
Package ‘chromstaR’
September 18, 2024

Type Package

Title Combinatorial and Differential Chromatin State Analysis for
ChIP-Seq Data

Version 1.31.0

Author Aaron Taudt, Maria Colome Tatche, Matthias Heinig, Minh Anh Nguyen

Maintainer Aaron Taudt <aaron.taudt@gmail.com>

Description This package implements functions for combinatorial and differential analysis of ChIP-
seq data. It includes uni- and multivariate peak-
calling, export to genome browser viewable files, and functions for enrichment analyses.

Depends R (>= 3.3), GenomicRanges, ggplot2, chromstaRData

Imports methods, utils, grDevices, graphics, stats, foreach,
doParallel, BiocGenerics (>= 0.31.6), S4Vectors, GenomeInfoDb,
IRanges, reshape2, Rsamtools, GenomicAlignments, bamsignals,
mvtnorm

Suggests knitr, BiocStyle, testthat, biomaRt

URL https://github.com/ataudt/chromstaR

BugReports https://github.com/ataudt/chromstaR/issues

License Artistic-2.0

LazyLoad yes

VignetteBuilder knitr

biocViews ImmunoOncology, Software, DifferentialPeakCalling,
HiddenMarkovModel, ChIPSeq, HistoneModification,
MultipleComparison, Sequencing, PeakDetection, ATACSeq

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/chromstaR

git_branch devel

git_last_commit 3f120ed

git_last_commit_date 2024-04-30

Repository Bioconductor 3.20

Date/Publication 2024-09-18

1

https://github.com/ataudt/chromstaR
https://github.com/ataudt/chromstaR/issues

2 Contents

Contents
chromstaR-package . 3
binned.data . 3
binReads . 4
callPeaksMultivariate . 6
callPeaksReplicates . 8
callPeaksUnivariate . 10
callPeaksUnivariateAllChr . 12
changeMaxPostCutoff . 15
changePostCutoff . 16
Chromstar . 17
chromstaR-objects . 20
collapseBins . 20
combinatorialStates . 22
combinedMultiHMM . 23
combineMultivariates . 24
conversion . 25
enrichmentAtAnnotation . 26
enrichment_analysis . 27
experiment.table . 30
exportFiles . 31
exportGRangesAsBedFile . 32
fixedWidthBins . 34
genes_rn4 . 35
genomicFrequencies . 35
getCombinations . 36
getDistinctColors . 36
getStateColors . 37
heatmapCombinations . 38
heatmapCountCorrelation . 39
heatmapTransitionProbs . 39
loadHmmsFromFiles . 40
mergeChroms . 41
model.combined . 42
model.multivariate . 42
model.univariate . 42
multiHMM . 43
multivariateSegmentation . 44
plotExpression . 44
plotGenomeBrowser . 46
plotHistogram . 49
plotHistograms . 50
plotting . 50
print.combinedMultiHMM . 51
print.multiHMM . 51
print.uniHMM . 52
readBamFileAsGRanges . 52
readBedFileAsGRanges . 53
readConfig . 54
readCustomBedFile . 55
removeCondition . 56

chromstaR-package 3

scanBinsizes . 56
scores . 57
simulateMultivariate . 58
simulateReadsFromCounts . 59
simulateUnivariate . 60
state.brewer . 60
stateBrewer . 62
subsample . 63
transitionFrequencies . 64
uniHMM . 65
unis2pseudomulti . 66
variableWidthBins . 67
writeConfig . 68
zinbinom . 69

Index 71

chromstaR-package Combinatorial and differential chromatin state analysis for ChIP-seq
data

Description

This package implements functions for the combinatorial and differential analysis of ChIP-seq data.
It was developed for histone modifications with a broad profile but is also suitable for the analysis
of transcription factor binding data. A Hidden Markov Model with a mixture of Negative Binomials
as emission densities is used to call peaks. Please refer to our manuscript at http://dx.doi.org/
10.1101/038612 for a detailed description of the method.

Details

The main function of this package is Chromstar. For a detailed introduction type browseVignettes("chromstaR")
and read the vignette. Here is an overview of all plotting functions.

Author(s)

Aaron Taudt, Maria Colome-Tatche, Matthias Heinig, Minh Anh Nguyen

binned.data Binned read counts

Description

A GRanges-class object which contains binned read counts as meta data column counts. It is
output of the binReads function.

http://dx.doi.org/10.1101/038612
http://dx.doi.org/10.1101/038612

4 binReads

binReads Convert aligned reads from various file formats into read counts in
equidistant bins

Description

Convert aligned reads in .bam or .bed(.gz) format into read counts in equidistant windows.

Usage

binReads(
file,
experiment.table = NULL,
ID = NULL,
assembly,
bamindex = file,
chromosomes = NULL,
pairedEndReads = FALSE,
min.mapq = 10,
remove.duplicate.reads = TRUE,
max.fragment.width = 1000,
blacklist = NULL,
binsizes = 1000,
stepsizes = binsizes/2,
reads.per.bin = NULL,
bins = NULL,
variable.width.reference = NULL,
use.bamsignals = TRUE,
format = NULL

)

Arguments

file A file with aligned reads. Alternatively a GRanges-class with aligned reads.
experiment.table

An experiment.table containing the supplied file. This is necessary to
uniquely identify the file in later steps of the workflow. Set to NULL if you don’t
have it (not recommended).

ID Optional ID to select a row from the experiment.table. Only necessary if the
experiment table contains the same file in multiple positions in column ’file’.

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be binned, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

binReads 5

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=0
to keep all reads.

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

binsizes An integer vector specifying the bin sizes to use.

stepsizes An integer vector specifying the step size. One number can be given for each
element in binsizes, reads.per.bin and bins (in that order).

reads.per.bin Approximate number of desired reads per bin. The bin size will be selected
accordingly.

bins A GRanges-class or a named list() with GRanges-class containing precal-
culated bins produced by fixedWidthBins or variableWidthBins. Names of
the list must correspond to the binsize. If the list is unnamed, an attempt is made
to automatically determine the binsize.

variable.width.reference

A BAM file that is used as reference to produce variable width bins. See variableWidthBins
for details.

use.bamsignals If TRUE the bamsignals package is used for parsing of BAM files. This gives
tremendous speed advantage for only one binsize but linearly increases for mul-
tiple binsizes, while use.bamsignals=FALSE has a binsize dependent runtime
and might be faster if many binsizes are calculated.

format One of c('bed','bam','GRanges',NULL). With NULL the format is determined
automatically from the file ending.

Details

Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins).
This function uses GenomicRanges::countOverlaps to calculate the read counts, or alternatively
bamsignals::bamProfile if option use.bamsignals is set (only effective for .bam files).

Value

If only one bin size was specified for option binsizes, the function returns a single GRanges-class
object with meta data column ’counts’ that contains the read count. If multiple binsizes were
specified , the function returns a named list() of GRanges-class objects.

Examples

Get an example BAM file with ChIP-seq reads
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the file into bin size 1000bp
data(rn4_chrominfo)
data(experiment_table)
binned <- binReads(file, experiment.table=experiment_table,

assembly=rn4_chrominfo, binsizes=1000,

6 callPeaksMultivariate

stepsizes=500, chromosomes='chr12')
print(binned)

callPeaksMultivariate Fit a Hidden Markov Model to multiple ChIP-seq samples

Description

Fit a HMM to multiple ChIP-seq samples to determine the combinatorial state of genomic regions.
Input is a list of uniHMMs generated by callPeaksUnivariate.

Usage

callPeaksMultivariate(
hmms,
use.states,
max.states = NULL,
per.chrom = TRUE,
chromosomes = NULL,
eps = 0.01,
keep.posteriors = FALSE,
num.threads = 1,
max.time = NULL,
max.iter = NULL,
keep.densities = FALSE,
verbosity = 1,
temp.savedir = NULL

)

Arguments

hmms A list of uniHMMs generated by callPeaksUnivariate, e.g. list(hmm1,hmm2,...)
or a vector of files that contain such objects, e.g. c("file1","file2",...).

use.states A data.frame with combinatorial states which are used in the multivariate HMM,
generated by function stateBrewer. If both use.states and max.states are
NULL, the maximum possible number of combinatorial states will be used.

max.states Maximum number of combinatorial states to use in the multivariate HMM. The
states are ordered by occurrence as determined from the combination of univari-
ate state calls.

per.chrom If per.chrom=TRUE chromosomes will be treated separately. This tremendously
speeds up the calculation but results might be noisier as compared to per.chrom=FALSE,
where all chromosomes are concatenated for the HMM.

chromosomes A vector specifying the chromosomes to use from the models in hmms. The
default (NULL) uses all available chromosomes.

eps Convergence threshold for the Baum-Welch algorithm.
keep.posteriors

If set to TRUE, posteriors will be available in the output. This can be useful to
change the posterior cutoff later, but increases the necessary disk space to store
the result immensely.

callPeaksMultivariate 7

num.threads Number of threads to use. Setting this to >1 may give increased performance.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default NULL is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
NULL is no limit.

keep.densities If set to TRUE (default=FALSE), densities will be available in the output. This
should only be needed debugging.

verbosity Verbosity level for the fitting procedure. 0 - No output, 1 - Iterations are printed.

temp.savedir A directory where to store intermediate results if per.chrom=TRUE.

Details

Emission distributions from the univariate HMMs are used with a Gaussian copula to generate a
multivariate emission distribution for each combinatorial state. This multivariate distribution is
then kept fixed and the transition probabilities are fitted with a Baum-Welch. Please refer to our
manuscript at http://dx.doi.org/10.1101/038612 for a detailed description of the method.

Value

A multiHMM object.

Author(s)

Aaron Taudt, Maria Colome Tatche

See Also

multiHMM, callPeaksUnivariate, callPeaksReplicates

Examples

Get example BAM files for 2 different marks in hypertensive rat
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, full.names=TRUE, pattern='SHR.*bam$')[c(1:2,6)]
Construct experiment structure
exp <- data.frame(file=files, mark=c("H3K27me3","H3K27me3","H3K4me3"),

condition=rep("SHR",3), replicate=c(1:2,1), pairedEndReads=FALSE,
controlFiles=NA)

states <- stateBrewer(exp, mode='combinatorial')
Bin the data
data(rn4_chrominfo)
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

experiment.table=exp,
assembly=rn4_chrominfo, chromosomes='chr12')

}
Obtain the univariate fits
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}
Call multivariate peaks

http://dx.doi.org/10.1101/038612

8 callPeaksReplicates

multimodel <- callPeaksMultivariate(models, use.states=states, eps=1, max.time=60)
Check some plots
heatmapTransitionProbs(multimodel)
heatmapCountCorrelation(multimodel)

callPeaksReplicates Fit a multivariate Hidden Markov Model to multiple ChIP-seq repli-
cates

Description

Fit an HMM to multiple ChIP-seq replicates and derive correlation measures. Input is a list of
uniHMMs generated by callPeaksUnivariate.

Usage

callPeaksReplicates(
hmm.list,
max.states = 32,
force.equal = FALSE,
eps = 0.01,
max.iter = NULL,
max.time = NULL,
keep.posteriors = TRUE,
num.threads = 1,
max.distance = 0.2,
per.chrom = TRUE

)

Arguments

hmm.list A list of uniHMMs generated by callPeaksUnivariate, e.g. list(hmm1,hmm2,...)
or c("file1","file2",...). Alternatively, this parameter also accepts a multiHMM
and will check if the distance between replicates is greater than max.distance.

max.states The maximum number of combinatorial states to consider. The default (32) is
sufficient to treat up to 5 replicates exactly and more than 5 replicates approxi-
mately.

force.equal The default (FALSE) allows replicates to differ in their peak-calls, although the
majority will usually be identical. If force.equal=TRUE, all peaks will be iden-
tical among all replicates.

eps Convergence threshold for the Baum-Welch algorithm.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
NULL is no limit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default NULL is no limit.

keep.posteriors

If set to TRUE, posteriors will be available in the output. This is useful to change
the post.cutoff later, but increases the necessary disk space to store the result
immense.

callPeaksReplicates 9

num.threads Number of threads to use. Setting this to >1 may give increased performance.

max.distance This number is used as a cutoff to group replicates based on their distance ma-
trix. The lower this number, the more similar replicates have to be to be grouped
together.

per.chrom If per.chrom=TRUE chromosomes will be treated separately. This tremendously
speeds up the calculation but results might be noisier as compared to per.chrom=FALSE,
where all chromosomes are concatenated for the HMM.

