
Package ‘DECIPHER’
October 27, 2015

Type Package

Title Database Enabled Code for Ideal Probe Hybridization Employing R

Version 1.16.0

Date 2015-10-05

Author Erik Wright

Maintainer Erik Wright <DECIPHER@cae.wisc.edu>

biocViews Clustering, Genetics, Sequencing, DataImport, Visualization,
Microarray, QualityControl, qPCR, Alignment, WholeGenome,
Microbiome

Description A toolset for deciphering and managing biological sequences.

Depends R (>= 2.13.0), Biostrings (>= 2.35.12), RSQLite (>= 1.0.0),
stats, parallel

Imports methods, DBI, S4Vectors, IRanges, XVector

LinkingTo Biostrings, RSQLite, S4Vectors, IRanges, XVector

License GPL-3

NeedsCompilation yes

R topics documented:
DECIPHER-package . 2
Add2DB . 5
AdjustAlignment . 6
AlignDB . 8
AlignProfiles . 10
AlignSeqs . 14
AlignSynteny . 16
AlignTranslation . 17
AmplifyDNA . 19
Array2Matrix . 21
BrowseDB . 22
BrowseSeqs . 23
CalculateEfficiencyArray . 25
CalculateEfficiencyFISH . 27
CalculateEfficiencyPCR . 28
ConsensusSequence . 30
CorrectFrameshifts . 32

1

2 DECIPHER-package

CreateChimeras . 35
DB2Seqs . 36
DECIPHER-defunct . 38
deltaGrules . 39
deltaHrules . 40
deltaSrules . 41
DesignArray . 42
DesignPrimers . 44
DesignProbes . 47
DesignSignatures . 50
DigestDNA . 54
Disambiguate . 55
DistanceMatrix . 56
FindChimeras . 58
FindSynteny . 61
FormGroups . 63
HEC_MI . 64
IdClusters . 65
IdConsensus . 67
IdentifyByRank . 69
IdLengths . 70
MaskAlignment . 71
MeltDNA . 72
MIQS . 74
MODELS . 75
NNLS . 76
OrientNucleotides . 78
PredictHEC . 79
RESTRICTION_ENZYMES . 81
SearchDB . 81
Seqs2DB . 83
StaggerAlignment . 84
Synteny . 86
TerminalChar . 88
TileSeqs . 89

Index 91

DECIPHER-package Database Enabled Code for Ideal Probe Hybridization Employing R

Description

Database Enabled Code for Ideal Probe Hybridization Employing R (DECIPHER) is a software
toolset that can be used for deciphering and managing biological sequences efficiently using the R
statistical programming language. The program is designed to be used with non-destructive work-
flows that guide the user through the process of importing, maintaining, analyzing, manipulating,
and exporting a massive amount of sequences. Some functionality of the program is provided on-
line through web tools. DECIPHER is an ongoing project at the University of Wisconsin - Madison
and is freely available for download.

DECIPHER-package 3

Details

4 DECIPHER-package

Package: DECIPHER
Type: Package
Depends: R (>= 2.13.0), Biostrings (>= 2.35.12), RSQLite (>= 1.0), stats, parallel
Imports: methods, DBI, S4Vectors, IRanges, XVector
LinkingTo: Biostrings, RSQLite, S4Vectors, IRanges, XVector
License: GPL-3
LazyLoad: yes

Index:

Add2DB Add Data To A Database
AdjustAlignment Improve An Existing Alignment By Adjusting Gap

Placements
AlignDB Align Two Sets of Aligned Sequences In A Sequence

Database
AlignProfiles Align Two Sets of Aligned Sequences
AlignSeqs Align A Set of Unaligned Sequences
AlignSynteny Pairwise Aligns Syntenic Blocks
AlignTranslation Align Sequences By Their Amino Acid Translation
AmplifyDNA Simulate Amplification of DNA by PCR
Array2Matrix Create a Matrix Representation of a Microarray
BrowseDB View A Database Table In A Web Browser
BrowseSeqs View Sequences In A Web Browser
CalculateEfficiencyArray Predict the Hybridization Efficiency of

Probe/Target Sequence Pairs
CalculateEfficiencyFISH Predict Thermodynamic Parameters of Probe/Target

Sequence Pairs
CalculateEfficiencyPCR Predict Amplification Efficiency of Primer Sequences
ConsensusSequence Create A Consensus Sequence
CorrectFrameshifts Corrects Frameshift Errors In Protein Coding

Sequences
CreateChimeras Create Artificial Chimeras
DB2Seqs Export Database Sequences to a FASTA or FASTQ File
deltaGrules Free Energy of Hybridization of Probe/Target

Quadruplets
deltaHrules Change in Enthalpy of Hybridization of Primer/Target

Quadruplets in Solution
deltaSrules Change in Entropy of Hybridization of Primer/Target

Quadruplets in Solution
DesignArray Design a set of DNA Microarray Probes for Detecting

Sequences
DesignPrimers Design Primers Targeting a Specific Group of

Sequences
DesignProbes Design FISH Probes Targeting a Specific Group of

Sequences
DesignSignatures Design PCR Primers for Amplifying Group-Specific

Signatures
DigestDNA Simulate Restriction Digestion of DNA
Disambiguate Expand Ambiguities into All Permutations of a

DNAStringSet
DistanceMatrix Calculate the Distance Between Sequences

Add2DB 5

FindChimeras Find Chimeras In A Sequence Database
FindSynteny Finds Synteny In A Sequence Database
FormGroups Forms Groups By Rank
HEC_MI Mutual Information for Protein Secondary Structure

Prediction
IdClusters Cluster Sequences By Distance or Sequence
IdConsensus Create Consensus Sequences by Groups
IdentifyByRank Identify By Taxonomic Rank
IdLengths Determine the Number of Bases, Nonbases, and Width

of Each Sequence
MaskAlignment Masks Highly Variable Regions of An Alignment
MeltDNA Simulate Melting of DNA
MIQS MIQS Amino Acid Substitution Matrix
MODELS Available Models of DNA Evolution
NNLS Sequential Coordinate-wise Algorithm for the

Non-negative Least Squares Problem
OrientNucleotides Orient nucleotide sequences
PredictHEC Predict Protein Secondary Structure
RESTRICTION_ENZYMES Common Restriction Enzyme's Cut Sites
SearchDB Obtain Specific Sequences from A Database
Seqs2DB Add Sequences from Text File to Database
StaggerAlignment Produce a Staggered Alignment
Synteny-class Synteny blocks and hits
TerminalChar Determine the Number of Terminal Characters
TileSeqs Form a Set of Tiles for Each Group of Sequences

Author(s)

Erik Wright

Maintainer: Erik Wright <DECIPHER@cae.wisc.edu>

Add2DB Add Data To A Database

Description

Adds a data.frame to a database table by row.names.

Usage

Add2DB(myData,
dbFile,
tblName = "DNA",
clause = "",
verbose = TRUE)

Arguments

myData Data frame containing information to be added to the dbFile.

dbFile A SQLite connection object or a character string specifying the path to the
database file.

6 AdjustAlignment

tblName Character string specifying the table in which to add the data.

clause An optional character string to append to the query as a clause.

verbose Logical indicating whether to display each query as it is sent to the database.

Details

Data contained in myData will be added to the tblName by its respective row.names.

Value

Returns TRUE if the data was added successfully, or FALSE otherwise.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Seqs2DB, SearchDB, BrowseDB

Examples

Create a sequence database
gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
dbConn <- dbConnect(SQLite(), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Bacteria")

Identify the sequence lengths
l <- IdLengths(dbConn)

Add lengths to the database
Add2DB(l, dbConn)

View the added lengths
BrowseDB(dbConn)
dbDisconnect(dbConn)

AdjustAlignment Improve An Existing Alignment By Adjusting Gap Placements

Description

Makes small adjustments by shifting groups of gaps left and right to find their optimal positioning
in a multiple sequence alignment.

Usage

AdjustAlignment(myXStringSet,
perfectMatch = 5,
misMatch = 0,
gapLetter = -3,
gapOpening = -0.1,
gapExtension = 0,

AdjustAlignment 7

substitutionMatrix = NULL,
shiftPenalty = -0.2,
threshold = 0.1,
weight = 1,
processors = NULL)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.
perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-

ment. Only used for DNAStringSet or RNAStringSet inputs.
misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-

ment. Only used for DNAStringSet or RNAStringSet inputs.
gapLetter Numeric giving the cost for aligning gaps to letters. A lower value (more nega-

tive) encourages the overlapping of gaps across different sequences in the align-
ment.

gapOpening Numeric giving the cost for opening or closing a gap in the alignment.
gapExtension Numeric giving the cost for extending an open gap in the alignment.
substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
or the name of the amino acid substitution matrix to use in alignment. The latter
may be one of the following: “BLOSUM45”, “BLOSUM50”, “BLOSUM62”,
“BLOSUM80”, “BLOSUM100”, “PAM30”, “PAM40”, “PAM70”, “PAM120”,
“PAM250”, or “MIQS”. The default (NULL) will use the perfectMatch and
misMatch penalties for DNA/RNA or “MIQS” for AA. (See examples section
below.)

shiftPenalty Numeric giving the cost for every additional position that a group of gaps is
shifted.

threshold Numeric specifying the improvement in score required to permanently apply an
adjustment to the alignment.

weight A numeric vector of weights for each sequence, or a single number implying
equal weights.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

The process of multiple sequence alignment often results in the integration of small imperfections
into the final alignment. Some of these errors are obvious by-eye, which encourages manual refine-
ment of automatically generated alignments. However, the manual refinement process is inherently
subjective and time consuming. AdjustAlignment refines an existing alignment in a process sim-
ilar to that which might be applied manually, but in a repeatable and must faster fashion. This
function shifts all of the gaps in an alignment to the left and right to find their optimal positioning.
The optimal position is defined as the position that maximizes the alignment “score”, which is de-
termined by the input parameters. The resulting alignment will be similar to the input alignment but
with many imperfections eliminated. Note that the affine gap penalties here are different from the
more flexible penalties used in AlignProfiles, and have been optimized independently.

