 1      Float  Genotype dosage from MaCH/Thunder
##    GL .      Float  Genotype Likelihoods

The file chr22.vcf.gz within package VariantAnnotation holds data for 5 of the 1,092 individuals in 1,000 Genomes, starting at position 50300078 and ending at position 50999964.

HG00096 HG00097 HG00099 HG00100 HG00101

0.1.2 Google Genomics Data

Important data differences to note:

  • VCF data uses 1-based coordinates but data from the GA4GH APIs is 0-based.
  • There are two variants in the Google Genomics copy of 1,000 Genomes phase 1 variants that are not in chr22.vcf.gz. They are the only two variants within the genomic range with ALT == <DEL>.
library(GoogleGenomics)
# This vignette is authenticated on package load from the env variable GOOGLE_API_KEY.
# When running interactively, call the authenticate method.
# ?authenticate
# We're just getting the first few variants so that this runs quickly.
# If we wanted to get them all, we sould set end=50999964.
granges <- getVariants(variantSetId="10473108253681171589",
                       chromosome="22",
                       start=50300077,
                       end=50303000,
                       converter=variantsToGRanges)
## Fetching variants page.
## Continuing variant query with the nextPageToken: CIWK_hcQ_Nr-8ZGlk78i
## Fetching variants page.
## Continuing variant query with the nextPageToken: CIaM_hcQvM_un46SmcJ0
## Fetching variants page.
## Continuing variant query with the nextPageToken: CJGN_hcQiYna3cSwse_RAQ
## Fetching variants page.
## Continuing variant query with the nextPageToken: CMKQ_hcQr9OUpKu4n_xz
## Fetching variants page.
## Continuing variant query with the nextPageToken: CMKS_hcQn-nIneaph7WJAQ
## Fetching variants page.
## Continuing variant query with the nextPageToken: CKOU_hcQ2eCCwsmBysdd
## Fetching variants page.
## Continuing variant query with the nextPageToken: CLWV_hcQmo-n-tX08uPyAQ
## Fetching variants page.
## Continuing variant query with the nextPageToken: CMqX_hcQ__3H4KKV9tUR
## Fetching variants page.
## Continuing variant query with the nextPageToken: CKuZ_hcQ9pHXwa742bKgAQ
## Fetching variants page.
## Continuing variant query with the nextPageToken: CLqa_hcQ-6zjo_Dc86gy
## Fetching variants page.
## Continuing variant query with the nextPageToken: CLSb_hcQ3vrDo5XJwsB_
## Fetching variants page.
## Continuing variant query with the nextPageToken: CKOd_hcQ6IPgk-PVjskK
## Fetching variants page.
## Continuing variant query with the nextPageToken: CPGe_hcQ-8Saw6Ojg8yXAQ
## Fetching variants page.
## Continuing variant query with the nextPageToken: CPGf_hcQuKDdodiCvLUm
## Fetching variants page.
## Variants are now available.

0.1.3 Compare the Loaded Data

Ensure that the data retrieved by each matches:

vcf <- vcf[1:length(granges)] # Truncate the VCF data so that it is the same 
                              # set as what was retrieved from the API.
library(testthat)
expect_equal(start(granges), start(vcf))
expect_equal(end(granges), end(vcf))
expect_equal(as.character(granges$REF), as.character(ref(vcf)))
expect_equal(as.character(unlist(granges$ALT)), as.character(unlist(alt(vcf))))
expect_equal(granges$QUAL, qual(vcf))
expect_equal(granges$FILTER, filt(vcf))

0.2 Compare the Annotation Results

Now locate the protein coding variants in each:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