Value

Output is a multiHMM object with additional entry replicateInfo. If only one uniHMM was given
as input, a simple list() with the replicateInfo is returned.

Author(s)

Aaron Taudt

See Also

multiHMM, callPeaksUnivariate, callPeaksMultivariate

Examples

Let's get some example data with 3 replicates
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, pattern="H3K27me3.*SHR.*bam$", full.names=TRUE)[1:3]
Obtain chromosome lengths. This is only necessary for BED files. BAM files are
handled automatically.
data(rn4_chrominfo)
Define experiment structure
exp <- data.frame(file=files, mark='H3K27me3', condition='SHR', replicate=1:3,

pairedEndReads=FALSE, controlFiles=NA)
We use bin size 1000bp and chromosome 12 to keep the example quick
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

experiment.table=exp,
assembly=rn4_chrominfo, chromosomes='chr12')

}
The univariate fit is obtained for each replicate
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}
Obtain peak calls considering information from all replicates
multi.model <- callPeaksReplicates(models, force.equal=TRUE, max.time=60, eps=1)

10 callPeaksUnivariate

callPeaksUnivariate Fit a Hidden Markov Model to a ChIP-seq sample.

Description

Fit a HMM to a ChIP-seq sample to determine the modification state of genomic regions, e.g. call
peaks in the sample.

Usage

callPeaksUnivariate(
binned.data,
control.data = NULL,
prefit.on.chr = NULL,
short = TRUE,
eps = 0.1,
init = "standard",
max.time = NULL,
max.iter = 5000,
num.trials = 1,
eps.try = NULL,
num.threads = 1,
read.cutoff = TRUE,
read.cutoff.quantile = 1,
read.cutoff.absolute = 500,
max.mean = Inf,
post.cutoff = 0.5,
control = FALSE,
keep.posteriors = FALSE,
keep.densities = FALSE,
verbosity = 1

)

Arguments

binned.data A GRanges-class object with binned read counts or a file that contains such an
object.

control.data Input control for the experiment. A GRanges-class object with binned read
counts or a file that contains such an object.

prefit.on.chr A chromosome that is used to pre-fit the Hidden Markov Model. Set to NULL if
you don’t want to prefit but use the whole genome instead.

short If TRUE, the second fitting step is only done with one iteration.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’unmodified’ will be initialized with
mean=mean(counts), var=var(counts) and the negative binomial of state
’modified’ with mean=mean(counts)+1, var=var(counts). This proce-
dure usually gives the fastest convergence.

callPeaksUnivariate 11

random Mean and variance of the negative binomials will be initialized with
random values (in certain boundaries, see source code). Try this if the
'standard' procedure fails to produce a good fit.

empiric Yet another way to initialize the Baum-Welch. Try this if the other
two methods fail to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default NULL is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
NULL is no limit.

num.trials The number of trials to run the HMM. Each time, the HMM is seeded with
different random initial values. The HMM with the best likelihood is given as
output.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.

read.cutoff The default (TRUE) enables filtering of high read counts. Set read.cutoff=FALSE
to disable this filtering.

read.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quantile
will be set to the read count specified by this quantile. Filtering very high read
counts increases the performance of the Baum-Welch fitting procedure. How-
ever, if your data contains very few peaks they might be filtered out. If option
read.cutoff.absolute is also specified, the minimum of the resulting cutoff
values will be used. Set read.cutoff=FALSE to disable this filtering.

read.cutoff.absolute

Read counts above this value will be set to the read count specified by this value.
Filtering very high read counts increases the performance of the Baum-Welch
fitting procedure. However, if your data contains very few peaks they might be
filtered out. If option read.cutoff.quantile is also specified, the minimum
of the resulting cutoff values will be used. Set read.cutoff=FALSE to disable
this filtering.

max.mean If mean(counts)>max.mean, bins with low read counts will be set to 0. This is
a workaround to obtain good fits in the case of large bin sizes.

post.cutoff False discovery rate. codeNULL means that the state with maximum posterior
probability will be chosen, irrespective of its absolute probability (default=codeNULL).

control If set to TRUE, the binned data will be treated as control experiment. That means
only state ’zero-inflation’ and ’unmodified’ will be used in the HMM.

keep.posteriors

If set to TRUE (default=FALSE), posteriors will be available in the output. This is
useful to change the post.cutoff later, but increases the necessary disk space to
store the result.

keep.densities If set to TRUE (default=FALSE), densities will be available in the output. This
should only be needed debugging.

verbosity Verbosity level for the fitting procedure. 0 - No output, 1 - Iterations are printed.

12 callPeaksUnivariateAllChr

Details

This function is similar to callPeaksUnivariateAllChr but allows to pre-fit on a single chromo-
some instead of the whole genome. This gives a significant performance increase and can help to
converge into a better fit in case of unsteady quality for some chromosomes.

Value

A uniHMM object.

Author(s)

Aaron Taudt, Maria Colome Tatche

See Also

uniHMM, callPeaksMultivariate

Examples

Get an example BAM file with ChIP-seq reads
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the BED file into bin size 1000bp
data(rn4_chrominfo)
data(experiment_table)
binned <- binReads(file, experiment.table=experiment_table,

assembly=rn4_chrominfo, binsizes=1000,
stepsizes=500, chromosomes='chr12')

Fit the univariate Hidden Markov Model
hmm <- callPeaksUnivariate(binned, max.time=60, eps=1)
Check if the fit is ok
plotHistogram(hmm)

callPeaksUnivariateAllChr

Fit a Hidden Markov Model to a ChIP-seq sample.

Description

Fit a HMM to a ChIP-seq sample to determine the modification state of genomic regions, e.g. call
peaks in the sample.

Usage

callPeaksUnivariateAllChr(
binned.data,
control.data = NULL,
eps = 0.01,
init = "standard",
max.time = NULL,

callPeaksUnivariateAllChr 13

max.iter = NULL,
num.trials = 1,
eps.try = NULL,
num.threads = 1,
read.cutoff = TRUE,
read.cutoff.quantile = 1,
read.cutoff.absolute = 500,
max.mean = Inf,
post.cutoff = 0.5,
control = FALSE,
keep.posteriors = FALSE,
keep.densities = FALSE,
verbosity = 1

)

Arguments

binned.data A GRanges-class object with binned read counts or a file that contains such an
object.

control.data Input control for the experiment. A GRanges-class object with binned read
counts or a file that contains such an object.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’unmodified’ will be initialized with
mean=mean(counts), var=var(counts) and the negative binomial of state
’modified’ with mean=mean(counts)+1, var=var(counts). This proce-
dure usually gives the fastest convergence.

random Mean and variance of the negative binomials will be initialized with
random values (in certain boundaries, see source code). Try this if the
'standard' procedure fails to produce a good fit.

empiric Yet another way to initialize the Baum-Welch. Try this if the other
two methods fail to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default NULL is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
NULL is no limit.

num.trials The number of trials to run the HMM. Each time, the HMM is seeded with
different random initial values. The HMM with the best likelihood is given as
output.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.

read.cutoff The default (TRUE) enables filtering of high read counts. Set read.cutoff=FALSE
to disable this filtering.

read.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quantile
will be set to the read count specified by this quantile. Filtering very high read
counts increases the performance of the Baum-Welch fitting procedure. How-
ever, if your data contains very few peaks they might be filtered out. If option

14 callPeaksUnivariateAllChr

read.cutoff.absolute is also specified, the minimum of the resulting cutoff
values will be used. Set read.cutoff=FALSE to disable this filtering.

read.cutoff.absolute

Read counts above this value will be set to the read count specified by this value.
Filtering very high read counts increases the performance of the Baum-Welch
fitting procedure. However, if your data contains very few peaks they might be
filtered out. If option read.cutoff.quantile is also specified, the minimum
of the resulting cutoff values will be used. Set read.cutoff=FALSE to disable
this filtering.

max.mean If mean(counts)>max.mean, bins with low read counts will be set to 0. This is
a workaround to obtain good fits in the case of large bin sizes.

post.cutoff False discovery rate. codeNULL means that the state with maximum posterior
probability will be chosen, irrespective of its absolute probability (default=codeNULL).

control If set to TRUE, the binned data will be treated as control experiment. That means
only state ’zero-inflation’ and ’unmodified’ will be used in the HMM.

keep.posteriors

If set to TRUE (default=FALSE), posteriors will be available in the output. This is
useful to change the post.cutoff later, but increases the necessary disk space to
store the result.

keep.densities If set to TRUE (default=FALSE), densities will be available in the output. This
should only be needed debugging.

verbosity Verbosity level for the fitting procedure. 0 - No output, 1 - Iterations are printed.

Details

The Hidden Markov Model which is used to classify the bins uses 3 states: state ’zero-inflation’
with a delta function as emission densitiy (only zero read counts), ’unmodified’ and ’modified’ with
Negative Binomials as emission densities. A Baum-Welch algorithm is employed to estimate the
parameters of the distributions. Please refer to our manuscript at http://dx.doi.org/10.1101/
038612 for a detailed description of the method.

Value

A uniHMM object.

Author(s)

Aaron Taudt, Maria Coome Tatche

See Also

uniHMM, callPeaksMultivariate

http://dx.doi.org/10.1101/038612
http://dx.doi.org/10.1101/038612

changeMaxPostCutoff 15

changeMaxPostCutoff Adjust sensitivity of peak detection

Description

Adjusts the peak calls of a uniHMM, multiHMM or combinedMultiHMM object with a cutoff on the
maximum-posterior within each peak. Higher values of maxPost.cutoff mean less sensitive and
more precise peak calls. Remaining peaks are kept intact, as opposed to function changePostCutoff,
where broad peaks are fragmented. This function was formerly called ’changeFDR’ and is still
available for backwards compatibiltiy.

Usage

changeMaxPostCutoff(model, maxPost.cutoff = 0.99, invert = FALSE)

changeFDR(model, fdr = 0.01, invert = FALSE)

Arguments

model A uniHMM or multiHMM object with posteriors.

maxPost.cutoff A vector of values between 0 and 1 for each column in model$bins$posteriors.
If only one value is given, it will be reused for all columns. Values close to 1
will yield more stringent peak calls with lower false positive but higher false
negative rate (i.e. more precise but less sensitive).

invert Select peaks below (FALSE) or above (TRUE) the given maxPost.cutoff. This
is useful to select low confidence peaks.

fdr Same as 1-maxPost.cutoff.

Details

Each peak has a maximum-posterior (maxPostInPeak, between 0 and 1) associated. The sensitivity
is adjusted with a simple cutoff on maxPostInPeak, e.g. for maxPost.cutoff = 0.99 only peaks
with maxPostInPeak >= 0.99 will be selected.

Value

The input object is returned with adjusted peak calls.

Functions

• changeFDR: This function was renamed to ’changeMaxPostCutoff’ in chromstaR 1.5.1 but it
still available for backwards compatibility.

Author(s)

Aaron Taudt

See Also

changePostCutoff

16 changePostCutoff

Examples

Get an example uniHMM
file <- system.file("data","H3K27me3-BN-rep1.RData", package="chromstaR")
model <- get(load(file))
Compare fits with different fdrs
plotHistogram(model) + ylim(0,0.25) + ylim(0,0.3)
plotHistogram(changeMaxPostCutoff(model, maxPost.cutoff=0.99)) + ylim(0,0.3)
plotHistogram(changeMaxPostCutoff(model, maxPost.cutoff=1-1e-12)) + ylim(0,0.3)

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
genomicFrequencies(model)
model.new <- changeMaxPostCutoff(model, maxPost.cutoff=0.9999, invert=FALSE)
genomicFrequencies(model.new)

Get an example combinedMultiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))
genomicFrequencies(model)
model.new <- changeMaxPostCutoff(model, maxPost.cutoff=0.9999, invert=FALSE)
genomicFrequencies(model.new)

changePostCutoff Change the posterior cutoff of a Hidden Markov Model

Description

Adjusts the peak calls of a uniHMM, multiHMM or combinedMultiHMM object with the given posterior
cutoff.