Value

An XStringSet of aligned sequences.

8 AlignDB

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright (2015) "DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment". BMC Bioinformatics, doi:10.1186/s12859-015-0749-z.

See Also

AlignSeqs, AlignTranslation, StaggerAlignment

Examples

a trivial example
aa <- AAStringSet(c("ARN-PK", "ARRP-K"))
aa
AdjustAlignment(aa)

a real example
fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
adjustedDNA <- AdjustAlignment(dna)
BrowseSeqs(adjustedDNA, highlight=1)
adjustedDNA==dna # most sequences were adjusted

AlignDB Align Two Sets of Aligned Sequences In A Sequence Database

Description

Merges the two separate sequence alignments in a database. The aligned sequences must have
separate identifiers in the same table or be located in different database tables.

Usage

AlignDB(dbFile,
tblName = "DNA",
identifier = "",
type = "DNAStringSet",
add2tbl = "DNA",
batchSize = 10000,
perfectMatch = 5,
misMatch = 0,
gapOpening = -13,
gapExtension = -1,
gapPower = -1,
terminalGap = -5,
normPower = 1,
substitutionMatrix = NULL,
processors = NULL,
verbose = TRUE)

AlignDB 9

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table(s) where the sequences are located. If two
tblNames are provided then the sequences in both tables will be aligned.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected. If two identifiers are
provided then the set of sequences matching each identifier will be aligned.

type The type of XStringSet being processed. This should be (an abbreviation of)
one of "AAStringSet", "DNAStringSet", or "RNAStringSet".

add2tbl Character string specifying the table name in which to add the aligned sequences.

batchSize Integer specifying the number of sequences to process at a time.

perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-
ment. Only used when type is DNAStringSet or RNAStringSet.

misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-
ment. Only used when type is DNAStringSet or RNAStringSet.

gapOpening Numeric giving the cost for opening a gap in the alignment.

gapExtension Numeric giving the cost for extending an open gap in the alignment.

gapPower Numeric specifying the exponent to use in the gap cost function.

terminalGap Numeric giving the cost for allowing leading and trailing gaps ("-" or "." char-
acters) in the alignment. Either two numbers, the first for leading gaps and the
second for trailing gaps, or a single number for both.

normPower Numeric giving the exponent that controls the degree of normalization applied to
scores by column occupancy. A normPower of 0 does not normalize the scores,
which results in all columns of the profiles being weighted equally, and is the
optimal value for aligning fragmentary sequences. A normPower of 1 normalizes
the score for aligning two positions by their column occupancy (1 - fraction of
gaps). A normPower greater than 1 more strongly discourages aligning with
“gappy” regions of the alignment.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
or the name of the amino acid substitution matrix to use in alignment. The latter
may be one of the following: “BLOSUM45”, “BLOSUM50”, “BLOSUM62”,
“BLOSUM80”, “BLOSUM100”, “PAM30”, “PAM40”, “PAM70”, “PAM120”,
“PAM250”, or “MIQS”. The default (NULL) will use the perfectMatch and
misMatch penalties for DNA/RNA or “MIQS” for AA. (See examples section
below.)

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

Sometimes it is useful to align two large sets of sequences, where each set of sequences is already
aligned but the two sets are not aligned to each other. AlignDB first builds a profile of each sequence
set in increments of batchSize so that the entire sequence set is not required to fit in memory. Next
the two profiles are aligned using dynamic programming. Finally, the new alignment is applied to
all the sequences as they are incrementally added to the add2tbl.

10 AlignProfiles

Two identifiers or tblNames must be provided, indicating the two sets of sequences to align.
The sequences corresponding to the first identifier and tblName will be aligned to those of
the second identifier or tblName. The aligned sequences are added to add2tbl under a new
identifier formed from the concatenation of the two identifiers or tblNames. (See examples
section below.)

Value

Returns the number of newly aligned sequences added to the database.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright (2015) "DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment". BMC Bioinformatics, doi:10.1186/s12859-015-0749-z.

See Also

AlignProfiles, AlignSeqs, AlignTranslation

Examples

gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")

Align two tables and place result into a third
dbConn <- dbConnect(SQLite(), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Seqs1", tblName="Set1")
Seqs2DB(fas, "FASTA", dbConn, "Seqs2", tblName="Set2")
AlignDB(dbConn, tblName=c("Set1", "Set2"), add2tbl="AlignedSets")
l <- IdLengths(dbConn, "AlignedSets", add2tbl=TRUE)
BrowseDB(dbConn, tblName="AlignedSets") # all sequences have the same width
dbDisconnect(dbConn)

Align two identifiers and place the result in the same table
dbConn <- dbConnect(SQLite(), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Seqs1")
Seqs2DB(fas, "FASTA", dbConn, "Seqs2")
AlignDB(dbConn, identifier=c("Seqs1", "Seqs2"))
l <- IdLengths(dbConn, add2tbl=TRUE)
BrowseDB(dbConn) # note the sequences with a new identifier
dbDisconnect(dbConn)

AlignProfiles Align Two Sets of Aligned Sequences

Description

Aligns two sets of one or more aligned sequences by first generating representative profiles, then
aligning the profiles with dynamic programming, and finally merging the two aligned sequence sets.

AlignProfiles 11

Usage

AlignProfiles(pattern,
subject,
p.weight = 1,
s.weight = 1,
p.struct = NULL,
s.struct = NULL,
perfectMatch = 5,
misMatch = 0,
gapOpening = -13,
gapExtension = -1,
gapPower = -1,
terminalGap = -5,
restrict = -1000,
anchor = 0.7,
normPower = 1,
substitutionMatrix = NULL,
structureMatrix = NULL,
processors = NULL)

Arguments

pattern An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences
to use as the pattern.

subject A XStringSet object of aligned sequences to use as the subject. Must match
the type of the pattern.

p.weight A numeric vector of weights for each sequence in the pattern to use in generating
a profile, or a single number implying equal weights.

s.weight A numeric vector of weights for each sequence in the subject to use in generating
a profile, or a single number implying equal weights.

p.struct Either NULL (the default), or a list of matrices with one list element per sequence
in the pattern. (See details section below.)

s.struct Either NULL (the default), or a list of matrices with one list element per sequence
in the subject. (See details section below.)

perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

gapOpening Numeric giving the cost for opening a gap in the alignment.
gapExtension Numeric giving the cost for extending an open gap in the alignment.
gapPower Numeric specifying the exponent to use in the gap cost function. (See details

section below.)
terminalGap Numeric giving the cost for allowing leading and trailing gaps ("-" or "." char-

acters) in the alignment. Either two numbers, the first for leading gaps and the
second for trailing gaps, or a single number for both.

restrict Numeric specifying the lowest relative score to consider when aligning. The
default (-1000) will align most inputs that can reasonably be globally aligned
without any loss in accuracy. Input sequences with high similarity could be
more restricted (e.g., -500), whereas a pattern and subject with little overlap
should be less restricted (e.g., -10000). (See details section below.)

12 AlignProfiles

anchor Numeric giving the fraction of sequences with identical k-mers required to be-
come an anchor point, or NA to not use anchors. Alternatively, a matrix specify-
ing anchor regions. (See details section below.)

normPower Numeric giving the exponent that controls the degree of normalization applied to
scores by column occupancy. A normPower of 0 does not normalize the scores,
which results in all columns of the profiles being weighted equally, and is the
optimal value for aligning fragmentary sequences. A normPower of 1 normalizes
the score for aligning two positions by their column occupancy (1 - fraction of
gaps). A normPower greater than 1 more strongly discourages aligning with
“gappy” regions of the alignment.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
or the name of the amino acid substitution matrix to use in alignment. The latter
may be one of the following: “BLOSUM45”, “BLOSUM50”, “BLOSUM62”,
“BLOSUM80”, “BLOSUM100”, “PAM30”, “PAM40”, “PAM70”, “PAM120”,
“PAM250”, or “MIQS”. The default (NULL) will use the perfectMatch and
misMatch penalties for DNA/RNA or “MIQS” for AA. (See examples section
below.)

structureMatrix

A structure matrix if p.struct and s.struct are supplied, or NULL otherwise.
(See examples section below.)