rd <- rowRanges(vcf)
vcf_locations <- locateVariants(rd, txdb, CodingVariants())
## 'select()' returned many:1 mapping between keys and columns
vcf_locations
## GRanges object with 7 ranges and 9 metadata columns:
##       seqnames               ranges strand | LOCATION  LOCSTART    LOCEND
##          <Rle>            <IRanges>  <Rle> | <factor> <integer> <integer>
##   [1]    chr22 [50301422, 50301422]      - |   coding       939       939
##   [2]    chr22 [50301476, 50301476]      - |   coding       885       885
##   [3]    chr22 [50301488, 50301488]      - |   coding       873       873
##   [4]    chr22 [50301494, 50301494]      - |   coding       867       867
##   [5]    chr22 [50301584, 50301584]      - |   coding       777       777
##   [6]    chr22 [50302962, 50302962]      - |   coding       698       698
##   [7]    chr22 [50302995, 50302995]      - |   coding       665       665
##         QUERYID        TXID         CDSID      GENEID       PRECEDEID
##       <integer> <character> <IntegerList> <character> <CharacterList>
##   [1]        24       75253        218562       79087                
##   [2]        25       75253        218562       79087                
##   [3]        26       75253        218562       79087                
##   [4]        27       75253        218562       79087                
##   [5]        28       75253        218562       79087                
##   [6]        57       75253        218563       79087                
##   [7]        58       75253        218563       79087                
##              FOLLOWID
##       <CharacterList>
##   [1]                
##   [2]                
##   [3]                
##   [4]                
##   [5]                
##   [6]                
##   [7]                
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
granges_locations <- locateVariants(granges, txdb, CodingVariants())
## 'select()' returned many:1 mapping between keys and columns
granges_locations
## GRanges object with 7 ranges and 9 metadata columns:
##       seqnames               ranges strand | LOCATION  LOCSTART    LOCEND
##          <Rle>            <IRanges>  <Rle> | <factor> <integer> <integer>
##   [1]    chr22 [50301422, 50301422]      - |   coding       939       939
##   [2]    chr22 [50301476, 50301476]      - |   coding       885       885
##   [3]    chr22 [50301488, 50301488]      - |   coding       873       873
##   [4]    chr22 [50301494, 50301494]      - |   coding       867       867
##   [5]    chr22 [50301584, 50301584]      - |   coding       777       777
##   [6]    chr22 [50302962, 50302962]      - |   coding       698       698
##   [7]    chr22 [50302995, 50302995]      - |   coding       665       665
##         QUERYID        TXID         CDSID      GENEID       PRECEDEID
##       <integer> <character> <IntegerList> <character> <CharacterList>
##   [1]        24       75253        218562       79087                
##   [2]        25       75253        218562       79087                
##   [3]        26       75253        218562       79087                
##   [4]        27       75253        218562       79087                
##   [5]        28       75253        218562       79087                
##   [6]        57       75253        218563       79087                
##   [7]        58       75253        218563       79087                
##              FOLLOWID
##       <CharacterList>
##   [1]                
##   [2]                
##   [3]                
##   [4]                
##   [5]                
##   [6]                
##   [7]                
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
expect_equal(granges_locations, vcf_locations)

And predict the effect of the protein coding variants:

library(BSgenome.Hsapiens.UCSC.hg19)
vcf_coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
vcf_coding
## GRanges object with 7 ranges and 17 metadata columns:
##                   seqnames               ranges strand | paramRangeID
##                      <Rle>            <IRanges>  <Rle> |     <factor>
##       rs114335781    chr22 [50301422, 50301422]      - |         <NA>
##         rs8135963    chr22 [50301476, 50301476]      - |         <NA>
##   22:50301488_C/T    chr22 [50301488, 50301488]      - |         <NA>
##   22:50301494_G/A    chr22 [50301494, 50301494]      - |         <NA>
##   22:50301584_C/T    chr22 [50301584, 50301584]      - |         <NA>
##       rs114264124    chr22 [50302962, 50302962]      - |         <NA>
##       rs149209714    chr22 [50302995, 50302995]      - |         <NA>
##                              REF                ALT      QUAL      FILTER
##                   <DNAStringSet> <DNAStringSetList> <numeric> <character>
##       rs114335781              G                  A       100        PASS
##         rs8135963              T                  C       100        PASS
##   22:50301488_C/T              C                  T       100        PASS
##   22:50301494_G/A              G                  A       100        PASS
##   22:50301584_C/T              C                  T       100        PASS
##       rs114264124              C                  T       100        PASS
##       rs149209714              C                  G       100        PASS
##                        varAllele     CDSLOC    PROTEINLOC   QUERYID
##                   <DNAStringSet>  <IRanges> <IntegerList> <integer>
##       rs114335781              T [939, 939]           313        24
##         rs8135963              G [885, 885]           295        25
##   22:50301488_C/T              A [873, 873]           291        26
##   22:50301494_G/A              T [867, 867]           289        27
##   22:50301584_C/T              A [777, 777]           259        28
##       rs114264124              A [698, 698]           233        57
##       rs149209714              C [665, 665]           222        58
##                          TXID         CDSID      GENEID   CONSEQUENCE
##                   <character> <IntegerList> <character>      <factor>
##       rs114335781       75253        218562       79087    synonymous
##         rs8135963       75253        218562       79087    synonymous
##   22:50301488_C/T       75253        218562       79087    synonymous
##   22:50301494_G/A       75253        218562       79087    synonymous
##   22:50301584_C/T       75253        218562       79087    synonymous
##       rs114264124       75253        218563       79087 nonsynonymous
##       rs149209714       75253        218563       79087 nonsynonymous
##                         REFCODON       VARCODON         REFAA         VARAA
##                   <DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>
##       rs114335781            ATC            ATT             I             I
##         rs8135963            GCA            GCG             A             A
##   22:50301488_C/T            CCG            CCA             P             P
##   22:50301494_G/A            CAC            CAT             H             H
##   22:50301584_C/T            CCG            CCA             P             P
##       rs114264124            CGG            CAG             R             Q
##       rs149209714            GGA            GCA             G             A
##   -------
##   seqinfo: 1 sequence from hg19 genome; no seqlengths
granges_coding <- predictCoding(rep(granges, elementNROWS(granges$ALT)),
                                txdb,
                                seqSource=Hsapiens,
                                varAllele=unlist(granges$ALT, use.names=FALSE))