Usage

changePostCutoff(model, post.cutoff = 0.5)

Arguments

model A uniHMM or multiHMM object with posteriors.
post.cutoff A vector of posterior cutoff values between 0 and 1 the same length as ncol(model$bins$posteriors).

If only one value is given, it will be reused for all columns. Values close to 1
will yield more stringent peak calls with lower false positive but higher false
negative rate.

Details

Posterior probabilities are between 0 and 1. Peaks are called if the posteriors for a state (univariate)
or sample (multivariate) are >= post.cutoff.

Value

The input object is returned with adjusted peak calls.

Chromstar 17

Author(s)

Aaron Taudt

See Also

changeMaxPostCutoff

Examples

Get an example BAM file with ChIP-seq reads
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the BED file into bin size 1000bp
data(rn4_chrominfo)
data(experiment_table)
binned <- binReads(file, experiment.table=experiment_table,

assembly=rn4_chrominfo, binsizes=1000,
stepsizes=500, chromosomes='chr12')

plotHistogram(binned)
Fit HMM
model <- callPeaksUnivariate(binned, keep.posteriors=TRUE, verbosity=0)
Compare fits with different post.cutoffs
plotHistogram(changePostCutoff(model, post.cutoff=0.01)) + ylim(0,0.25)
plotHistogram(model) + ylim(0,0.25)
plotHistogram(changePostCutoff(model, post.cutoff=0.99)) + ylim(0,0.25)

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
genomicFrequencies(model)
model.new <- changePostCutoff(model, post.cutoff=0.9999)
genomicFrequencies(model.new)

Get an example combinedMultiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))
genomicFrequencies(model)
model.new <- changePostCutoff(model, post.cutoff=0.9999)
genomicFrequencies(model.new)

Chromstar Wrapper function for the chromstaR package

Description

This function performs binning, univariate peak calling and multivariate peak calling
from a list of input files.

18 Chromstar

Usage

Chromstar(
inputfolder,
experiment.table,
outputfolder,
configfile = NULL,
numCPU = 1,
binsize = 1000,
stepsize = binsize/2,
assembly = NULL,
chromosomes = NULL,
remove.duplicate.reads = TRUE,
min.mapq = 10,
format = NULL,
prefit.on.chr = NULL,
eps.univariate = 0.1,
max.time = NULL,
max.iter = 5000,
read.cutoff.absolute = 500,
keep.posteriors = TRUE,
mode = "differential",
max.states = 128,
per.chrom = TRUE,
eps.multivariate = 0.01,
exclusive.table = NULL

)

Arguments

inputfolder Folder with either BAM or BED-6 (see readBedFileAsGRanges files.
experiment.table

A data.frame or tab-separated text file with the structure of the experiment.
See experiment.table for an example.

outputfolder Folder where the results and intermediate files will be written to.

configfile A file specifying the parameters of this function (without inputfolder, outputfolder
and configfile). Having the parameters in a file can be handy if many samples
with the same parameter settings are to be run. If a configfile is specified, it
will take priority over the command line parameters.

numCPU Number of threads to use for the analysis. Beware that more CPUs also means
more memory is needed. If you experience crashes of R with higher numbers of
this parameter, leave it at numCPU=1.

binsize An integer specifying the bin size that is used for the analysis.

stepsize An integer specifying the step size for analysis.

assembly A data.frame or tab-separated file with columns ’chromosome’ and ’length’.
Alternatively a character specifying the assembly, see getChromInfoFromUCSC
for available assemblies. Specifying an assembly is only necessary when im-
porting BED files. BAM files are handled automatically.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

Chromstar 19

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=0
to keep all reads.

format One of c('bed','bam',NULL). With NULL the format is determined automati-
cally from the file ending.

prefit.on.chr A chromosome that is used to pre-fit the Hidden Markov Model. Set to NULL if
you don’t want to prefit but use the whole genome instead.

eps.univariate Convergence threshold for the univariate Baum-Welch algorithm.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default NULL is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
NULL is no limit.

read.cutoff.absolute

Read counts above this value will be set to the read count specified by this value.
Filtering very high read counts increases the performance of the Baum-Welch
fitting procedure. However, if your data contains very few peaks they might be
filtered out. If option read.cutoff.quantile is also specified, the minimum
of the resulting cutoff values will be used. Set read.cutoff=FALSE to disable
this filtering.

keep.posteriors

If set to TRUE (default=FALSE), posteriors will be available in the output. This is
useful to change the post.cutoff later, but increases the necessary disk space to
store the result.

mode One of c('differential','combinatorial','full'). The modes deter-
mine how the multivariate part is run. Here is some advice which mode to
use:

combinatorial Each condition is analyzed separately with all marks com-
bined. Choose this mode if you have more than ~7 conditions or you want
to have a high sensitivity for detecting combinatorial states. Differences
between conditions will be more noisy (more false positives) than in mode
'differential' but combinatorial states are more precise.

differential Each mark is analyzed separately with all conditions combined.
Choose this mode if you are interested in accurate differences. Combinato-
rial states will be more noisy (more false positives) than in mode 'combinatorial'
but differences are more precise.

full Full analysis of all marks and conditions combined. Best of both, but:
Choose this mode only if (number of conditions * number of marks ≤ 8),
otherwise it might be too slow or crash due to memory limitations.

separate Only replicates are analyzed multivariately. Combinatorial states are
constructed by a simple post-hoc combination of peak calls.

max.states The maximum number of states to use in the multivariate part. If set to NULL,
the maximum number of theoretically possible states is used. CAUTION: This
can be very slow or crash if you have too many states. chromstaR has a built
in mechanism to select the best states in case that less states than theoretically
possible are specified.

per.chrom If set to TRUE chromosomes will be treated separately in the multivariate part.
This tremendously speeds up the calculation but results might be noisier as com-
pared to per.chrom=FALSE, where all chromosomes are concatenated for the
HMM.

20 collapseBins

eps.multivariate

Convergence threshold for the multivariate Baum-Welch algorithm.

exclusive.table

A data.frame or tab-separated file with columns ’mark’ and ’group’. Histone
marks with the same group will be treated as mutually exclusive.

Value

NULL

Examples

Prepare the file paths. Exchange this with your input and output directories.
inputfolder <- system.file("extdata","euratrans", package="chromstaRData")
outputfolder <- file.path(tempdir(), 'SHR-example')
Define experiment structure
data(experiment_table_SHR)
Define assembly
This is only necessary if you have BED files, BAM files are handled automatically.
For common assemblies you can also specify them as 'hg19' for example.
data(rn4_chrominfo)
Run ChromstaR
Chromstar(inputfolder, experiment.table=experiment_table_SHR,

outputfolder=outputfolder, numCPU=4, binsize=1000, assembly=rn4_chrominfo,
prefit.on.chr='chr12', chromosomes='chr12', mode='combinatorial', eps.univariate=1,

eps.multivariate=1)

chromstaR-objects chromstaR objects

Description

chromstaR defines several objects.

• uniHMM: Returned by callPeaksUnivariate.

• multiHMM: Returned by callPeaksMultivariate and callPeaksReplicates.

• combinedMultiHMM: Returned by combineMultivariates.

collapseBins Collapse consecutive bins

Description

The function will collapse consecutive bins which have, for example, the same combinatorial state.

collapseBins 21

Usage

collapseBins(
data,
column2collapseBy = NULL,
columns2sumUp = NULL,
columns2average = NULL,
columns2getMax = NULL,
columns2drop = NULL

)

Arguments

data A data.frame containing the genomic coordinates in the first three columns.
column2collapseBy

The number of the column which will be used to collapse all other inputs. If a set
of consecutive bins has the same value in this column, they will be aggregated
into one bin with adjusted genomic coordinates.

columns2sumUp Column numbers that will be summed during the aggregation process.
columns2average

Column numbers that will be averaged during the aggregation process.

columns2getMax Column numbers where the maximum will be chosen during the aggregation
process.

columns2drop Column numbers that will be dropped after the aggregation process.

Details

The following tables illustrate the principle of the collapsing:

Input data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 199 2 1 10 1 3
chr1 200 399 2 2 11 0 3
chr1 400 599 2 3 12 1 3
chr1 600 799 1 4 13 0 3
chr1 800 999 1 5 14 1 3

Output data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 599 2 1 10 2 9
chr1 600 999 1 4 13 1 6

Value

A data.frame.

Author(s)

Aaron Taudt

22 combinatorialStates

Examples

Load example data
Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
df <- as.data.frame(model$bins)
shortdf <- collapseBins(df, column2collapseBy='state', columns2sumUp='width', columns2average=6:9)

combinatorialStates Get the (decimal) combinatorial states of a list of univariate HMM
models

Description

Get the combinatorial states of a list of models generated by callPeaksUnivariate. The function
returns the decimal combinatorial states for each bin (see details for an explanation of combinatorial
state).

Usage

combinatorialStates(hmm.list, binary = FALSE)

Arguments

hmm.list A list of models generated by callPeaksUnivariate, e.g. ’list(model1,model2,...)’.

binary If TRUE, a matrix of binary instead of decimal states will be returned.

Details

For a given model, each genomic bin can be either called ’unmodified’ or ’modified’, depending
on the posterior probabilities estimated by the Baum-Welch. Thus, a list of models defines a binary
combinatorial state for each bin. This binary combinatorial state can be expressed as a decimal
number. Example: We have 4 histone modifications, and we run the univariate HMM for each of
them. Then we use a false discovery rate of 0.5 to call each bin either ’unmodified’ or ’modified’.
The resulting binary combinatorial states can then be converted to decimal representation. The
following table illustrates this:

bin modification state decimal state
model1 model2 model3 model4

1 0 0 1 0 2
2 0 0 0 0 0
3 0 1 1 0 6
4 0 1 1 1 7

Value

Output is a vector of integers representing the combinatorial state of each bin.

combinedMultiHMM 23

Author(s)

Aaron Taudt

See Also

dec2bin, bin2dec

Examples

Get example BAM files for 3 different marks in hypertensive rat (SHR)
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, full.names=TRUE, pattern='SHR.*bam$')[c(1,4,6)]
Bin the data
data(rn4_chrominfo)
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

assembly=rn4_chrominfo, chromosomes='chr12')
}
Obtain the univariate fits
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}
Get the decimal representation of the combinatorial state of this combination of models
states <- chromstaR:::combinatorialStates(models, binary=FALSE)
Show number of each state
table(states)

combinedMultiHMM Combined multivariate HMM object

Description

The combined multivariate HMM object is output of the function combineMultivariates and is a
list() with various entries. The class() attribute of this list was set to "combinedMultiHMM".
For a given hmm, the entries can be accessed with the list operators ’hmm[[]]’ or ’hmm$’.

Value

A list() with the following entries:

info Experiment table for this object.
bins A GRanges-class object containing genomic bin coordinates and human read-

able combinations for the combined multiHMM objects.
segments Same as bins, but consecutive bins with the same state are collapsed into seg-

ments.
segments.per.condition

A list() with segments for each condition separately.
peaks A list() with GRanges-class containing peak coordinates for each ID in

info.
frequencies Genomic frequencies of combinations.
mode Mode of analysis.

24 combineMultivariates

See Also

combineMultivariates, uniHMM, multiHMM

combineMultivariates Combine combinatorial states from several Multivariates

Description

Combine combinatorial states from several multiHMM objects. Combinatorial states can be com-
bined for objects containing multiple marks (mode='combinatorial') or multiple conditions (mode='differential').

Usage

combineMultivariates(hmms, mode)

Arguments

hmms A list() with multiHMM objects. Alternatively a character vector with file-
names that contain multiHMM objects.

mode Mode of combination. See Chromstar for a description of the mode parameter.

Value

A combinedMultiHMM objects with combinatorial states for each condition.