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

Profiles are aligned using dynamic programming, a variation of the Needleman-Wunsch algorithm
for global alignment. The dynamic programming method requires order N*M time and memory
space where N and M are the width of the pattern and subject. This method works by filling in
a matrix of the possible “alignment space” by considering all matches, insertions, and deletions
between two sequence profiles. The highest scoring alignment is then used to add gaps to each of
the input sequence sets.

Heuristics can be useful to improve performance on long input sequences. The restrict parameter
can be used to dynamically constrain the possible “alignment space” to only paths that will likely
include the final alignment, which in the best case can improve the speed from quadratic time to
linear time. The degree of restriction is important, and if the sequences are not mostly overlapping
then restrict should be relaxed (more negative than the default). For example, if aligning a pattern
to a much longer subject then restrict should be set to -1e10 to prevent restriction.

The argument anchor can be used to split the global alignment into multiple sub-alignments. This
can greatly decrease the memory requirement for long sequences when appropriate anchor points
can be found. Anchors are 15-mer (for DNA/RNA) or 7-mer (for AA) subsequences that are shared
between at least anchor fraction of pattern(s) and subject(s). Anchored ranges are extended
along the length of each sequence in a manner designed to split the alignment into sub-alignments
that can be separately solved. For most input sequences anchor has no effect on accuracy, but
anchoring can be disabled by setting anchor=NA.

Alternatively, anchor can be a matrix with 4 rows and one column per anchor. The first two rows
correspond to the anchor start and end positions in the pattern sequence(s), and the second two rows
are the equivalent anchor region in the subject sequence(s). Anchors specified in this manner must
be strictly increasing (non-overlapping) in both sequences, and have an anchor width of at least two
positions. Note that the anchors do not have to be equal length, in which case the anchor regions

AlignProfiles 13

will also be aligned. Manually splitting the alignment into more subtasks can sometimes make it
more efficient, but typically automatic anchoring is effective.

The arguments p.struct and s.struct may be used to provide secondary structure probabilities.
Each list element must contain a matrix with dimensions q*w, where q is the number of possible
secondary structure states, and w is the width of the unaligned pattern sequence. Values in each ma-
trix represent the probability of the given state at that position in the sequence. A structureMatrix
must be supplied along with the structures. The function PredictHEC can be used to predict sec-
ondary structure probabilities in the format required by AlignProfiles.

The gap cost function is based on the observation that gap lengths are best approximated by a
Zipfian distribution (Chang & Benner, 2004). The cost of inserting a gap of length L is equal to:
gapOpening + gapExtension*sum(seq_len(L - 1)^gapPower) when L > 1, and gapOpen
when L = 1. This function effectively penalizes shorter gaps significantly more than longer gaps
when gapPower < 0, and is equivalent to the affine gap penalty when gapPower is 0.

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Chang, M. S. S., & Benner, S. A. (2004). Empirical Analysis of Protein Insertions and Deletions
Determining Parameters for the Correct Placement of Gaps in Protein Sequence Alignments. Jour-
nal of Molecular Biology, 341(2), 617-631.

Needleman S., Wunsch, C. (1970). A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.

ES Wright (2015) "DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment". BMC Bioinformatics, doi:10.1186/s12859-015-0749-z.

See Also

AlignDB, AlignSeqs, AlignSynteny, AlignTranslation, MIQS

Examples

align two sets of sequences
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna1 <- SearchDB(db, remove="common", limit=100) # the first 100 sequences
dna2 <- SearchDB(db, remove="common", limit="100,100") # the rest
alignedDNA <- AlignProfiles(dna1, dna2)
BrowseSeqs(alignedDNA, highlight=1)

specify a DNA substitution matrix
subMatrix <- matrix(0,

nrow=4, ncol=4,
dimnames=list(DNA_BASES, DNA_BASES))

diag(subMatrix) <- 5 # perfectMatch
alignedDNA.defaultSubM <- AlignProfiles(dna1, dna2, substitutionMatrix=subMatrix)
all(alignedDNA.defaultSubM==alignedDNA)

specify a different DNA substitution matrix

14 AlignSeqs

subMatrix2 <- matrix(c(12, 3, 5, 3, 3, 12, 3, 6, 5, 3, 11, 3, 3, 6, 3, 9),
nrow=4, ncol=4,
dimnames=list(DNA_BASES, DNA_BASES))

alignedDNA.alterSubM <- AlignProfiles(dna1, dna2, substitutionMatrix=subMatrix2)
all(alignedDNA.alterSubM==alignedDNA)

anchors are found automatically by default, but it is also
possible to specify anchor regions between the sequences
anchors <- matrix(c(774, 788, 752, 766), nrow=4)
anchors
subseq(dna1, anchors[1, 1], anchors[2, 1])
subseq(dna2, anchors[3, 1], anchors[4, 1])
alignedDNA2 <- AlignProfiles(dna1, dna2, anchor=anchors)

AlignSeqs Align A Set of Unaligned Sequences

Description

Performs profile-to-profile alignment of multiple unaligned sequences following a guide tree.

Usage

AlignSeqs(myXStringSet,
guideTree = NULL,
iterations = 1,
refinements = 1,
gapOpening=c(-16, -12),
gapExtension=c(-2, -1),
structures = NULL,
FUN = AdjustAlignment,
levels = c(0.95, 0.7, 10, 5),
processors = NULL,
verbose = TRUE,
...)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of unaligned se-
quences.

guideTree Either NULL or a data.frame giving the ordered tree structure in which to align
profiles. If NULL then a guide tree will be automatically constructed based on the
order of shared k-mers.

iterations Number of iteration steps to perform. During each iteration step the guide tree
is regenerated based on the alignment and the sequences are realigned.

refinements Number of refinement steps to perform. During each refinement step groups
of sequences are realigned to rest of the sequences, and the best of these two
alignments (before and after realignment) is kept.

gapOpening Single numeric giving the cost for opening a gap in the alignment, or two num-
bers giving the minimum and maximum costs. In the latter case the cost will
be varied depending upon whether the groups of sequences being aligned are
nearly identical or maximally distant.

AlignSeqs 15

gapExtension Single numeric giving the cost for extending an open gap in the alignment, or
two numbers giving the minimum and maximum costs. In the latter case the cost
will be varied depending upon whether the groups of sequences being aligned
are nearly identical or maximally distant.

structures Either a list of secondary structure probabilities matching the structureMatrix,
such as that output by PredictHEC, or NULL to generate the structures automati-
cally. Only applicable if myXStringSet is an AAStringSet.

FUN A function to be applied after each profile-to-profile alignment. (See details
section below.)

levels Numeric with four elements specifying the levels above which to apply FUN.
(See details section below.)

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

... Further arguments to be passed directly to AlignProfiles, including perfectMatch,
misMatch, gapPower, terminalGap, restrict, anchor, normPower, substitutionMatrix,
and structureMatrix.

Details

The profile-to-profile method aligns a sequence set by merging profiles along a guide tree until
all the input sequences are aligned. This process has three main steps: (1) If guideTree=NULL,
an initial single-linkage guide tree is constructed based on a distance matrix of shared k-mers.
If an initial guideTree is provided then the guideTree should be provided in the output given
by IdClusters with ascending levels of cutoff. (2) If iterations is greater than zero, then a
UPGMA guide tree is built based on the initial alignment and the sequences are re-aligned along
this tree. This process repeated iterations times or until convergence. (3) If refinements is
greater than zero, then groups of sequences are iteratively realigned to the full-alignment. This
process generates two alignments, the best of which is chosen based on its sum-of-pairs score. This
refinement process is repeated refinements times, or until no improvement can be made.

The FUN function is applied during each of the three steps based on levels. The purpose of
levels is to speed-up the alignment process by not running FUN on the alignment when it is un-
necessary. The default levels specify that FUN should be run on the sequences when the initial
tree is above 0.95 average dissimilarity, when the iterative tree is above 0.7 average dissimilarity,
and after every tenth improvement made during refinement. The final element of levels prevents
FUN from being applied at any point to less than 5 sequences. The FUN function is always ap-
plied just before returning the alignment, independently of the first three values of levels. The
default FUN is AdjustAlignment, but FUN accepts any function that takes in an XStringSet as
its first argument, and weights, processors, and substitutionMatrix as optional arguments.
For example, the default FUN could be altered to not perform any function by setting it equal to
FUN=function(x, ...) return(x) where x is an XStringSet.

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

16 AlignSynteny

References

ES Wright (2015) "DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment". BMC Bioinformatics, doi:10.1186/s12859-015-0749-z.

See Also

AdjustAlignment, AlignDB, AlignProfiles, AlignSynteny, AlignTranslation, IdClusters,
StaggerAlignment

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db, remove="all")
alignedDNA <- AlignSeqs(dna)
BrowseSeqs(alignedDNA, highlight=1)

AlignSynteny Pairwise Aligns Syntenic Blocks

Description

Performs pairwise alignment of all blocks of synteny between sets of sequences.

Usage

AlignSynteny(synteny,
dbFile,
tblName = "DNA",
identifier = "",
verbose = TRUE,
...)

Arguments

synteny An object of class “Synteny”.

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the sequences are located that were
used to create the object synteny.

identifier Optional character string used to narrow the search results to those matching a
specific identifier, or an integer sequence corresponding to indices of rownames(synteny).
If "" (the default), then all identifiers are selected from synteny.

verbose Logical indicating whether to display progress.