granges_coding
## GRanges object with 7 ranges and 16 metadata columns:
##               seqnames               ranges strand |            REF
##                  <Rle>            <IRanges>  <Rle> | <DNAStringSet>
##   rs114335781    chr22 [50301422, 50301422]      - |              G
##     rs8135963    chr22 [50301476, 50301476]      - |              T
##   rs200080075    chr22 [50301488, 50301488]      - |              C
##   rs147801200    chr22 [50301494, 50301494]      - |              G
##   rs138060012    chr22 [50301584, 50301584]      - |              C
##   rs114264124    chr22 [50302962, 50302962]      - |              C
##   rs149209714    chr22 [50302995, 50302995]      - |              C
##                              ALT      QUAL      FILTER      varAllele
##               <DNAStringSetList> <numeric> <character> <DNAStringSet>
##   rs114335781                  A       100        PASS              T
##     rs8135963                  C       100        PASS              G
##   rs200080075                  T       100        PASS              A
##   rs147801200                  A       100        PASS              T
##   rs138060012                  T       100        PASS              A
##   rs114264124                  T       100        PASS              A
##   rs149209714                  G       100        PASS              C
##                   CDSLOC    PROTEINLOC   QUERYID        TXID         CDSID
##                <IRanges> <IntegerList> <integer> <character> <IntegerList>
##   rs114335781 [939, 939]           313        24       75253        218562
##     rs8135963 [885, 885]           295        25       75253        218562
##   rs200080075 [873, 873]           291        26       75253        218562
##   rs147801200 [867, 867]           289        27       75253        218562
##   rs138060012 [777, 777]           259        28       75253        218562
##   rs114264124 [698, 698]           233        57       75253        218563
##   rs149209714 [665, 665]           222        58       75253        218563
##                    GENEID   CONSEQUENCE       REFCODON       VARCODON
##               <character>      <factor> <DNAStringSet> <DNAStringSet>
##   rs114335781       79087    synonymous            ATC            ATT
##     rs8135963       79087    synonymous            GCA            GCG
##   rs200080075       79087    synonymous            CCG            CCA
##   rs147801200       79087    synonymous            CAC            CAT
##   rs138060012       79087    synonymous            CCG            CCA
##   rs114264124       79087 nonsynonymous            CGG            CAG
##   rs149209714       79087 nonsynonymous            GGA            GCA
##                       REFAA         VARAA
##               <AAStringSet> <AAStringSet>
##   rs114335781             I             I
##     rs8135963             A             A
##   rs200080075             P             P
##   rs147801200             H             H
##   rs138060012             P             P
##   rs114264124             R             Q
##   rs149209714             G             A
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
expect_equal(as.matrix(granges_coding$REFCODON), as.matrix(vcf_coding$REFCODON))
expect_equal(as.matrix(granges_coding$VARCODON), as.matrix(vcf_coding$VARCODON))
expect_equal(granges_coding$GENEID, vcf_coding$GENEID)
expect_equal(granges_coding$CONSEQUENCE, vcf_coding$CONSEQUENCE)