Author(s)

Aaron Taudt

Examples

Multivariate peak calling for spontaneous hypertensive rat (SHR)
Get example BAM files for 2 different marks in hypertensive rat (SHR)
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, full.names=TRUE, pattern='SHR.*bam$')[c(1:2,4:5)]
Construct experiment structure
exp <- data.frame(file=files, mark=c("H3K27me3","H3K27me3","H3K4me3","H3K4me3"),

condition=rep("SHR",4), replicate=c(1:2,1:2), pairedEndReads=FALSE,
controlFiles=NA)

states <- stateBrewer(exp, mode='combinatorial')
Bin the data
data(rn4_chrominfo)
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

experiment.table=exp,
assembly=rn4_chrominfo, chromosomes='chr12')

}
Obtain the univariate fits
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}

conversion 25

Call multivariate peaks
multimodel.SHR <- callPeaksMultivariate(models, use.states=states, eps=1, max.time=60)

#'### Multivariate peak calling for brown norway (BN) rat ###
Get example BAM files for 2 different marks in brown norway rat
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, full.names=TRUE, pattern='BN.*bam$')[c(1:2,3:4)]
Construct experiment structure
exp <- data.frame(file=files, mark=c("H3K27me3","H3K27me3","H3K4me3","H3K4me3"),

condition=rep("BN",4), replicate=c(1:2,1:2), pairedEndReads=FALSE,
controlFiles=NA)

states <- stateBrewer(exp, mode='combinatorial')
Bin the data
data(rn4_chrominfo)
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

experiment.table=exp,
assembly=rn4_chrominfo, chromosomes='chr12')

}
Obtain the univariate fits
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}
Call multivariate peaks
multimodel.BN <- callPeaksMultivariate(models, use.states=states, eps=1, max.time=60)

Combine multivariates
hmms <- list(multimodel.SHR, multimodel.BN)
comb.model <- combineMultivariates(hmms, mode='combinatorial')

conversion Conversion of decimal and binary states

Description

Convert combinatorial states in decimal representation to combinatorial states in binary representa-
tion and vice versa.

Usage

dec2bin(dec, colnames = NULL, ndigits = NULL)

bin2dec(bin)

Arguments

dec A vector with whole numbers.

colnames The column names for the returned matrix. If specified, ndigits will be the
length of colnames.

ndigits The number of digits that the binary representation should have. If unspecified,
the shortest possible representation will be chosen.

26 enrichmentAtAnnotation

bin A matrix with only 0 and 1 (or TRUE and FALSE) as entries. One combinatorial
state per row.

Details

chromstaR uses decimal numbers to represent combinatorial states of peaks. These functions serve
as a convenient way to get from the efficient decimal representation to a more human-readable
binary representation.

Value

A vector of integers for bin2dec and a matrix of logicals with one state per row for dec2bin.

Functions

• dec2bin: Decimal to binary conversion.

• bin2dec: Binary to decimal conversion.

Author(s)

Aaron Taudt

Examples

decimal.states <- c(0:31)
binary.states <- dec2bin(decimal.states, colnames=paste0('mark',1:5))
control.decimal.states <- bin2dec(binary.states)

enrichmentAtAnnotation

Enrichment of (combinatorial) states for genomic annotations

Description

The function calculates the enrichment of a genomic feature with peaks or combinatorial states. In-
put is a multiHMM object (containing the peak calls and combinatorial states) and a GRanges-class
object containing the annotation of interest (e.g. transcription start sites or genes).

Usage

enrichmentAtAnnotation(
bins,
info,
annotation,
bp.around.annotation = 10000,
region = c("start", "inside", "end"),
what = "combinations",
num.intervals = 21,
statistic = "fold"

)

enrichment_analysis 27

Arguments

bins The $bins entry from a multiHMM or combinedMultiHMM object.

info The $info entry from a multiHMM or combinedMultiHMM object.

annotation A GRanges-class object with the annotation of interest.
bp.around.annotation

An integer specifying the number of basepairs up- and downstream of the anno-
tation for which the enrichment will be calculated.

region A combination of c('start','inside','end') specifying the region of the
annotation for which the enrichment will be calculated. Select 'start' if you
have a point-sized annotation like transcription start sites. Select c('start','inside','end')
if you have long annotations like genes.

what One of c('combinations','peaks','counts') specifying on which feature
the statistic is calculated.

num.intervals Number of intervals for enrichment ’inside’ of annotation.

statistic The statistic to calculate. Either ’fold’ for fold enrichments or ’fraction’ for
fraction of bins falling into the annotation.

Value

A list() containing data.frame()s for enrichment of combinatorial states and binary states at
the start, end and inside of the annotation.

Author(s)

Aaron Taudt

enrichment_analysis Enrichment analysis

Description

Plotting functions for enrichment analysis of multiHMM or combinedMultiHMM objects with any
annotation of interest, specified as a GRanges-class object.

Usage

plotFoldEnrichHeatmap(
hmm,
annotations,
what = "combinations",
combinations = NULL,
marks = NULL,
plot = TRUE,
logscale = TRUE

)

plotEnrichCountHeatmap(
hmm,
annotation,

28 enrichment_analysis

bp.around.annotation = 10000,
max.rows = 1000,
combinations = NULL,
colorByCombinations = sortByCombinations,
sortByCombinations = is.null(sortByColumns),
sortByColumns = NULL

)

plotEnrichment(
hmm,
annotation,
bp.around.annotation = 10000,
region = c("start", "inside", "end"),
num.intervals = 20,
what = "combinations",
combinations = NULL,
marks = NULL,
statistic = "fold",
logscale = TRUE

)

Arguments

hmm A combinedMultiHMM or multiHMM object or a file that contains such an object.

annotations A list() with GRanges-class objects containing coordinates of multiple an-
notations The names of the list entries will be used to name the return values.

what One of c('combinations','peaks','counts','transitions') specifying
on which feature the statistic is calculated.

combinations A vector with combinations for which the enrichment will be calculated, e.g.
combinations = c('[H3K4me3]','[H3K4me3+H3K27me3]'). If NULL all com-
binations will be considered.

marks A vector with marks for which the enrichment is plotted. If NULL all marks will
be considered.

plot A logical indicating whether the plot or an array with the fold enrichment values
is returned.

logscale Set to TRUE to plot fold enrichment on log-scale. Ignored if statistic = 'fraction'.

annotation A GRanges-class object with the annotation of interest.
bp.around.annotation

An integer specifying the number of basepairs up- and downstream of the anno-
tation for which the enrichment will be calculated.

max.rows An integer specifying the number of randomly subsampled rows that are plotted
from the annotation object. This is necessary to avoid crashing for heatmaps
with too many rows.

colorByCombinations

A logical indicating whether or not to color the heatmap by combinations.
sortByCombinations

A logical indicating whether or not to sort the heatmap by combinations.

sortByColumns An integer vector specifying the column numbers by which to sort the rows. If
sortByColumns is specified, will force sortByCombinations=FALSE.

enrichment_analysis 29

region A combination of c('start','inside','end') specifying the region of the
annotation for which the enrichment will be calculated. Select 'start' if you
have a point-sized annotation like transcription start sites. Select c('start','inside','end')
if you have long annotations like genes.

num.intervals Number of intervals for enrichment ’inside’ of annotation.

statistic The statistic to calculate. Either ’fold’ for fold enrichments or ’fraction’ for
fraction of bins falling into the annotation.

Value

A ggplot object containing the plot or a list() with ggplot objects if several plots are returned. For
plotFoldEnrichHeatmap a named array with fold enrichments if plot=FALSE.

Functions

• plotFoldEnrichHeatmap: Compute the fold enrichment of combinatorial states for multiple
annotations.

• plotEnrichCountHeatmap: Plot read counts around annotation as heatmap.

• plotEnrichment: Plot fold enrichment of combinatorial states around and inside of annota-
tion.

Author(s)

Aaron Taudt

See Also

plotting

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))

Obtain gene coordinates for rat from biomaRt
library(biomaRt)
ensembl <- useEnsembl(biomart='ENSEMBL_MART_ENSEMBL', dataset='rnorvegicus_gene_ensembl')
genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position',

'end_position', 'strand', 'external_gene_name',
'gene_biotype'),

mart=ensembl)
Transform to GRanges for easier handling
genes <- GRanges(seqnames=paste0('chr',genes$chromosome_name),

ranges=IRanges(start=genes$start, end=genes$end),
strand=genes$strand,
name=genes$external_gene_name, biotype=genes$gene_biotype)

Rename chrMT to chrM
seqlevels(genes)[seqlevels(genes)=='chrMT'] <- 'chrM'
print(genes)

Make the enrichment plots
We expect promoter [H3K4me3] and bivalent-promoter signatures [H3K4me3+H3K27me3]

30 experiment.table

to be enriched at transcription start sites.
plotEnrichment(hmm = model, annotation = genes, bp.around.annotation = 15000) +
ggtitle('Fold enrichment around genes') +
xlab('distance from gene body')

Plot enrichment only at TSS. We make use of the fact that TSS is the start of a gene.
plotEnrichment(model, genes, region = 'start') +
ggtitle('Fold enrichment around TSS') +
xlab('distance from TSS in [bp]')

Note: If you want to facet the plot because you have many combinatorial states you
can do that with

plotEnrichment(model, genes, region = 'start') +
facet_wrap(~ combination)

Another form of visualization that shows every TSS in a heatmap
If transparency is not supported try to plot to pdf() instead.

tss <- resize(genes, width = 3, fix = 'start')
plotEnrichCountHeatmap(model, tss) +
theme(strip.text.x = element_text(size=6))

Fold enrichment with different biotypes, showing that protein coding genes are
enriched with (bivalent) promoter combinations [H3K4me3] and [H3K4me3+H3K27me3],
while rRNA is enriched with the empty [] and repressive combinations [H3K27me3].

tss <- resize(genes, width = 3, fix = 'start')
biotypes <- split(tss, tss$biotype)
plotFoldEnrichHeatmap(model, annotations=biotypes) + coord_flip()

experiment.table Experiment data table

Description

A data.frame specifying the structure of the experiment.

Format

A data.frame with columns ’file’, ’mark’, ’condition’, ’replicate’, ’pairedEndReads’ and ’con-
trolFiles’. Avoid the use of special characters like ’-’ or ’+’ as this will confuse the internal file
management.

Examples

data(experiment_table)
print(experiment_table)

exportFiles 31

exportFiles Export genome browser uploadable files

Description

These functions allow to export chromstaR-objects as files which can be uploaded to a genome
browser. Peak calls are exported in BED format (.bed.gz), read counts in wiggle format (.wig.gz)
as RPKM values, and combinatorial states are exported in BED format (.bed.gz).

Usage

exportPeaks(
model,
filename,
header = TRUE,
separate.files = TRUE,
trackname = NULL

)

exportCounts(
model,
filename,
header = TRUE,
separate.files = TRUE,
trackname = NULL

)

exportCombinations(
model,
filename,
header = TRUE,
separate.files = TRUE,
trackname = NULL,
exclude.states = "[]",
include.states = NULL

)

Arguments

model A chromstaR-objects.
filename The name of the file that will be written. The appropriate ending will be ap-

pended, either "_peaks.bed.gz" for peak-calls or "_counts.wig.gz" for read counts
or "_combinations.bed.gz" for combinatorial states. Any existing file will be
overwritten.

header A logical indicating whether the output file will have a heading track line (TRUE)
or not (FALSE).

separate.files A logical indicating whether or not to produce separate files for each track.
trackname Name that will be used in the "track name" field of the BED file.
exclude.states A character vector with combinatorial states that will be excluded from export.
include.states A character vector with combinatorial states that will be exported. If specified,

exclude.states is ignored.

32 exportGRangesAsBedFile

Value

NULL

Functions

• exportPeaks: Export peak calls in BED format.

• exportCounts: Export read counts as RPKM values in wiggle format.

• exportCombinations: Export combinatorial states in BED format.

Examples

Get an example multiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))
Export peak calls and combinatorial states
exportPeaks(model, filename=tempfile())
exportCombinations(model, filename=tempfile())

exportGRangesAsBedFile

Export genome browser viewable files

Description

Export GRanges as genome browser viewable file

Usage

exportGRangesAsBedFile(
gr,
trackname,
filename,
namecol = "combination",
scorecol = "score",
colorcol = NULL,
colors = NULL,
header = TRUE,
append = FALSE

)

Arguments

gr A GRanges-class object.

trackname The name that will be used as track name and description in the header.

filename The name of the file that will be written. The ending ".bed.gz". Any existing file
will be overwritten.

namecol A character specifying the column that is used as name-column.

exportGRangesAsBedFile 33

scorecol A character specifying the column that is used as score-column. The score
should contain integers in the interval [0,1000] for compatibility with the UCSC
genome browser convention.

colorcol A character specifying the column that is used for coloring the track. There will
be one color for each unique element in colorcol.

colors A character vector with the colors that are used for the unique elements in
colorcol.

header A logical indicating whether the output file will have a heading track line (TRUE)
or not (FALSE).

append Whether or not to append to an existing file.