... Further arguments to be passed directly to AlignProfiles, including perfectMatch,
misMatch, gapPower, terminalGap, restrict, normPower, and substitutionMatrix.

Details

AlignSynteny will extract all sequence regions belonging to syntenic blocks in synteny, and per-
form pairwise alignment with AlignProfiles. Hits are used to anchor the alignment such that only
the regions between anchors are aligned.

AlignTranslation 17

Value

A list with elements for each pair of identifiers in synteny. Each list element contains a
DNAStringSetList one pairwise alignment per syntenic block.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

FindSynteny, Synteny-class

Examples

db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db, minScore=50)
DNA <- AlignSynteny(synteny, db)
names(DNA)
DNA[[1]] # the first set of pairwise alignments
DNA[[1]][[1]] # the first block of synteny between H9N2 & H5N1
unlist(DNA[[2]]) # a DNAStringSet of synteny between H9N2 & H2N2

AlignTranslation Align Sequences By Their Amino Acid Translation

Description

Performs alignment of a set of DNA or RNA sequences by aligning their corresponding amino acid
sequences.

Usage

AlignTranslation(myXStringSet,
sense = "+",
direction = "5' to 3'",
readingFrame = NA,
asAAStringSet = FALSE,
geneticCode = GENETIC_CODE,
...)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object of unaligned sequences.

sense Single character specifying sense of the input sequences, either the positive
("+") coding strand or negative ("-") non-coding strand.

direction Direction of the input sequences, either "5' to 3'" or "3' to 5'".

readingFrame Numeric vector giving a single reading frame for all of the sequences, or an in-
dividual reading frame for each sequence in myXStringSet. The readingFrame
can be either 1, 2, 3 to begin translating on the first, second, and third nucleotide
position, or NA (the default) to guess the reading frame. (See details section
below.)

18 AlignTranslation

asAAStringSet Logical determining whether to return the aligned translation as an AAStringSet
rather than the input type. Incomplete starting and ending codons will be trans-
lated into the mask character ("+").

geneticCode Named character vector in the same format as GENETIC_CODE (the default),
which represents the standard genetic code.

... Further arguments to be passed directly to AlignSeqs, including gapOpening,
gapExtension, gapPower, terminalGap, restrict, anchor, normPower, substitutionMatrix,
structureMatrix, guideTree, iterations, refinements, structures, FUN,
and levels.

Details

Alignment of proteins is often more accurate than alignment of their coding nucleic acid sequences.
This function aligns the input nucleic acid sequences via aligning their translated amino acid se-
quences. First, the input sequences are translated according to the specified sense, direction,
and readingFrame. The resulting amino acid sequences are aligned using AlignSeqs, and this
alignment is reverse translated into the original sequence type, sense, and direction. Not only is
alignment of protein sequences more accurate, but aligning translations will ensure that the reading
frame is maintained in the nucleotide sequences.

If the readingFrame is NA (the default) then an attempt is made to guess the reading frame of each
sequence based on the number of stop codons in the translated amino acids. For each sequence, the
first reading frame will be chosen (either 1, 2, or 3) without stop codons, except in the last position.
If the number of stop codons is inconclusive for a sequence then the reading frame will default to 1.
The entire length of each sequence is translated in spite of any stop codons identified. Note that this
method is only constructive in circumstances where there is a substantially long coding sequence
with at most a single stop codon expected in the final position, and therefore it is preferable to
specify the reading frame of each sequence if it is known.

Value

An XStringSet matching the input type.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright (2015) "DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment". BMC Bioinformatics, doi:10.1186/s12859-015-0749-z.

See Also

AlignDB, AlignProfiles, AlignSeqs, AlignSynteny, CorrectFrameshifts

Examples

first three sequences translate to MFITP*
and the last sequence translates as MF-TP*
rna <- RNAStringSet(c("AUGUUCAUCACCCCCUAA", "AUGUUCAUAACUCCUUGA",
"AUGUUCAUUACACCGUAG", "AUGUUUACCCCAUAA"))
RNA <- AlignSeqs(rna, verbose=FALSE)
RNA

AmplifyDNA 19

RNA <- AlignTranslation(rna, verbose=FALSE)
RNA

AA <- AlignTranslation(rna, asAAStringSet=TRUE, verbose=FALSE)
AA

example of aligning many protein coding sequences:
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
DNA <- AlignTranslation(dna) # align the translation then reverse translate
DNA

AmplifyDNA Simulate Amplification of DNA by PCR

Description

Predicts the amplification efficiency of theoretical PCR products (amplicons) given one or more
primer sequences.

Usage

AmplifyDNA(primers,
myDNAStringSet,
maxProductSize,
annealingTemp,
P,
ions = 0.2,
includePrimers=TRUE,
minEfficiency = 0.001,
...)

Arguments

primers A DNAStringSet object or character vector with one or more unaligned primer
sequences in 5’ to 3’ orientation.

myDNAStringSet A DNAStringSet object or character vector with unaligned template DNA se-
quences in 5’ to 3’ orientation.

maxProductSize Integer specifying the maximum length of PCR products (amplicons) in nu-
cleotides.

annealingTemp Numeric specifying the annealing temperature used in the PCR reaction.
P Numeric giving the molar concentration of primers in the reaction.
ions Numeric giving the molar sodium equivalent ionic concentration. Values may

range between 0.01M and 1M.
includePrimers Logical indicating whether to include the primer sequences in the theoretical

PCR products. (See details section below.)
minEfficiency Numeric giving the minimum amplification efficiency of PCR products to in-

clude in the output (default 0.1%). (See details section below.)
... Additional arguments to be passed directly to CalculateEfficiencyPCR, in-

cluding batchSize, taqEfficiency, maxDistance, maxGaps, and processors.

20 AmplifyDNA

Details

Exponential amplification in PCR requires the annealing and elongation of two primers from target
sites on opposing strands of the template DNA. If the template DNA sequence (e.g., chromosome)
is known then predictions of theoretical amplicons can be obtained from in silico simulations of
amplification. AmplifyDNA first searches for primer target sites on the template DNA, and then
calculates an amplification efficiency from each target site using CalculateEfficiencyPCR. Am-
biguity codes (IUPAC_CODE_MAP) are supported in the primers, but not in myDNAStringSet to
prevent trivial matches (e.g., runs of N’s).

If taqEfficiency is TRUE (the default), the amplification efficiency of each primer is defined as the
product of hybridization efficiency and elongation efficiency. Amplification efficiency must be at
least minEfficiency for a primer to be amplified in silico. Overall amplification efficiency of the
PCR product is then calculated as the geometric mean of the two (i.e., forward and reverse) primers’
efficiencies. Finally, amplicons are generated if the two primers are within maxProductSize nu-
cleotides downstream of each other.

Potential PCR products are returned, either with or without including the primer sequences in the
amplicon. The default (includePrimers=TRUE) is to incorporate the primer sequences as would
normally occur during amplification. The alternative is to return the complete template sequence
including the target sites, which may not exactly match the primer sequences. Note that amplicons
may be duplicated when different input primers can amplify the same region of DNA.

Value

A DNAStringSet object containing potential PCR products, sorted from highest-to-lowest amplifi-
cation efficiency. The sequences are named by their predicted amplification efficiency followed by
the index of each primer in myDNAStringSet. (See examples section below.)

Note

The program OligoArrayAux (http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux)
must be installed in a location accessible by the system. For example, the following code should
print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

CalculateEfficiencyPCR, DesignPrimers, DesignSignatures, MeltDNA

Examples

data(yeastSEQCHR1)

not run (must have OligoArrayAux installed first):

http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux

Array2Matrix 21

match a single primer that acts as both the forward and reverse
primer1 <- "TGGAAGCTGAAACG"
Not run: AmplifyDNA(primer1, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

perform a typical amplification with two primer sequences:
primer2 <- c("GGCTGTTGTTGGTGTT", "TGTCATCAGAACACCAA")
Not run: AmplifyDNA(primer2, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

perform a multiplex PCR amplification with multiple primers:
primers <- c(primer1, primer2)
Not run: AmplifyDNA(primers, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

Array2Matrix Create a Matrix Representation of a Microarray

Description

Converts the output of DesignArray into the sparse matrix format used by NNLS.

Usage

Array2Matrix(probes,
verbose = TRUE)

Arguments

probes A set of microarray probes in the format output by DesignArray.

verbose Logical indicating whether to display progress.

Details

A microarray can be represented by a matrix of hybridization efficiencies, where the rows represent
each of the probes and the columns represent each the possible templates. This matrix is sparse
since microarray probes are designed to only target a small subset of the possible templates.

Value

A list specifying the hybridization efficiency of each probe to its potential templates.

i Element’s row index in the sparse matrix.

j Element’s column index in the sparse matrix.

x Non-zero elements’ values representing hybridization efficiencies.

dimnames A list of two components: the names of each probe, and the names of each
template.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

22 BrowseDB

References

ES Wright et al. (2013) Identification of Bacterial and Archaeal Communities From Source to Tap.
Water Research Foundation, Denver, CO.

DR Noguera, et al. (2014). Mathematical tools to optimize the design of oligonucleotide probes
and primers. Applied Microbiology and Biotechnology. doi:10.1007/s00253-014-6165-x.