0.3 Provenance

sessionInfo()
## R version 3.4.2 (2017-09-28)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
## 
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] testthat_1.0.2                         
##  [2] ggbio_1.26.0                           
##  [3] ggplot2_2.2.1                          
##  [4] org.Hs.eg.db_3.4.2                     
##  [5] BSgenome.Hsapiens.UCSC.hg19_1.4.0      
##  [6] BSgenome_1.46.0                        
##  [7] rtracklayer_1.38.0                     
##  [8] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [9] GenomicFeatures_1.30.0                 
## [10] AnnotationDbi_1.40.0                   
## [11] GoogleGenomics_2.0.0                   
## [12] VariantAnnotation_1.24.0               
## [13] GenomicAlignments_1.14.0               
## [14] Rsamtools_1.30.0                       
## [15] Biostrings_2.46.0                      
## [16] XVector_0.18.0                         
## [17] SummarizedExperiment_1.8.0             
## [18] DelayedArray_0.4.0                     
## [19] matrixStats_0.52.2                     
## [20] Biobase_2.38.0                         
## [21] GenomicRanges_1.30.0                   
## [22] GenomeInfoDb_1.14.0                    
## [23] IRanges_2.12.0                         
## [24] S4Vectors_0.16.0                       
## [25] BiocGenerics_0.24.0                    
## [26] knitr_1.17                             
## [27] BiocStyle_2.6.0                        
## 
## loaded via a namespace (and not attached):
##  [1] ProtGenerics_1.10.0           bitops_1.0-6                 
##  [3] bit64_0.9-7                   RColorBrewer_1.1-2           
##  [5] progress_1.1.2                httr_1.3.1                   
##  [7] rprojroot_1.2                 tools_3.4.2                  
##  [9] backports_1.1.1               R6_2.2.2                     
## [11] rpart_4.1-11                  Hmisc_4.0-3                  
## [13] DBI_0.7                       lazyeval_0.2.1               
## [15] colorspace_1.3-2              nnet_7.3-12                  
## [17] gridExtra_2.3                 prettyunits_1.0.2            
## [19] GGally_1.3.2                  RMySQL_0.10.13               
## [21] bit_1.1-12                    curl_3.0                     
## [23] compiler_3.4.2                graph_1.56.0                 
## [25] htmlTable_1.9                 labeling_0.3                 
## [27] bookdown_0.5                  scales_0.5.0                 
## [29] checkmate_1.8.5               RBGL_1.54.0                  
## [31] stringr_1.2.0                 digest_0.6.12                
## [33] foreign_0.8-69                rmarkdown_1.6                
## [35] base64enc_0.1-3               dichromat_2.0-0              
## [37] pkgconfig_2.0.1               htmltools_0.3.6              
## [39] ensembldb_2.2.0               htmlwidgets_0.9              
## [41] rlang_0.1.2                   RSQLite_2.0                  
## [43] BiocInstaller_1.28.0          shiny_1.0.5                  
## [45] jsonlite_1.5                  BiocParallel_1.12.0          
## [47] acepack_1.4.1                 RCurl_1.95-4.8               
## [49] magrittr_1.5                  GenomeInfoDbData_0.99.1      
## [51] Formula_1.2-2                 Matrix_1.2-11                
## [53] Rcpp_0.12.13                  munsell_0.4.3                
## [55] stringi_1.1.5                 yaml_2.1.14                  
## [57] zlibbioc_1.24.0               plyr_1.8.4                   
## [59] AnnotationHub_2.10.0          grid_3.4.2                   
## [61] blob_1.1.0                    crayon_1.3.4                 
## [63] lattice_0.20-35               splines_3.4.2                
## [65] rjson_0.2.15                  reshape2_1.4.2               
## [67] biomaRt_2.34.0                XML_3.98-1.9                 
## [69] evaluate_0.10.1               biovizBase_1.26.0            
## [71] latticeExtra_0.6-28           data.table_1.10.4-3          
## [73] httpuv_1.3.5                  gtable_0.2.0                 
## [75] reshape_0.8.7                 assertthat_0.2.0             
## [77] mime_0.5                      xtable_1.8-2                 
## [79] AnnotationFilter_1.2.0        survival_2.41-3              
## [81] OrganismDbi_1.20.0            tibble_1.3.4                 
## [83] memoise_1.1.0                 cluster_2.0.6                
## [85] interactiveDisplayBase_1.16.0