Details

Export regions from GRanges-class as a file which can be uploaded into a genome browser. Re-
gions are exported in BED format (.bed.gz).

Value

NULL

Author(s)

Aaron Taudt

See Also

exportPeaks, exportCounts, exportCombinations

Examples

Export regions with read counts above 20
Get an example BAM file with ChIP-seq reads
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the file into bin size 1000bp
data(rn4_chrominfo)
binned <- binReads(file, assembly=rn4_chrominfo, binsizes=1000,

stepsizes=500, chromosomes='chr12')
plotHistogram(binned)
Export regions with read count above 20
exportGRangesAsBedFile(binned[binned$counts[,1] > 20], filename=tempfile(),

trackname='read counts above 20')

34 fixedWidthBins

fixedWidthBins Make fixed-width bins

Description

Make fixed-width bins based on given bin size.

Usage

fixedWidthBins(
bamfile = NULL,
assembly = NULL,
chrom.lengths = NULL,
chromosome.format,
binsizes = 1e+06,
chromosomes = NULL

)

Arguments

bamfile A BAM file from which the header is read to determine the chromosome lengths.
If a bamfile is specified, option assembly is ignored.

assembly An assembly from which the chromosome lengths are determined. Please see
getChromInfoFromUCSC for available assemblies. This option is ignored if
bamfile is specified. Alternatively a data.frame generated by getChromInfoFromUCSC.

chrom.lengths A named character vector with chromosome lengths. Names correspond to chro-
mosomes.

chromosome.format

A character specifying the format of the chromosomes if assembly is specified.
Either ’NCBI’ for (1,2,3 ...) or ’UCSC’ for (chr1,chr2,chr3 ...). If a bamfile or
chrom.lengths is supplied, the format will be chosen automatically.

binsizes A vector of bin sizes in base pairs.

chromosomes A subset of chromosomes for which the bins are generated.

Value

A list() of GRanges-class objects with fixed-width bins.

Author(s)

Aaron Taudt

Examples

Make fixed-width bins of size 500kb and 1Mb
data(rn4_chrominfo)
chrom.lengths <- rn4_chrominfo$length
names(chrom.lengths) <- rn4_chrominfo$chromosome
bins <- fixedWidthBins(chrom.lengths=chrom.lengths, binsizes=c(5e5,1e6))
bins

genes_rn4 35

Make bins using NCBI server (requires internet connection)
bins <- fixedWidthBins(assembly='mm10', chromosome.format='NCBI', binsizes=c(5e5,1e6))

genes_rn4 Gene coordinates for rn4

Description

A data.frame containing gene coordinates and biotypes of the rn4 assembly.

Format

A data.frame.

Examples

data(genes_rn4)
head(genes_rn4)

genomicFrequencies Frequencies of combinatorial states

Description

Get the genomewide frequency of each combinatorial state.

Usage

genomicFrequencies(multi.hmm, combinations = NULL, per.mark = FALSE)

Arguments

multi.hmm A multiHMM or combinedMultiHMM object or a file that contains such an object.
combinations A vector with combinations for which the frequency will be calculated. If NULL

all combinations will be considered.
per.mark Set to TRUE if you want frequencies per mark instead of per combination.

Value

A table with frequencies of each combinatorial state.

Author(s)

Aaron Taudt

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
genomicFrequencies(model)

36 getDistinctColors

getCombinations Get combinations

Description

Get a DataFrame with combinations from a GRanges-class object.

Usage

getCombinations(gr)

Arguments

gr A GRanges-class object from which the meta-data columns containing combi-
nations will be extracted.

Value

A DataFrame.

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
Get the combinations
bin.combs <- getCombinations(model$bins)
print(bin.combs)
seg.combs <- getCombinations(model$segments)
print(seg.combs)

getDistinctColors Get distinct colors

Description

Get a set of distinct colors selected from colors.

Usage

getDistinctColors(
n,
start.color = "blue4",
exclude.colors = c("white", "black", "gray", "grey", "\\<yellow\\>", "yellow1",

"lemonchiffon"),
exclude.brightness.above = 1,
exclude.rgb.above = 210

)

getStateColors 37

Arguments

n Number of colors to select. If n is a character vector, length(n) will be taken
as the number of colors and the colors will be named by n.

start.color Color to start the selection process from.

exclude.colors Character vector with colors that should not be used.
exclude.brightness.above

Exclude colors where the ’brightness’ value in HSV space is above. This is
useful to obtain a matt palette.

exclude.rgb.above

Exclude colors where all RGB values are above. This is useful to exclude
whitish colors.

Details

The function computes the euclidian distance between all colors and iteratively selects those that
have the furthest closes distance to the set of already selected colors.

Value

A character vector with colors.

Author(s)

Aaron Taudt

Examples

cols <- getDistinctColors(5)
pie(rep(1,5), labels=cols, col=cols)

getStateColors Get state colors

Description

Get the colors that are used for plotting.

Usage

getStateColors(labels = NULL)

Arguments

labels Any combination of c("zero-inflation","unmodified","modified", "total",
"counts").

Value

A character vector with colors.

38 heatmapCombinations

See Also

plotting

Examples

cols <- getStateColors()
pie(1:length(cols), col=cols, labels=names(cols))

heatmapCombinations Plot a heatmap of combinatorial states

Description

Plot a heatmap that shows the binary presence/absence of marks for the different combinations.

Usage

heatmapCombinations(model = NULL, marks = NULL, emissionProbs = NULL)

Arguments

model A multiHMM object or file that contains such an object.

marks A character vector with histone marks. If specified, model will be ignored.

emissionProbs A matrix with emission probabilities where dimnames(emissionProbs) gives
the state labels and marks. This option is helpful to plot probabilistic chromatin
states (not part of chromstaR). If specified, model and marks will be ignored.

Value

A ggplot object.

Author(s)

Aaron Taudt

See Also

plotting

Examples

marks <- c('H3K4me3','H3K27me3','H4K20me1')
heatmapCombinations(marks=marks)

file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",
package="chromstaR")

heatmapCombinations(file)

heatmapCountCorrelation 39

heatmapCountCorrelation

Read count correlation heatmap

Description

Heatmap of read count correlations (see cor).

Usage

heatmapCountCorrelation(model, cluster = TRUE)

Arguments

model A multiHMM or combinedMultiHMM object or file that contains such an object.

cluster Logical indicating whether or not to cluster the heatmap.

Value

A ggplot object.

See Also

plotting

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
Plot count correlations as heatmap
heatmapCountCorrelation(model)

heatmapTransitionProbs

Heatmap of transition probabilities

Description

Plot a heatmap of transition probabilities for a multiHMM model.

Usage

heatmapTransitionProbs(
model = NULL,
reorder.states = TRUE,
transitionProbs = NULL

)

40 loadHmmsFromFiles

Arguments

model A multiHMM object or file that contains such an object.

reorder.states Whether or not to reorder the states.
transitionProbs

A matrix with transition probabilities where dimnames(emissionProbs) gives
the state labels. This option is helpful to plot transition probabilities directly
without needing a chromstaR-objects. If specified, model will be ignored.

Value

A ggplot object.

See Also

plotting

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
Plot transition probabilites as heatmap
heatmapTransitionProbs(model, reorder.states=TRUE)

loadHmmsFromFiles Load chromstaR objects from file

Description

Wrapper to load chromstaR objects from file and check the class of the loaded objects.

Usage

loadHmmsFromFiles(
files,
check.class = c("GRanges", "uniHMM", "multiHMM", "combinedMultiHMM")

)

Arguments

files A list of chromstaR-objects or a vector of files that contain such objects.

check.class Any combination of c('GRanges', 'uniHMM', 'multiHMM', 'combinedMultiHMM').
If any of the loaded objects does not belong to the specified class, an error is
thrown.

Value

A list of chromstaR-object.

mergeChroms 41

Examples

Get an example BAM file
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the file into bin size 1000bp
data(rn4_chrominfo)
binned <- binReads(file, assembly=rn4_chrominfo, binsizes=1000,

stepsizes=500, chromosomes='chr12')
Fit the univariate Hidden Markov Model
hmm <- callPeaksUnivariate(binned, max.time=60, eps=1)
temp.file <- tempfile()
save(hmm, file=temp.file)
loaded.hmm <- loadHmmsFromFiles(temp.file)[[1]]
class(loaded.hmm)

mergeChroms Merge several multiHMMs into one object

Description

Merge several multiHMMs into one object. This can be done to merge fits for separate chromosomes
into one object for easier handling. Merging will only be done if all models have the same IDs.

Usage

mergeChroms(multi.hmm.list, filename = NULL)

Arguments

multi.hmm.list A list of multiHMM objects or a character vector of files that contain such objects.

filename The file name where the merged object will be stored. If filename is not speci-
fied, a multiHMM is returned.

Value

A multiHMM object or NULL, depending on option filename.

Author(s)

Aaron Taudt

42 model.univariate

model.combined Combined multivariate HMM for demonstration purposes

Description

A combinedMultiHMM object for demonstration purposes in examples of package chromstaR.

Format

A combinedMultiHMM object.

Examples

Get an example combinedMultiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))

model.multivariate Multivariate HMM for demonstration purposes

Description

A multiHMM object for demonstration purposes in examples of package chromstaR.

Format

A multiHMM object.

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))

model.univariate Univariate HMM for demonstration purposes

Description

A uniHMM object for demonstration purposes in examples of package chromstaR.

Format

A uniHMM object.

Examples

Get an example uniHMM
file <- system.file("data","H3K27me3-BN-rep1.RData", package="chromstaR")
model <- get(load(file))

multiHMM 43

multiHMM Multivariate HMM object

Description

The multivariate HMM object is output of the function callPeaksMultivariate and is a list()
with various entries. The class() attribute of this list was set to "multiHMM". For a given hmm,
the entries can be accessed with the list operators ’hmm[[]]’ or ’hmm$’.

Value

A list() with the following entries:

info Experiment table for this object.
bincounts A GRanges-class object containing the genomic bin coordinates and original

binned read count values for different offsets.
bins A GRanges-class object containing the genomic bin coordinates, their read

count, (optional) posteriors and state classification.
segments Same as bins, but consecutive bins with the same state are collapsed into seg-

ments.
peaks A list() with GRanges-class containing peak coordinates for each ID in

info.
mapping A named vector giving the mapping from decimal combinatorial states to human

readable combinations.
weights Weight for each component. Same as apply(hmm$posteriors,2,mean).
weights.univariate

Weights of the univariate HMMs.
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.
startProbs Probabilities for the first bin. Same as hmm$posteriors[1,].
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.
distributions Emission distributions used for this model.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.
convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)
convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.
correlation.matrix

Correlation matrix of transformed reads.

44 plotExpression

See Also

callPeaksMultivariate, uniHMM, combinedMultiHMM

Examples

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))

multivariateSegmentation

Multivariate segmentation

Description

Make segmentation from bins for a multiHMM object.

Usage

multivariateSegmentation(bins, column2collapseBy = "state")

Arguments

bins A GRanges-class with binned read counts.
column2collapseBy

The number of the column which will be used to collapse all other inputs. If a set
of consecutive bins has the same value in this column, they will be aggregated
into one bin with adjusted genomic coordinates.

Value

A GRanges-class with segmented regions.

plotExpression Overlap with expression data

Description

Get the expression values that overlap with each combinatorial state.

Usage

plotExpression(hmm, expression, combinations = NULL, return.marks = FALSE)

plotExpression 45

Arguments

hmm A multiHMM or combinedMultiHMM object or file that contains such an object.

expression A GRanges-class object with metadata column ’expression’, containing the
expression value for each range.

combinations A vector with combinations for which the expression overlap will be calculated.
If NULL all combinations will be considered.

return.marks Set to TRUE if expression values for marks instead of combinations should be
returned.

Value

A ggplot2 object if a multiHMM was given or a named list with ggplot2 objects if a combinedMultiHMM
was given.