See Also

DesignArray, NNLS

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
names(dna) <- 1:length(dna)
probes <- DesignArray(dna)
A <- Array2Matrix(probes)

BrowseDB View A Database Table In A Web Browser

Description

Opens an html file in a web browser to show the contents of a table in a database.

Usage

BrowseDB(dbFile,
htmlFile = paste(tempdir(), "/db.html", sep = ""),
openURL = interactive(),
tblName = "DNA",
identifier = "",
limit = -1,
orderBy = "row_names",
maxChars = 50,
clause="")

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

htmlFile Character string giving the location where the html file should be written.

openURL Logical indicating whether the htmlFile should be opened in a web browser.

tblName Character string specifying the table to view.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

limit Number of results to display. The default (-1) does not limit the number of
results.

BrowseSeqs 23

orderBy Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.

maxChars Maximum number of characters to display in each column.

clause An optional character string to append to the query as a clause.

Value

Creates an html table containing all the fields of the database table and (if openURL is TRUE) opens
it in the web browser for viewing.

Returns htmlFile if the html file was written successfully.

Note

If viewing a table containing sequences, the sequences are purposefully not shown in the output.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

BrowseSeqs

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
BrowseDB(db)

BrowseSeqs View Sequences In A Web Browser

Description

Opens an html file in a web browser to show the sequences in an XStringSet.

Usage

BrowseSeqs(myXStringSet,
htmlFile = paste(tempdir(), "/myXStringSet.html", sep = ""),
openURL = interactive(),
colorPatterns = TRUE,
highlight = NA,
patterns = c("-", alphabet(myXStringSet, baseOnly=TRUE)),
colors = substring(rainbow(length(patterns),

v=0.8, start=0.9, end=0.7), 1, 7),
colWidth = Inf,
...)

24 BrowseSeqs

Arguments

myXStringSet A XStringSet object of sequences.

htmlFile Character string giving the location where the html file should be written.

openURL Logical indicating whether the htmlFile should be opened in a web browser.

colorPatterns Logical specifying whether to color matched patterns, or an integer vector
providing pairs of start and stop boundaries for coloring.

highlight Numeric specifying which sequence in the set to use for comparison or NA to
color all sequences (default). If highlight is 0 then positions differing from
the consensus sequence are highlighted.

patterns Either an AAStringSet, DNAStringSet, or RNAStringSet object, or a charac-
ter vector containing regular expressions to be colored in the XStringSet. Reg-
ular expressions are searched sequentially with multiple matches allowed, even
within other previously matched patterns. (See details section below.)

colors Character vector providing the color for each of the matched patterns. Typi-
cally a character vector with elements of 7 characters: “#” followed by the red,
blue, green values in hexadecimal (after rescaling to 0 ... 255). Positions given
background color are also given white font.

colWidth Integer giving the maximum number of nucleotides wide the display can be
before starting a new page. Must be a multiple of 20 (e.g., 100), or Inf (the
default) to display all the sequences in one set of rows.

... Additional arguments to adjust the appearance of the consensus sequence at the
base of the display. Passed directly to ConsensusSequence for an AAStringSet,
DNAStringSet, or RNAStringSet, or to consensusString for a BStringSet.

Details

BrowseSeqs converts an XStringSet into html format for viewing in a web browser. If patterns
are supplied then they are matched as regular expressions, and colored according to colors. Some
web browsers cannot quickly display a large amount colored text, so it is recommended to use
color = FALSE or to highlight a sequence when viewing a large XStringSet. Highlighting will
only show all of the characters in the highlighted sequence, and convert all matching positions in
the other sequences into dots without color.

Patterns are not matched across column breaks, so multi-character patterns should be carefully
considered when colWidth is less than the maximum sequence length. Patterns are matched se-
quentially in the order provided, so it is feasible to use nested patterns such as c("ACCTG", "CC").
In this case the “CC” could be colored differently inside the previously colored “ACCTG”. Note that
patterns overlapping the boundaries of a previously matched pattern will not be matched. For ex-
ample, “ACCTG” would not be matched if patterns=c("CC", "ACCTG").

Value

Creates an html file containing sequence data and (if openURL is TRUE) opens it in a web browser
for viewing. The layout has the sequence name on the left, position legend on the top, cumulative
number of nucleotides on the right, and consensus sequence on the bottom.

Returns htmlFile if the html file was written successfully.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

CalculateEfficiencyArray 25

See Also

BrowseDB, ConsensusSequence

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db)
BrowseSeqs(dna, colWidth=100, highlight=1)

color bases in alternating groups with a different color scheme
BrowseSeqs(dna[1:5],
colorPatterns=seq(1, width(dna)[1], 10),
patterns=c("A", "C", "G", "T", "-"),
colors=c("#1E90FF", "#32CD32", "#9400D3", "#000000", "#EE3300"))

color all restriction sites
data(RESTRICTION_ENZYMES)
sites <- RESTRICTION_ENZYMES
sites <- gsub("[^A-Z]", "", sites) # remove non-letters
sites <- DNAStringSet(sites)
rc_sites <- DNAStringSet(sites)
w <- which(sites != rc_sites)
sites <- c(sites, rc_sites[w])
sites <- sites[order(nchar(sites))] # match shorter sites first

dna <- SearchDB(db, remove="all") # unaligned sequences
BrowseSeqs(dna, patterns=sites)

CalculateEfficiencyArray

Predict the Hybridization Efficiency of Probe/Target Sequence Pairs

Description

Calculates the Gibbs free energy and hybridization efficiency of probe/target pairs at varying con-
centrations of the denaturant formamide.

Usage

CalculateEfficiencyArray(probe,
target,
FA = 0,
dGini = 1.96,
Po = 10^-2.0021,
m = 0.1731,
temp = 42,
deltaGrules = NULL)

Arguments

probe A DNAStringSet object or character vector with pairwise-aligned probe se-
quences in 5’ to 3’ orientation.

26 CalculateEfficiencyArray

target A DNAStringSet object or character vector with pairwise-aligned target se-
quences in 5’ to 3’ orientation.

FA A vector of one or more formamide concentrations (as percent v/v).

dGini The initiation free energy. The default is 1.96 [kcal/mol].

Po The effective probe concentration.

m The m-value defining the linear relationship of denaturation in the presence of
formamide.

temp Equilibrium temperature in degrees Celsius.

deltaGrules Free energy rules for all possible base pairings in quadruplets. If NULL, de-
faults to the parameters obtained using NimbleGen microarrays and a Linear
Free Energy Model developed by Yilmaz et al.

Details

This function calculates the free energy and hybridization efficiency (HE) for a given formamide
concentration ([FA]) using the linear free energy model given by:

HE = Po ∗ exp[−(dG0 +m ∗ FA)/RT]/(1 + Po ∗ exp[−(dG0 +m ∗ FA)/RT])

The probe and target input sequences must be aligned in pairs, such that the first probe is aligned
to the first target, second-to-second, and so on. Ambiguity codes in the IUPAC_CODE_MAP are ac-
cepted in probe and target sequences. Any ambiguities will default to perfect match pairings by
inheriting the nucleotide in the same position on the opposite sequence whenever possible. If the
ambiguity results in a mismatch then “T”, “G”, “C”, and “A” are substituted, in that order. For
example, if a probe nucleotide is “S” (“C” or “G”) then it will be considered a “C” if the target
nucleotide in the same position is a “C”, otherwise the ambiguity will be interpreted as a “G”.

If deltaGrules is NULL then the rules defined in data(deltaGrules) will be used. Note that
deltaGrules of the same format may be customized for any application and specified as an input.

Value

A matrix with the predicted Gibbs free energy (dG) and hybridization efficiency (HE) at each
concentration of formamide ([FA]).

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Yilmaz LS, Loy A, Wright ES, Wagner M, Noguera DR (2012) Modeling Formamide Denaturation
of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS
ONE 7(8): e43862. doi:10.1371/journal.pone.0043862.

See Also

deltaGrules

CalculateEfficiencyFISH 27

Examples

probes <- c("AAAAACGGGGAGCGGGGGGATACTG", "AAAAACTCAACCCGAGGAGCGGGGG")
targets <- c("CAACCCGGGGAGCGGGGGGATACTG", "TCGGGCTCAACCCGAGGAGCGGGGG")
result <- CalculateEfficiencyArray(probes, targets, FA=0:40)
dG0 <- result[, "dG_0"]
HE0 <- result[, "HybEff_0"]
plot(result[1, 1:40], xlab="[FA]", ylab="HE", main="Probe/Target # 1", type="l")

CalculateEfficiencyFISH

Predict Thermodynamic Parameters of Probe/Target Sequence Pairs

Description

Calculates the Gibbs free energy, formamide melt point, and hybridization efficiency of probe/target
(DNA/RNA) pairs.

Usage

CalculateEfficiencyFISH(probe,
target,
temp,
P,
ions,
FA,
batchSize = 1000)

Arguments

probe A DNAStringSet object or character vector with unaligned probe sequences in
5’ to 3’ orientation.

target A DNAStringSet object, RNAStringSet, or character vector with unaligned tar-
get or non-target sequences in 5’ to 3’ orientation. The DNA base Thymine will
be treated the same as Uracil.

temp Numeric specifying the hybridization temperature, typically 46 degrees Celsius.