Author(s)

Aaron Taudt

See Also

plotting

Examples

Load an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))

Obtain expression data
data(expression_lv)
head(expression_lv)

We need to get coordinates for each of the genes
library(biomaRt)
ensembl <- useEnsembl(biomart='ENSEMBL_MART_ENSEMBL', dataset='rnorvegicus_gene_ensembl')
genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position',

'end_position', 'strand', 'external_gene_name',
'gene_biotype'),

mart=ensembl)
expr <- merge(genes, expression_lv, by='ensembl_gene_id')
Transform to GRanges
expression.SHR <- GRanges(seqnames=paste0('chr',expr$chromosome_name),

ranges=IRanges(start=expr$start, end=expr$end),
strand=expr$strand, name=expr$external_gene_name,
biotype=expr$gene_biotype,
expression=expr$expression_SHR)

We apply an asinh transformation to reduce the effect of outliers
expression.SHR$expression <- asinh(expression.SHR$expression)

Plot
plotExpression(model, expression.SHR) +
theme(axis.text.x=element_text(angle=0, hjust=0.5)) +
ggtitle('Expression of genes overlapping combinatorial states')

46 plotGenomeBrowser

plotExpression(model, expression.SHR, return.marks=TRUE) +
ggtitle('Expression of marks overlapping combinatorial states')

plotGenomeBrowser 47

plotGenomeBrowser #’ Plot a genome browser view #’ #’ Plot a simple genome browser
view. This is useful for scripted genome browser snapshots. #’ #’
@param counts A GRanges-class object with meta-data column
’counts’. #’ @param peaklist A named list() of GRanges-class
objects containing peak coordinates. #’ @param chr,start,end Chro-
mosome, start and end coordinates for the plot. #’ @param countcol A
character giving the color for the counts. #’ @param peakcols A char-
acter vector with colors for the peaks in peaklist. #’ @param style
One of c(’peaks’, ’density’). #’ @param peakTrackHeight Rel-
ative height of the tracks given in peaklist compared to the counts.
#’ @return A ggplot object. #’ @examples #’## Get an example
multiHMM ## #’file <- system.file("data","multivariate_mode-
combinatorial_condition-SHR.RData", #’ package="chromstaR")
#’model <- get(load(file)) #’## Plot genome browser snapshot
#’bins <- model$bins #’bins$counts <- model$bins$counts.rpkm[,1]
#’plotGenomeBrowser(counts=bins, peaklist=model$peaks, #’
chr=’chr12’, start=1, end=1e6) #’ plotGenomeBrowser2 <- func-
tion(counts, peaklist=NULL, chr, start, end, countcol=’black’,
peakcols=NULL, style=’peaks’, peakTrackHeight=5) ## Select
ranges to plot ranges2plot <- reduce(counts[counts@seqnames
== chr & start(counts) >= start & start(counts) <= end]) ##
Counts counts <- subsetByOverlaps(counts, ranges2plot) if (style
== ’peaks’) df <- data.frame(x=(start(counts)+end(counts))/2,
counts=counts$counts) # plot triangles centered at middle of the bin
ggplt <- ggplot(df) + geom_area(aes_string(x=’x’, y=’counts’))
+ theme(panel.grid = element_blank(), panel.background =
element_blank(), axis.text.x = element_blank(), axis.title = el-
ement_blank(), axis.ticks.x = element_blank(), axis.line = el-
ement_blank()) maxcounts <- max(counts$counts) ggplt <-
ggplt + scale_y_continuous(breaks=c(0, maxcounts)) else
if (style == ’density’) df <- data.frame(xmin=start(counts),
xmax=end(counts), counts=counts$counts) ggplt <- ggplot(df)
+ geom_rect(aes_string(xmin=’xmin’, xmax=’xmax’, ymin=0,
ymax=4, alpha=’counts’)) + theme(panel.grid = element_blank(),
panel.background = element_blank(), axis.text = element_blank(),
axis.title = element_blank(), axis.ticks = element_blank(), axis.line
= element_blank()) else stop("Unknown value ’", style, "’ for pa-
rameter ’style’. Must be one of c(’peaks’, ’density’).") ## Peaks if
(!is.null(peaklist)) if (is.null(peakcols)) peakcols <- getDistinctCol-
ors(length(peaklist)) for (i1 in 1:length(peaklist)) p <- peakTrack-
Height peaks <- subsetByOverlaps(peaklist[[i1]], ranges2plot)
if (length(peaks) > 0) df <- data.frame(start=start(peaks),
end=end(peaks), ymin=-p*i1, ymax=-p*i1+0.9*p) ggplt <- gg-
plt + geom_rect(data=df, mapping=aes_string(xmin=’start’,
xmax=’end’, ymin=’ymin’, ymax=’ymax’), col=peakcols[i1],
fill=peakcols[i1]) trackname <- names(peaklist)[i1] df <-
data.frame(x=start(counts)[1], y=-p*i1+0.5*p, label=trackname)
ggplt <- ggplt + geom_text(data=df, mapping=aes_string(x=’x’,
y=’y’, label=’label’), vjust=0.5, hjust=0.5, col=peakcols[i1]) re-
turn(ggplt) Plot a genome browser view

48 plotGenomeBrowser

Description

Plot a simple genome browser view of chromstaR-objects. This is useful for scripted genome
browser snapshots.

Usage

plotGenomeBrowser(
model,
chr,
start,
end,
style = "peaks",
peakHeight = 0.2,
peakColor = "blue",
same.yaxis = TRUE

)

Arguments

model A uniHMM, multiHMM or combinedMultiHMM object or file that contains such an
object.

chr, start, end Chromosome, start and end coordinates for the plot.

style One of c('peaks', 'density').

peakHeight Height of the peak track relative to the count track.

peakColor Color for the peak track.

same.yaxis Whether or not the plots for the same mark have the same y-axis.

Value

A list() of ggplot objects.

Examples

Get an example uniHMM
file <- system.file("data","H3K27me3-BN-rep1.RData", package="chromstaR")
model <- get(load(file))
plotGenomeBrowser(model, chr='chr12', start=1, end=1e6, style='peaks',

peakHeight=0.1)

Get an example multiHMM
file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData",

package="chromstaR")
model <- get(load(file))
plotGenomeBrowser(model, chr='chr12', start=1, end=1e6, style='peaks',

peakHeight=0.1)

Get an example combinedMultiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))
plotlist <- plotGenomeBrowser(model, chr='chr12', start=1, end=1e6, style='peaks',

peakHeight=0.1)

plotHistogram 49

plotHistogram Histogram of binned read counts with fitted mixture distribution

Description

Plot a histogram of binned read counts with fitted mixture distributions from a uniHMM object.

Usage

plotHistogram(
model,
state = NULL,
chromosomes = NULL,
start = NULL,
end = NULL,
linewidth = 1

)

Arguments

model A uniHMM object or file that contains such an object.

state Plot the histogram only for the specified state. One of c('unmodified','modified').
chromosomes, start, end

Plot the histogram only for the specified chromosomes, start and end position.

linewidth Width of the distribution lines.

Value

A ggplot object.

See Also

plotting

Examples

Get an example BAM file with ChIP-seq reads
file <- system.file("extdata", "euratrans",

"lv-H3K27me3-BN-male-bio2-tech1.bam",
package="chromstaRData")

Bin the BED file into bin size 1000bp
data(rn4_chrominfo)
data(experiment_table)
binned <- binReads(file, experiment.table=experiment_table,

assembly=rn4_chrominfo, binsizes=1000,
stepsizes=500, chromosomes='chr12')

plotHistogram(binned)
Fit the univariate Hidden Markov Model
hmm <- callPeaksUnivariate(binned, max.time=60, eps=1)
Check if the fit is ok
plotHistogram(hmm)

50 plotting

plotHistograms Histograms of binned read counts with fitted mixture distribution

Description

Plot histograms of binned read counts with fitted mixture distributions from a multiHMM object.

Usage

plotHistograms(model, ...)

Arguments

model A multiHMM object or file that contains such an object.

... Additional arguments (see plotHistogram).

Value

A ggplot object.

See Also

plotting

plotting chromstaR plotting functions

Description

This page provides an overview of all chromstaR plotting functions.

Details

Plotting functions that work on uniHMM objects:

plotHistogram Read count histogram with fitted mixture distributions.

Plotting functions that work on multiHMM objects:

heatmapCountCorrelation Heatmap of read count correlations.

heatmapTransitionProbs Heatmap of transition probabilities of the Hidden Markov Model.

heatmapCombinations Binary presence/absence pattern of combinatorial states.

plotExpression Boxplot of expression values that overlap combinatorial states.

Plotting functions that work on multiHMM and combinedMultiHMM objects:

heatmapCountCorrelation Heatmap of read count correlations.

plotEnrichCountHeatmap Heatmap of read counts around annotation.

plotEnrichment Enrichment of combinatorial states around annotation.

print.combinedMultiHMM 51

plotFoldEnrichHeatmap Enrichment of combinatorial states at multiple annotations.

plotExpression Boxplot of expression values that overlap combinatorial states.

Other plotting functions:

heatmapCombinations Binary presence/absence pattern of combinatorial states.

print.combinedMultiHMM

Print combinedMultiHMM object

Description

Print combinedMultiHMM object

Usage

S3 method for class 'combinedMultiHMM'
print(x, ...)

Arguments

x An combinedMultiHMM object.

... Ignored.

Value

An invisible NULL.

print.multiHMM Print multiHMM object

Description

Print multiHMM object

Usage

S3 method for class 'multiHMM'
print(x, ...)

Arguments

x An multiHMM object.

... Ignored.

Value

An invisible NULL.

52 readBamFileAsGRanges

print.uniHMM Print uniHMM object

Description

Print uniHMM object

Usage

S3 method for class 'uniHMM'
print(x, ...)

Arguments

x An uniHMM object.

... Ignored.

Value

An invisible NULL.

readBamFileAsGRanges Import BAM file into GRanges

Description

Import aligned reads from a BAM file into a GRanges-class object.

Usage

readBamFileAsGRanges(
bamfile,
bamindex = bamfile,
chromosomes = NULL,
pairedEndReads = FALSE,
remove.duplicate.reads = FALSE,
min.mapq = 10,
max.fragment.width = 1000,
blacklist = NULL,
what = "mapq"

)

Arguments

bamfile A sorted BAM file.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be imported, specify them here.

readBedFileAsGRanges 53

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=0
to keep all reads.

max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

what A character vector of fields that are returned. Uses the Rsamtools::scanBamWhat
function. See Rsamtools::ScanBamParam to see what is available.

Value

A GRanges-class object containing the reads.

Examples

Get an example BAM file with ChIP-seq reads
bamfile <- system.file("extdata", "euratrans", "lv-H3K4me3-BN-female-bio1-tech1.bam",

package="chromstaRData")
Read the file into a GRanges object
reads <- readBamFileAsGRanges(bamfile, chromosomes='chr12', pairedEndReads=FALSE,

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

readBedFileAsGRanges Import BED file into GRanges

Description

Import aligned reads from a BED file into a GRanges-class object.

Usage

readBedFileAsGRanges(
bedfile,
assembly,
chromosomes = NULL,
remove.duplicate.reads = FALSE,
min.mapq = 10,
max.fragment.width = 1000,
blacklist = NULL

)

54 readConfig

Arguments

bedfile A file with aligned reads in BED-6 format. The columns have to be c(’chromosome’,’start’,’end’,’description’,’mapq’,’strand’).

assembly Please see getChromInfoFromUCSC for available assemblies. Only necessary
when importing BED files. BAM files are handled automatically. Alternatively
a data.frame with columns ’chromosome’ and ’length’.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=0
to keep all reads.

max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments.

blacklist A GRanges-class or a bed(.gz) file with blacklisted regions. Reads falling into
those regions will be discarded.

Value

A GRanges-class object containing the reads.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "liver-H3K4me3-BN-male-bio2-tech1.bed.gz",

package="chromstaRData")
Read the file into a GRanges object
data(rn4_chrominfo)
reads <- readBedFileAsGRanges(bedfile, assembly=rn4_chrominfo, chromosomes='chr12',

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

readConfig Read chromstaR configuration file

Description

Read a chromstaR configuration file into a list structure. The configuration file has to be specified
in INI format. R expressions can be used and will be evaluated.