P Numeric giving the molar concentration of probes during hybridization.

ions Numeric giving the molar sodium equivalent ionic concentration. Values may
range between 0.01M and 1M. Note that salt correction is not available for ther-
modynamic rules of RNA/RNA interactions, which were determined at 1 molar
concentration.

FA Numeric concentration (as percent v/v) of the denaturant formamide in the hy-
bridization buffer.

batchSize Integer specifying the number of probes to simulate hybridization per batch. See
the Description section below.

28 CalculateEfficiencyPCR

Details

Hybridization of pairwise probe/target (DNA/RNA) pairs is simulated in silico. Gibbs free en-
ergies are obtained from system calls to OligoArrayAux, which must be properly installed (see the
Notes section below). Probe/target pairs are sent to OligoArrayAux in batches of batchSize, which
prevents systems calls from being too many characters. Note that OligoArrayAux does not support
degeneracy codes (non-base letters), although they are accepted without error. Any sequences with
ambiguity should be expanded into multiple permutations with Disambiguate before input.

Value

A matrix of predicted hybridization efficiency (HybEff), formamide melt point (FAm), and free
energy (ddG1 and dG1) for each probe/target pair of sequences.

Note

The program OligoArrayAux (http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux)
must be installed in a location accessible by the system. For example, the following code should
print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2014) "Automated Design of Probes for rRNA-Targeted Fluorescence In Situ
Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification." Applied
and Environmental Microbiology, doi:10.1128/AEM.01685-14.

See Also

DesignProbes, TileSeqs

Examples

probe <- c("GGGCTTTCACATCAGACTTAAGAAACC", "CCCCACGCTTTCGCGCC")
target <- reverseComplement(DNAStringSet(probe))
not run (must have OligoArrayAux installed first):
Not run: CalculateEfficiencyFISH(probe, target, temp=46, P=250e-9, ions=1, FA=35)

CalculateEfficiencyPCR

Predict Amplification Efficiency of Primer Sequences

Description

Calculates the amplification efficiency of primers from their hybridization efficiency and elongation
efficiency at the target site.

http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux

CalculateEfficiencyPCR 29

Usage

CalculateEfficiencyPCR(primer,
target,
temp,
P,
ions,
batchSize = 1000,
taqEfficiency = TRUE,
maxDistance = 0.4,
maxGaps = 2,
processors = NULL)

Arguments

primer A DNAStringSet object or character vector with unaligned primer sequences in
5’ to 3’ orientation.

target A DNAStringSet object or character vector with unaligned target or non-target
sequences in 5’ to 3’ orientation.

temp Numeric specifying the annealing temperature used in the PCR reaction.

P Numeric giving the molar concentration of primers in the reaction.

ions Numeric giving the molar sodium equivalent ionic concentration. Values may
range between 0.01M and 1M.

batchSize Integer specifying the number of primers to simulate hybridization per batch.
See the Description section below.

taqEfficiency Logical determining whether to make use of elongation efficiency and maxDis-
tance to increase predictive accuracy for Taq DNA Polymerase amplifying primers
with mismatches near the 3’ terminus. Note that this should be set to FALSE if
using a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

maxDistance Numeric specifying the maximal fraction of mismatched base pairings on a
rolling basis beginning from the 3’ end of the primer. Only used if taqEfficiency
is TRUE.

maxGaps Integer specifying the maximum number of insertions or deletions (indels) in
the primer/target alignment. Only used if taqEfficiency is TRUE.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

Amplification of pairwise primer/target pairs is simulated in silico. A complex model of hy-
bridization is employed that takes into account the side reactions resulting from probe-folding,
target-folding, and primer-dimer formation. The resulting hybridization efficiency is multiplied by
the elongation efficiency to predict the overall efficiency of amplification.

Free energy is obtained from system calls to OligoArrayAux, which must be properly installed (see
the Notes section below). Primer/target pairs are sent to OligoArrayAux in batches of batchSize,
which prevents systems calls from being too many characters. Note that OligoArrayAux does not
support degeneracy codes (non-base letters), although they are accepted without error. Any se-
quences with ambiguity should be expanded into multiple permutations with Disambiguate before
input.

30 ConsensusSequence

Value

A vector of predicted efficiencies for amplifying each primer/target pair of sequences.

Note

The program OligoArrayAux (http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux)
must be installed in a location accessible by the system. For example, the following code should
print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

AmplifyDNA, DesignPrimers, DesignSignatures

Examples

primers <- c("AAAAACGGGGAGCGGGGGG", "AAAAACTCAACCCGAGGAGCGCGT")
targets <- reverseComplement(DNAStringSet(primers))
not run (must have OligoArrayAux installed first):
Not run: CalculateEfficiencyPCR(primers, targets, temp=75, P=4e-7, ions=0.225)

ConsensusSequence Create A Consensus Sequence

Description

Forms a consensus sequence representing a set of sequences.

Usage

ConsensusSequence(myXStringSet,
threshold = 0.05,
ambiguity = TRUE,
noConsensusChar = "+",
minInformation = 0.75,
ignoreNonBases = FALSE,
includeTerminalGaps = FALSE)

http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux

ConsensusSequence 31

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

threshold Numeric giving the maximum fraction of sequence information that can be lost
in the consensus sequence.

ambiguity Logical specifying whether to consider ambiguity as split between their respec-
tive nucleotides. Degeneracy codes are specified in the IUPAC_CODE_MAP.

noConsensusChar

Single character from the sequence’s alphabet giving the base to use when there
is no consensus in a position.

minInformation Minimum fraction of information required to form consensus in each position.

ignoreNonBases Logical specifying whether to count gap ("-"), mask ("+"), and unknown (".")
characters towards the consensus.

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" or "." characters
on each end of the sequence) into the formation of consensus.

Details

Two key parameters control the degree of consensus: threshold and minInformation. The default
threshold (0.05) means that at most 5% of sequences will not be represented by the consensus
sequence at any given position. The default minInformation (0.75) specifies that at least 75%
of sequences must contain the information in the consensus, otherwise the noConsensusChar is
used. If the specified threshold results in the choice of an ambiguity code that does not represent
minInformation fraction of the sequences, then the noConsensusChar is used.

If ambiguity = TRUE (the default) then degeneracy codes are split between their respective bases
according to the IUPAC_CODE_MAP for DNA/RNA, or AMINO_ACID_CODE for AA. For example, an
“R” in a DNAStringSet would count as half an “A” and half a “G”. If ambiguity = FALSE then
degeneracy codes are not considered in forming the consensus. For an AAStringSet input, the lack
of degeneracy codes generally results in “X” in positions with mismatches, unless the threshold
is set higher than 0.05 (the default).

If includeNonBases = TRUE (the default) then gap ("-"), mask ("+"), and unknown (".") characters
are counted towards the consensus, otherwise they are omitted from calculation of the consensus.
Note that gap ("-") and unknown (".") characters are treated interchangeably as gaps when forming
the consensus sequence. For this reason, the consensus of a position with all unknown (".") charac-
ters will be a gap ("-"). Also, note that if consensus is formed between different length sequences
then it will represent only the longest sequences at the end. For this reason the consensus sequence
is generally based on a sequence alignment so that all of the sequences will have equal lengths.

Value

An XStringSet with a single consensus sequence matching the input type.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Disambiguate, IdConsensus, Seqs2DB

32 CorrectFrameshifts

Examples

dna <- DNAStringSet(c("ANGCT-","-ACCT-"))
ConsensusSequence(dna)
returns "ANSCT-"

aa <- AAStringSet(c("ANQIH-", "ADELW."))
ConsensusSequence(aa)
returns "ABZJX-"

CorrectFrameshifts Corrects Frameshift Errors In Protein Coding Sequences

Description

Corrects the reading frame to mitigate the impact of frameshift errors caused by insertions or dele-
tions in unaligned nucleotide sequences.

Usage

CorrectFrameshifts(myXStringSet,
myAAStringSet,
type = "indels",
acceptDistance = 0.01,
rejectDistance = 0.60,
maxComparisons = 10,
gapOpening = -13,
gapExtension = -1,
frameShift = -15,
geneticCode = GENETIC_CODE,
substitutionMatrix = "MIQS",
verbose = TRUE,
processors = NULL)

Arguments

myXStringSet A DNAStringSet or RNAStringSet of unaligned protein coding sequences in 5’
to 3’ orientation.

myAAStringSet An AAStringSet of reference sequences having accurate translations.

type Character string indicating the type of result desired. This should be (an ab-
breviation of) one of "indels", "sequences", or "both". (See details section
below.)

acceptDistance Numeric giving the maximum distance from a reference sequence that is accept-
able to skip any remaining comparisons.

rejectDistance Numeric giving the maximum distance from a reference sequence that is al-
lowed when correcting frameshifts. Sequences in myXStringSet that are greater
than rejectDistance from the nearest reference sequence will only have their
length trimmed from the 3’-end to a multiple of 3 nucleotides without any
frameshift correction.

maxComparisons The number of reference comparisons to make before stopping the search for a
closer reference sequence.