Usage

readConfig(configfile)

Arguments

configfile Path to the configuration file

Value

A list with one entry for each element in configfile.

readCustomBedFile 55

Author(s)

Aaron Taudt

readCustomBedFile Read bed-file into GRanges

Description

This is a simple convenience function to read a bed(.gz)-file into a GRanges-class object. The bed-
file is expected to have the following fields: chromosome, start, end, name, score, strand.

Usage

readCustomBedFile(
bedfile,
col.names = c("chromosome", "start", "end", "name", "score", "strand"),
col.classes = NULL,
skip = 0,
chromosome.format = "NCBI",
sep = ""

)

Arguments

bedfile Filename of the bed or bed.gz file.
col.names A character vector giving the names of the columns in the bedfile. Must con-

tain at least c('chromosome','start','end').
col.classes A character vector giving the classes of the columns in bedfile. Speeds up the

import.
skip Number of lines to skip at the beginning.
chromosome.format

Desired format of the chromosomes. Either ’NCBI’ for (1,2,3 ...) or ’UCSC’
for (chr1,chr2,chr3 ...) or NULL to keep the original names.

sep Field separator from read.table.

Value

A GRanges-class object with the contents of the bed-file.

Author(s)

Aaron Taudt

Examples

Get an example BED file
bedfile <- system.file("extdata", "liver-H3K4me3-BN-male-bio2-tech1.bed.gz",

package="chromstaRData")
Import the file and skip the first 10 lines
data <- readCustomBedFile(bedfile, skip=10)

56 scanBinsizes

removeCondition Remove condition from model

Description

Remove a condition from a combinedMultiHMM object.

Usage

removeCondition(model, conditions)

Arguments

model A combinedMultiHMM object or file which contains such an object.

conditions A character vector with the condition(s) to be removed.

Value

The input combinedMultiHMM object with specified conditions removed.

Examples

Get an example HMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))

Print available conditions
print(unique(model$info$condition))

Remove condition SHR
new.model <- removeCondition(model, conditions='SHR')

scanBinsizes Find the best bin size for a given dataset

Description

Use simulations to find the best bin size among a set of input files. There is no guarantee that the bin
size will be the best for your data, since it is only "best" in terms of fewest miscalls for simulated
data. However, it can give you a hint what bin size to choose.

scores 57

Usage

scanBinsizes(
files.binned,
outputfolder,
chromosomes = "chr10",
eps = 0.01,
max.iter = 100,
max.time = 300,
repetitions = 3,
plot.progress = FALSE

)

Arguments

files.binned A vector with files that contain binned.data in different bin sizes.

outputfolder Name of the folder where all files will be written to.

chromosomes A vector of chromosomes to use for the simulation.

eps Convergence threshold for the Baum-Welch algorithm.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

repetitions Number of repetitions for each simulation.

plot.progress If TRUE, the plot will be updated each time a simulation has finished. If FALSE,
the plot will be returned only at the end.

Details

The function first runs callPeaksUnivariate on the given binned.data files. From the estimated
parameters it generates simulated data and calls the peaks on this simulated data. Because the data
is simulated, the fraction of miscalls can be precisely calculated.

Value

A ggplot object with a bar plot of the number of miscalls dependent on the bin size.

Author(s)

Aaron Taudt

scores chromstaR scores

Description

Various scores used in chromstaR.

58 simulateMultivariate

Usage

differentialScoreMax(mat, info, FUN = "-")

differentialScoreSum(mat, info, FUN = "-")

Arguments

mat A matrix with posterior probabilities, read counts or any other matrix with these
dimensions. Column names must correspond to the ID entries in info.

info An experiment.table with additional column ’ID’.

FUN A function to compute the score with.

Value

A numeric vector.

Functions

• differentialScoreMax: Maximum differential score. Values are between 0 and 1. A value
of 1 means that at least one mark is maximally different between conditions.

• differentialScoreSum: Additive differential score. Values are between 0 and N, where N is
the number of marks. A value around 1 means that approximately 1 mark is different, a value
of 2 means that 2 marks are different etc.

Author(s)

Aaron Taudt

simulateMultivariate Simulate multivariate data

Description

Simulate known states, read counts and read coordinates using a multivariate Hidden Markov
Model.

Usage

simulateMultivariate(
bins,
transition,
emissions,
weights,
correlationMatrices,
combstates,
IDs,
fragLen = 50

)

simulateReadsFromCounts 59

Arguments

bins A GRanges-class object for which reads will be simulated.

transition A matrix with transition probabilities.

emissions A list() with data.frames with emission distributions (see uniHMM entry ’distri-
butions’).

weights A list() with weights for the three univariate states.

correlationMatrices

A list with correlation matrices.

combstates A vector with combinatorial states.

IDs A character vector with IDs.

fragLen Length of the simulated read fragments.

Value

A list() with entries $bins containing the simulated states and read count, $reads with simulated
read coordinates.

simulateReadsFromCounts

Simulate read coordinates

Description

Simulate read coordinates using read counts as input.

Usage

simulateReadsFromCounts(bins, fragLen = 50)

Arguments

bins A GRanges-class with read counts.

fragLen Length of the simulated read fragments.

Value

A GRanges-class with read coordinates.

60 state.brewer

simulateUnivariate Simulate univariate data

Description

Simulate known states, read counts and read coordinates using a univariate Hidden Markov Model
with three states ("zero-inflation", "unmodified" and "modified").

Usage

simulateUnivariate(bins, transition, emission, fragLen = 50)

Arguments

bins A GRanges-class object for which reads will be simulated.

transition A matrix with transition probabilities.

emission A data.frame with emission distributions (see uniHMM entry ’distributions’).

fragLen Length of the simulated read fragments.

Value

A list with entries $bins containing the simulated states and read count, $reads with simulated
read coordinates and $transition and $emission.

state.brewer Obtain combinatorial states from specification

Description

This function returns all combinatorial (decimal) states that are consistent with a given abstract
specification.

Usage

state.brewer(
replicates = NULL,
differential.states = FALSE,
min.diff = 1,
common.states = FALSE,
conditions = NULL,
tracks2compare = NULL,
sep = "+",
statespec = NULL,
diffstatespec = NULL,
exclusive.table = NULL,
binary.matrix = NULL

)

state.brewer 61

Arguments

replicates A vector specifying the replicate structure. Similar entries will be treated as
replicates.

differential.states

A logical specifying whether differential states shall be returned.

min.diff The minimum number of differences between conditions.

common.states A logical specifying whether common states shall be returned.

conditions A vector with the same length as replicates. Similar entries will be treated
as belonging to the same condition. Usually your tissue or cell types or time
points.

tracks2compare A vector with the same length as replicates. This vector defines the tracks
between which conditions are compared. Usually your histone marks.

sep Separator used to separate the tracknames in the combinations. The default ’+’
should not be changed because it is assumed in follow-up functions.

statespec If this parameter is specified, replicates will be ignored. A vector com-
posed of any combination of the following entries: '0.[]', '1.[]', 'x.[]',
'r.[]', where [] can be any string.

• '0.A': sample A is ’unmodified’
• '1.B': sample B is ’modified’
• 'x.C': sample C can be both ’unmodified’ or ’modified’
• 'r.D': all samples in group D have to be in the same state
• 'r.[]': all samples in group [] have to be in the same state

diffstatespec A vector composed of any combination of the following entries: 'x.[]', 'd.[]',
where [] can be any string.

• 'x.A': sample A can be both ’unmodified’ or ’modified’
• 'd.B': at least one sample in group B has to be different from the other

samples in group A
• 'd[]': at least one sample in group [] has to be different from the other

samples in group []
exclusive.table

A data.frame or tab-separated text file with columns ’mark’ and ’group’. His-
tone marks with the same group will be treated as mutually exclusive.

binary.matrix A logical matrix produced by dec2bin. If this is specified, only states specified
by the rows of this matrix will be considered. The number of columns must
match length(replicates) or length(statespec). Only for advanced use.
No error handling for incorrect input.

Details

The binary modification state (unmodified=0 or modified=1) of multiple ChIP-seq samples defines
a (decimal) combinatorial state such as:

sample1 sample2 sample3 sample4 sample5 combinatorial state
bin1 0 0 1 0 0 4
bin2 0 0 0 0 0 0
bin3 0 1 0 1 0 10
bin4 0 1 1 1 1 15

62 stateBrewer

bin5 0 0 1 0 1 5

Value

A data.frame with combinations and their corresponding (decimal) combinatorial states.

Author(s)

Aaron Taudt, David Widmann

Examples

Get all combinatorial states where sample1=0, sample2=1, sample3=(0 or 1),
sample4=sample5
chromstaR:::state.brewer(statespec=c('0.A','1.B','x.C','r.D','r.D'))

Get all combinatorial states where sample1=sample2=sample3, sample4=sample5
chromstaR:::state.brewer(statespec=c('r.A','r.A','r.A','r.B','r.B'))

Get all combinatorial states where sample1=sample5, sample2=sample3=1,
sample4=(0 or 1)
chromstaR:::state.brewer(statespec=c('r.A','1.B','1.C','x.D','r.A'))

stateBrewer Obtain combinatorial states from experiment table

Description

This function computes combinatorial states from an experiment.table.

Usage

stateBrewer(
experiment.table,
mode,
differential.states = FALSE,
common.states = FALSE,
exclusive.table = NULL,
binary.matrix = NULL

)

Arguments

experiment.table

A data.frame specifying the experiment structure. See experiment.table.

mode Mode of brewing. See Chromstar for a description of the parameter.
differential.states

A logical specifying whether differential states shall be returned.

common.states A logical specifying whether common states shall be returned.

subsample 63

exclusive.table

A data.frame or tab-separated text file with columns ’mark’ and ’group’. His-
tone marks with the same group will be treated as mutually exclusive.

binary.matrix A logical matrix produced by dec2bin. If this is specified, only states specified
by the rows of this matrix will be considered. The number of columns must
match length(replicates) or length(statespec). Only for advanced use.
No error handling for incorrect input.

Details

The binary modification state (unmodified=0 or modified=1) of multiple ChIP-seq samples defines
a (decimal) combinatorial state such as:

sample1 sample2 sample3 sample4 sample5 combinatorial state
bin1 0 0 1 0 0 4
bin2 0 0 0 0 0 0
bin3 0 1 0 1 0 10
bin4 0 1 1 1 1 15
bin5 0 0 1 0 1 5

Value

A data.frame with combinations and their corresponding (decimal) combinatorial states.

Author(s)

Aaron Taudt

Examples

Construct an experiment table
data(experiment_table)
print(experiment_table)
Construct combinatorial states
stateBrewer(experiment_table, mode='combinatorial')
stateBrewer(experiment_table, mode='differential')
stateBrewer(experiment_table, mode='full', common.states=TRUE)

Exclude states with exclusive.table
excl <- data.frame(mark=c('H3K4me3','H3K27me3'),

group=c(1,1))
stateBrewer(experiment_table, mode='full', exclusive.table=excl)

subsample Normalize read counts

Description

Normalize read counts to a given read depth. Reads counts are randomly removed from the input to
match the specified read depth.

64 transitionFrequencies

Usage

subsample(binned.data, sample.reads)

Arguments

binned.data A GRanges-class object with meta data column ’reads’ that contains the read
count.

sample.reads The number of reads that will be retained.

Value

A GRanges-class object with downsampled read counts.

Author(s)

Aaron Taudt

transitionFrequencies Transition frequencies of combinatorial states

Description

Get a table of transition frequencies between combinatorial states of different multiHMMs.

Usage

transitionFrequencies(
multi.hmms = NULL,
combined.hmm = NULL,
zero.states = "[]",
combstates = NULL

)

Arguments

multi.hmms A named list with multiHMM objects or a vector with filenames that contain such
objects.

combined.hmm A combinedMultiHMM object. If specified, multi.hmms is ignored.

zero.states The string(s) which identifies the zero.states.

combstates Alternative input instead of multi.hmms: A named list of combinatorial state
vectors instead of HMMs. Names must be of the form "combination.X", where
X is an arbitrary string. If this is specified, multi.hmms and combined.hmm will
be ignored.