CorrectFrameshifts 33

gapOpening Numeric giving the cost for opening a gap between the query and reference
sequences.

gapExtension Numeric giving the cost for extending an open gap between the query and refer-
ence sequences.

frameShift Numeric giving the cost for shifting between frames of the query sequence.

geneticCode Named character vector in the same format as GENETIC_CODE (the default),
which represents the standard genetic code.

substitutionMatrix

Either a substitution matrix representing the substitution scores for matching
two amino acids or the name of the amino acid substitution matrix. The latter
may be one of the following: “BLOSUM45”, “BLOSUM50”, “BLOSUM62”,
“BLOSUM80”, “BLOSUM100”, “PAM30”, “PAM40”, “PAM70”, “PAM120”,
“PAM250”, or “MIQS” (the default).

verbose Logical indicating whether to display progress.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

Accurate translation of protein coding sequences can be greatly disrupted by one or two nucleotide
phase shifts that occasionally occur during DNA sequencing. These frameshift errors can poten-
tially be corrected through comparison with other unshifted protein sequences. This function uses
a set of reference amino acid sequences (AAStringSet) to find and correct frameshift errors in a set
of nucleotide sequences (myXStringSet). First, three frame translation of the nucleotide sequences
is performed, and the nearest reference sequence is selected. Then the optimal reading frame at each
position is determined based on a variation of the Guan & Uberbacher method. Putative insertions
and/or deletions (indels) are returned in the result, typically with close proximity to the true indel
locations.

If type is "sequences" or "both", then frameshifts are corrected by adding N’s and/or removing
nucleotides. Note that this changes the nucleotide sequence, and the new sequence often has mi-
nor errors because the exact location of the indel(s) cannot be determined. However, the original
frameshifts that disrupted the entire downstream sequence are reduced to local perturbations. All
of the returned nucleotide sequences will have a reading frame starting from the first position. This
allows direct translation, and in practice works well if there is a similar reference myAAStringSet
with the correct reading frame. Hence it is more important that myAAStringSet contain a wide
variety of sequences than it is that it contain a lot of sequences.

Multiple inputs control the time required for frameshift correction. The number of sequences in
the reference set (myAAStringSet) will affect the speed of the first search for similar sequences.
Assessing frameshifts in the second step requires order N*M time, where N and M are the lengths
of the query (myXStringSet) and reference sequences. Two parameters control the number of as-
sessments that are made for each sequence: (1) maxComparisons determines the maximum number
of reference sequences to compare to each query sequence, and (2) acceptDist defines the maxi-
mum distance between a query and reference that is acceptable before continuing to the next query
sequence. A lower value for maxComparisons or a higher value for acceptDist will accelerate
frameshift correction, potentially at the expense of some accuracy.

Value

If type is "indels" then the returned object is a list with the same length as myXStringSet. Each
element is a list with four components:

34 CorrectFrameshifts

insertions Approximate positions of inserted nucleotides, which could be removed to cor-
rect the reading frame.

deletions Approximate positions of deleted nucleotides, which could be added back to
correct the reading frame.

distance The amino acid distance from the nearest reference sequence, between 0 and 1.

index The integer index of the reference sequence that was used for frame correction,
or 0 if no reference sequence was within rejectDistance.

If type is "sequences" then the returned object is an XStringSet of the same type as the input
(myXStringSet). Nucleotides are added or deleted as necessary to correct for frameshifts. The
returned sequences all have a reading frame starting from position 1, so that they can be translated
directly.

If type is "both" then the returned object is a list with two components: one for the "indels" and
the other for the "sequences".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Guan, X., & Uberbacher, E. C. (1996). Alignments of DNA and protein sequences containing
frameshift errors. Computer Applications in the Biosciences : CABIOS, 12(1), 31-40.

See Also

AlignTranslation, OrientNucleotides

Examples

fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

introduce artificial indels
n_ins <- 2 # insertions per sequence
shifted <- replaceAt(dna,
lapply(width(dna),
sample,
n_ins),
sample(DNA_BASES,
n_ins,
replace=TRUE))
n_dels <- 1 # deletions per sequence
shifted <- replaceAt(shifted,
RangesList(lapply(width(shifted),
function(x) {
IRanges(sample(x,
n_dels),
width=1)
})))

to make frameshift correction more challenging,
only supply 20 reference amino acid sequences
s <- sample(length(dna), 20)
x <- CorrectFrameshifts(shifted,

CreateChimeras 35

translate(dna[s]),
type="both")

there was a wide range of distances
to the nearest reference sequence
quantile(unlist(lapply(x[[1]], `[`, "distance")))

none of the sequences were > rejectDistance
from the nearest reference sequence
length(which(unlist(lapply(x[[1]], `[`, "index"))==0))

the number of indels was generally correct
table(unlist(lapply(x[[1]], function(x) {
length(x$insertions)})))/length(shifted)
table(unlist(lapply(x[[1]], function(x) {
length(x$deletions)})))/length(shifted)

align and display the translations
AA <- AlignTranslation(x$sequences,
readingFrame=1,
asAAStringSet=TRUE)
BrowseSeqs(AA)

CreateChimeras Create Artificial Chimeras

Description

Creates artificial random chimeras from a set of sequences.

Usage

CreateChimeras(myDNAStringSet,
numChimeras = 10,
numParts = 2,
minLength = 80,
maxLength = Inf,
minChimericRegionLength = 30,
randomLengths = TRUE,
includeParents = TRUE,
processors = NULL,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object with aligned sequences.

numChimeras Number of chimeras desired.

numParts Number of chimeric parts from which to form a single chimeric sequence.

minLength Minimum length of the complete chimeric sequence.

maxLength Maximum length of the complete chimeric sequence.
minChimericRegionLength

Minimum length of the chimeric region of each sequence part.

36 DB2Seqs

randomLengths Logical specifying whether to create random length chimeras in addition to ran-
dom breakpoints.

includeParents Whether to include the parents of each chimera in the output.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

Forms a set of random chimeras from the input set of (typically good quality) sequences. The
chimeras are created by merging random sequences at random breakpoints. These chimeras can be
used for testing the accuracy of the FindChimeras or other chimera finding functions.

Value

A DNAStringSet object containing chimeras. The names of the chimeras are specified as "parent
#1 name [chimeric region] (distance from parent to chimera), ...".

If includeParents = TRUE then the parents of the chimeras are included at the end of the result.
The parents are trimmed to the same length as the chimera if randomLengths = TRUE. The names
of the parents are specified as "parent #1 name [region] (distance to parent #2, ...)".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

FindChimeras, Seqs2DB

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db)
chims <- CreateChimeras(dna)
BrowseSeqs(chims)

DB2Seqs Export Database Sequences to a FASTA or FASTQ File

Description

Exports a database containing sequences to a FASTA or FASTQ formatted file of sequence records.

Usage

DB2Seqs(file,
dbFile,
tblName = "DNA",
identifier = "",
type = "BStringSet",
limit = -1,

DB2Seqs 37

replaceChar = "-",
nameBy = "description",
orderBy = "row_names",
removeGaps = "none",
append = FALSE,
width = 80,
compress = FALSE,
chunkSize = 1e5,
clause = "",
verbose = TRUE)

Arguments

file Character string giving the location where the file should be written.

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table in which to extract the data.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

type The type of XStringSet (sequences) to export to a FASTA formatted file or
QualityScaledXStringSet to export to a FASTQ formatted file. This should
be (an unambiguous abbreviation of) one of "DNAStringSet", "RNAStringSet",
"AAStringSet", "BStringSet", "QualityScaledDNAStringSet", "QualityScaledRNAStringSet",
"QualityScaledAAStringSet", or "QualityScaledBStringSet". (See de-
tails section below.)

limit Number of results to display. The default (-1) does not limit the number of
results.

replaceChar Optional character used to replace any characters of the sequence that are not
present in the XStringSet’s alphabet. Not applicable if type=="BStringSet".
(See details section below.)

nameBy Character string giving the column name(s) for identifying each sequence record.
If more than one column name is provided, the information in each column is
concatenated, separated by pairs of colons (“::”), in the order specified.

orderBy Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.

removeGaps Determines how gaps ("-" or "." characters) are removed in the sequences. This
should be (an unambiguous abbreviation of) one of "none", "all" or "common".

append Logical indicating whether to append the output to the existing file.

width Integer specifying the maximum number of characters per line of sequence. Not
applicable when exporting to a FASTQ formatted file.

compress Logical specifying whether to compress the output file using gzip compression.

chunkSize Number of lines of the file to write at a time. Cannot be less than the total
number of sequences if removeGaps is "common".

clause An optional character string to append to the query as a clause.

verbose Logical indicating whether to display status.

38 DECIPHER-defunct

Details

Sequences are exported into either a FASTA or FASTQ file as determined by the type of sequences.
If type is an XStringSet then sequences are exported to FASTA format. Quality information
for QualityScaledXStringSets are interpreted as PredQuality scores before export to FASTQ
format.

If type is "BStringSet" (the default) then sequences are exported to a FASTA file exactly the
same as they were when imported. If type is "DNAStringSet" then all U’s are converted to T’s
before export, and vise-versa if type is "RNAStringSet". All remaining characters not in the
XStringSet’s alphabet are converted to replaceChar.

Value

Writes a FASTA or FASTQ formatted file containing the sequence records in the database.