Value

A data.frame with transition frequencies.

Author(s)

Aaron Taudt

uniHMM 65

Examples

Get an example combinedMultiHMM
file <- system.file("data","combined_mode-differential.RData",

package="chromstaR")
model <- get(load(file))
freqs <- transitionFrequencies(combined.hmm=model)
freqs$table

uniHMM Univariate HMM object

Description

The univariate HMM object is output of the function callPeaksUnivariate and is a list() with
various entries. The class() attribute of this list was set to "uniHMM". For a given hmm, the
entries can be accessed with the list operators ’hmm[[]]’ or ’hmm$’.

Value

A list() with the following entries:

info Experiment table for this object.

bincounts A GRanges-class object containing the genomic bin coordinates and original
binned read count values for different offsets.

bins A GRanges-class object containing the genomic bin coordinates, their read
count, (optional) posteriors and state classification.

peaks A list() with GRanges-class containing peak coordinates for each ID in
info.

weights Weight for each component. Same as apply(hmm$posteriors,2,mean).
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.

startProbs Probabilities for the first bin. Same as hmm$posteriors[1,].
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.

distributions Estimated parameters of the emission distributions.
distributions.initial

Distribution parameters at the beginning of the Baum-Welch.

post.cutoff Cutoff for posterior probabilities to call peaks.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.

66 unis2pseudomulti

convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)

convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.

convergenceInfo$max.mean

Value of parameter max.mean.

convergenceInfo$read.cutoff

Cutoff value for read counts.

See Also

callPeaksUnivariate, multiHMM, combinedMultiHMM

unis2pseudomulti Combine univariate HMMs to a multivariate HMM

Description

Combine multiple uniHMMs to a multiHMM without running callPeaksMultivariate. This should
only be done for comparison purposes.

Usage

unis2pseudomulti(hmms)

Arguments

hmms A named list of uniHMM objects. Names will be used to generate the combina-
tions.

Details

Use this function if you want to combine ChIP-seq samples without actually running a multivari-
ate Hidden Markov Model. The resulting object will be of class multiHMM but will not be truly
multivariate.

Value

A multiHMM object.

Author(s)

Aaron Taudt

variableWidthBins 67

Examples

Get example BAM files for 2 different marks in hypertensive rat (SHR)
file.path <- system.file("extdata","euratrans", package='chromstaRData')
files <- list.files(file.path, full.names=TRUE, pattern='SHR.*bam$')[c(1,4)]
Bin the data
data(rn4_chrominfo)
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsizes=1000, stepsizes=500,

assembly=rn4_chrominfo, chromosomes='chr12')
}
Obtain the univariate fits
models <- list()
for (i1 in 1:length(binned.data)) {
models[[i1]] <- callPeaksUnivariate(binned.data[[i1]], max.time=60, eps=1)

}
Combine the univariate HMMs without fitting a multivariate HMM
names(models) <- c('H3K27me3','H3K4me3')
pseudo.multi.HMM <- unis2pseudomulti(models)
Compare frequencies with real multivariate HMM
exp <- data.frame(file=files, mark=c("H3K27me3","H3K4me3"),

condition=rep("SHR",2), replicate=c(1,1), pairedEndReads=FALSE,
controlFiles=NA)

states <- stateBrewer(exp, mode='combinatorial')
real.multi.HMM <- callPeaksMultivariate(models, use.states=states, eps=1, max.time=60)
genomicFrequencies(real.multi.HMM)
genomicFrequencies(pseudo.multi.HMM)

variableWidthBins Make variable-width bins

Description

Make variable-width bins based on a reference BAM file. This can be a simulated file (produced by
TODO: insert link and aligned with your favourite aligner) or a real reference.

Usage

variableWidthBins(reads, binsizes, chromosomes = NULL)

Arguments

reads A GRanges-class with reads. See readBamFileAsGRanges and readBedFileAsGRanges.

binsizes A vector with binsizes. Resulting bins will be close to the specified binsizes.

chromosomes A subset of chromosomes for which the bins are generated.

Details

Variable-width bins are produced by first binning the reference BAM file with fixed-width bins and
selecting the desired number of reads per bin as the (non-zero) maximum of the histogram. A new
set of bins is then generated such that every bin contains the desired number of reads.

68 writeConfig

Value

A list() of GRanges-class objects with variable-width bins.

Author(s)

Aaron Taudt

Examples

Get an example BAM file with ChIP-seq reads
bamfile <- system.file("extdata", "euratrans", "lv-H3K4me3-BN-female-bio1-tech1.bam",

package="chromstaRData")
Read the file into a GRanges object
reads <- readBamFileAsGRanges(bamfile, chromosomes='chr12', pairedEndReads=FALSE,

min.mapq=10, remove.duplicate.reads=TRUE)
Make variable-width bins of size 1000bp
bins <- variableWidthBins(reads, binsizes=1000)
Plot the distribution of binsizes
hist(width(bins[['1000']]), breaks=50)

writeConfig Write chromstaR configuration file

Description

Write a chromstaR configuration file from a list structure.

Usage

writeConfig(conf, configfile)

Arguments

conf A list structure with parameter values. Each entry will be written in one line.

configfile Filename of the outputfile.

Value

NULL

Author(s)

Aaron Taudt

zinbinom 69

zinbinom The Zero-inflated Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated nega-
tive binomial distribution with parameters w, size and prob.

Usage

dzinbinom(x, w, size, prob, mu)

pzinbinom(q, w, size, prob, mu, lower.tail = TRUE)

qzinbinom(p, w, size, prob, mu, lower.tail = TRUE)

rzinbinom(n, w, size, prob, mu)

Arguments

x Vector of (non-negative integer) quantiles.

w Weight of the zero-inflation. 0 <= w <= 1.

size Target for number of successful trials, or dispersion parameter (the shape pa-
rameter of the gamma mixing distribution). Must be strictly positive, need not
be integer.

prob Probability of success in each trial. 0 < prob <= 1.

mu Alternative parametrization via mean: see ‘Details’.

q Vector of quantiles.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

p Vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

The zero-inflated negative binomial distribution with size = n and prob = p has density

p(x) = w + (1− w)
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 0, n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

p(x) = (1− w)
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 1, 2, . . ., n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

Value

dzinbinom gives the density, pzinbinom gives the distribution function, qzinbinom gives the quantile
function, and rzinbinom generates random deviates.

70 zinbinom

Functions

• dzinbinom: gives the density

• pzinbinom: gives the cumulative distribution function

• qzinbinom: gives the quantile function

• rzinbinom: random number generation

Author(s)

Matthias Heinig, Aaron Taudt

See Also

Distributions for standard distributions, including dbinom for the binomial, dnbinom for the negative
binomial, dpois for the Poisson and dgeom for the geometric distribution, which is a special case
of the negative binomial.

Index

bamsignals, 5
bin2dec, 23
bin2dec (conversion), 25
binned.data, 3, 57
binning, 17
binning (binReads), 4
binReads, 3, 4

callPeaksMultivariate, 6, 9, 12, 14, 20, 43,
44, 66

callPeaksReplicates, 7, 8, 20
callPeaksUnivariate, 6–9, 10, 20, 22, 57,

65, 66
callPeaksUnivariateAllChr, 12, 12
changeFDR (changeMaxPostCutoff), 15
changeMaxPostCutoff, 15, 17
changePostCutoff, 15, 16
Chromstar, 3, 17, 24, 62
chromstaR, 17, 19, 20, 26, 38, 40, 42, 50, 57
chromstaR (chromstaR-package), 3
chromstaR-objects, 20
chromstaR-package, 3
collapseBins, 20
colors, 36, 37
combinatorialStates, 22
combinedHMM (combinedMultiHMM), 23
combinedMultiHMM, 15, 16, 20, 23, 24, 27, 28,

35, 39, 42, 44, 45, 48, 50, 51, 56, 64,
66

combineMultivariates, 20, 23, 24, 24
conversion, 25
cor, 39

dbinom, 70
dec2bin, 23, 61, 63
dec2bin (conversion), 25
dgeom, 70
differentialScoreMax (scores), 57
differentialScoreSum (scores), 57
Distributions, 70
dnbinom, 70
dpois, 70
dzinbinom (zinbinom), 69

enrichment_analysis, 27
enrichmentAtAnnotation, 26
experiment.table, 4, 18, 30, 58, 62
exportCombinations, 33
exportCombinations (exportFiles), 31
exportCounts, 33
exportCounts (exportFiles), 31
exportFiles, 31
exportGRangesAsBedFile, 32
exportPeaks, 33
exportPeaks (exportFiles), 31

fixedWidthBins, 5, 34

genes_rn4, 35
genomicFrequencies, 35
getChromInfoFromUCSC, 4, 18, 34, 54
getCombinations, 36
getDistinctColors, 36
getStateColors, 37
ggplot, 29, 38–40, 47–50, 57
ggplot2, 45
GRanges-class, 5, 47

heatmapCombinations, 38, 50, 51
heatmapCountCorrelation, 39, 50
heatmapTransitionProbs, 39, 50

loadHmmsFromFiles, 40

mergeChroms, 41
model.combined, 42
model.multivariate, 42
model.univariate, 42
multi.hmm (multiHMM), 43
multiHMM, 7–9, 15, 16, 20, 23, 24, 26–28, 35,

38–42, 43, 44, 45, 48, 50, 51, 64, 66
multivariateSegmentation, 44

plotEnrichCountHeatmap, 50
plotEnrichCountHeatmap

(enrichment_analysis), 27
plotEnrichment, 50
plotEnrichment (enrichment_analysis), 27
plotExpression, 44, 50, 51

71

72 INDEX

plotFoldEnrichHeatmap, 51
plotFoldEnrichHeatmap

(enrichment_analysis), 27
plotGenomeBrowser, 46
plotHistogram, 49, 50
plotHistograms, 50
plotting, 3, 29, 38–40, 45, 49, 50, 50
print.combinedMultiHMM, 51
print.multiHMM, 51
print.uniHMM, 52
pzinbinom (zinbinom), 69

qzinbinom (zinbinom), 69

read.table, 55
readBamFileAsGRanges, 52, 67
readBedFileAsGRanges, 18, 53, 67
readConfig, 54
readCustomBedFile, 55
removeCondition, 56
rzinbinom (zinbinom), 69

scanBinsizes, 56
scores, 57
simulateMultivariate, 58
simulateReadsFromCounts, 59
simulateUnivariate, 60
state.brewer, 60
stateBrewer, 6, 62
subsample, 63

transitionFrequencies, 64

uni.hmm (uniHMM), 65
uniHMM, 6, 8, 9, 12, 14–16, 20, 24, 42, 44,

48–50, 52, 59, 60, 65, 66
unis2pseudomulti, 66

variableWidthBins, 5, 67

writeConfig, 68

zinbinom, 69

	chromstaR-package
	binned.data
	binReads
	callPeaksMultivariate
	callPeaksReplicates
	callPeaksUnivariate
	callPeaksUnivariateAllChr
	changeMaxPostCutoff
	changePostCutoff
	Chromstar
	chromstaR-objects
	collapseBins
	combinatorialStates
	combinedMultiHMM
	combineMultivariates
	conversion
	enrichmentAtAnnotation
	enrichment_analysis
	experiment.table
	exportFiles
	exportGRangesAsBedFile
	fixedWidthBins
	genes_rn4
	genomicFrequencies
	getCombinations
	getDistinctColors
	getStateColors
	heatmapCombinations
	heatmapCountCorrelation
	heatmapTransitionProbs
	loadHmmsFromFiles
	mergeChroms
	model.combined
	model.multivariate
	model.univariate
	multiHMM
	multivariateSegmentation
	plotExpression
	plotGenomeBrowser
	plotHistogram
	plotHistograms
	plotting
	print.combinedMultiHMM
	print.multiHMM
	print.uniHMM
	readBamFileAsGRanges
	readBedFileAsGRanges
	readConfig
	readCustomBedFile
	removeCondition
	scanBinsizes
	scores
	simulateMultivariate
	simulateReadsFromCounts
	simulateUnivariate
	state.brewer
	stateBrewer
	subsample
	transitionFrequencies
	uniHMM
	unis2pseudomulti
	variableWidthBins
	writeConfig
	zinbinom
	Index