Returns the number of sequence records written to the file.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
tf <- tempfile()
DB2Seqs(tf, db, limit=10)
file.show(tf)
unlink(tf)

DECIPHER-defunct Defunct functions in package ‘DECIPHER’

Description

These functions are defunct and no longer available.

Details

The following functions are defunct; use the replacement indicated below:

• BrowseSequences: BrowseSeqs

• Amplify: AmplifyDNA

deltaGrules 39

deltaGrules Free Energy of Hybridization of Probe/Target Quadruplets on Mi-
croarrays

Description

An 8D array with four adjacent base pairs of the probe and target sequences at a time. Each di-
mension has five elements defining the residue at that position ("A", "C", "G", "T", or "-"). The
array contains the standard Gibbs free energy change of probe binding (dG, [kcal/mol]) for every
quadruple base pairing.

Usage

data(deltaGrules)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.141 0 0 0 0 ... - attr(*, "dimnames")=List
of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G"
"T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C"
"G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the 4 probe positions from 5’ to 3’. The fifth to eighth
dimensions correspond to the 4 positions from 5’ to 3’ of the target sequence.

Source

Data obtained using NimbleGen microarrays and a Linear Free Energy Model developed by Yilmaz
et al.

References

Yilmaz LS, Loy A, Wright ES, Wagner M, Noguera DR (2012) Modeling Formamide Denaturation
of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS
ONE 7(8): e43862. doi:10.1371/journal.pone.0043862.

Examples

data(deltaGrules)
dG of probe = AGCT / target = A-CT pairing
deltaGrules["A", "G", "C", "T", "A", "-", "C", "T"]

40 deltaHrules

deltaHrules Change in Enthalpy of Hybridization of Primer/Target Quadruplets in
Solution

Description

An 8D array with four adjacent base pairs of the primer and target sequences at a time. Each
dimension has five elements defining the residue at that position ("A", "C", "G", "T", or "-"). The
array contains the standard enthalpy change of probe binding (dH, [kcal/mol]) for every quadruple
base pairing.

Usage

data(deltaHrules)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -7.97 0 0 0 0 ... - attr(*, "dimnames")=List
of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G"
"T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C"
"G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the 4 primer positions from 5’ to 3’. The fifth to eighth
dimensions correspond to the 4 positions from 5’ to 3’ of the target sequence.

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaHrules)
dH of primer = AGCT / target = A-CT pairing
deltaHrules["A", "G", "C", "T", "A", "-", "C", "T"]

deltaSrules 41

deltaSrules Change in Entropy of Hybridization of Primer/Target Quadruplets in
Solution

Description

An 8D array with four adjacent base pairs of the primer and target sequences at a time. Each
dimension has five elements defining the residue at that position ("A", "C", "G", "T", or "-"). The
array contains the standard entropy change of probe binding (dS, [kcal/mol]) for every quadruple
base pairing.

Usage

data(deltaSrules)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.0226 0 0 0 0 ... - attr(*, "dim-
names")=List of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$:
chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$
: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the 4 primer positions from 5’ to 3’. The fifth to eighth
dimensions correspond to the 4 positions from 5’ to 3’ of the target sequence.

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaSrules)
dS of primer = AGCT / target = A-CT pairing
deltaSrules["A", "G", "C", "T", "A", "-", "C", "T"]

42 DesignArray

DesignArray Design a set of DNA Microarray Probes for Detecting Sequences

Description

Chooses the set of microarray probes maximizing sensitivity and specificity to each target consensus
sequence.

Usage

DesignArray(myDNAStringSet,
maxProbeLength = 24,
minProbeLength = 20,
maxPermutations = 4,
numRecordedMismatches = 500,
numProbes = 10,
start = 1,
end = NULL,
maxOverlap = 5,
hybridizationFormamide = 10,
minMeltingFormamide = 15,
maxMeltingFormamide = 20,
minScore = -1e+12,
processors = NULL,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object of aligned consensus sequences.

maxProbeLength The maximum length of probes, not including the poly-T spacer. Ideally less
than 27 nucleotides.

minProbeLength The minimum length of probes, not including the poly-T spacer. Ideally more
than 18 nucleotides.

maxPermutations

The maximum number of probe permutations required to represent a target site.
For example, if a target site has an ’N’ then 4 probes are required because probes
cannot be ambiguous. Typically fewer permutations are preferably because this
requires less space on the microarray and simplifies interpretation of the results.

numRecordedMismatches

The maximum number of recorded potential cross-hybridizations for any target
site.

numProbes The target number of probes on the microarray per input consensus sequence.

start Integer specifying the starting position in the alignment where potential forward
primer target sites begin. Preferably a position that is included in most sequences
in the alignment.

end Integer specifying the ending position in the alignment where potential reverse
primer target sites end. Preferably a position that is included in most sequences
in the alignment.

maxOverlap Maximum overlap in nucleotides between target sites on the sequence.

DesignArray 43

hybridizationFormamide

The formamide concentration (%, vol/vol) used in hybridization at 42 degrees
Celsius. Note that this concentration is used to approximate hybridization effi-
ciency of cross-amplifications.

minMeltingFormamide

The minimum melting point formamide concentration (%, vol/vol) of the de-
signed probes. The melting point is defined as the concentration where half of
the template is bound to probe.

maxMeltingFormamide

The maximum melting point formamide concentration (%, vol/vol) of the de-
signed probes. Must be greater than the minMeltingFormamide.

minScore The minimum score of designed probes before exclusion. A greater minScore
will accelerate the code because more target sites will be excluded from con-
sideration. However, if the minScore is too high it will prevent any target sites
from being recorded.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

The algorithm begins by determining the optimal length of probes required to meet the input con-
straints while maximizing sensitivity to the target consensus sequence at the specified hybridization
formamide concentration. This set of potential target sites is then scored based on the possibility of
cross-hybridizing to the other non-target sequences. The set of probes is returned with the minimum
possibility of cross-hybridizing.

Value

A data.frame with the optimal set of probes matching the specified constraints. Each row lists
the probe’s target sequence (name), start position, length in nucleotides, start and end position
in the sequence alignment, number of permutations, score, melt point in percent formamide
at 42 degrees Celsius, hybridization efficiency (hyb_eff), target site, and probe(s). Probes are
designed such that the stringency is determined by the equilibrium hybridization conditions and not
subsequent washing steps.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2013) Identification of Bacterial and Archaeal Communities From Source to Tap.
Water Research Foundation, Denver, CO.

DR Noguera, et al. (2014). Mathematical tools to optimize the design of oligonucleotide probes
and primers. Applied Microbiology and Biotechnology. doi:10.1007/s00253-014-6165-x.

See Also

Array2Matrix, NNLS

44 DesignPrimers

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
names(dna) <- 1:length(dna)
probes <- DesignArray(dna)
probes[1,]

DesignPrimers Design PCR Primers Targeting a Specific Group of Sequences

Description

Assists in the design of primer sets targeting a specific group of sequences while minimizing the
potential to cross-amplify other groups of sequences.

Usage

DesignPrimers(tiles,
identifier = "",
start = 1,
end = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,
minCoverage = 0.9,
minGroupCoverage = 0.2,
annealingTemp = 64,
P = 4e-07,
monovalent = 0.07,
divalent = 0.003,
dNTPs = 8e-04,
minEfficiency = 0.8,
worstScore = -Inf,
numPrimerSets = 0,
minProductSize = 75,
maxProductSize = 1200,
maxSearchSize = 1500,
batchSize = 1000,
maxDistance = 0.4,
primerDimer = 1e-07,
ragged5Prime = TRUE,
taqEfficiency = TRUE,
induceMismatch = FALSE,
processors = NULL,
verbose = TRUE)

Arguments

tiles A set of tiles representing each group of sequences, as in the format created by
the function TileSeqs.

DesignPrimers 45

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which primers will be
designed. If "" then all identifiers are selected.

start Integer specifying the starting position in the alignment where potential forward
primer target sites begin. Preferably a position that is included in most sequences
in the alignment.

end Integer specifying the ending position in the alignment where potential reverse
primer target sites end. Preferably a position that is included in most sequences
in the alignment.

minLength Integer providing the minimum length of primers to consider in the design.

maxLength Integer providing the maximum length of primers to consider in the design,
which must be less than or equal to the maxLength of tiles.

maxPermutations

Integer providing the maximum number of permutations considered as part of a
forward or reverse primer set.

minCoverage Numeric giving the minimum fraction of the target group’s sequences that must
be covered with the primer set.

minGroupCoverage

Numeric giving the minimum fraction of the target group that must have se-
quence information (not terminal gaps) in the region covered by the primer set.

annealingTemp Numeric indicating the desired annealing temperature that will be used in the
PCR experiment.

P Numeric giving the molar concentration of primers in the reaction.

monovalent The molar concentration of monovalent ([Na] and [K]) ions in solution that will
be used to determine a sodium equivalent concentration.

divalent The molar concentration of divalent ([Mg]) ions in solution that will be used to
determine a sodium equivalent concentration.

dNTPs Numeric giving the molar concentration of free nucleotides added to the solution
that will be used to determine a sodium equivalent concentration.

minEfficiency Numeric giving the minimum efficiency of hybridization desired for the primer
set. Note that an efficiency of 99% (0.99) will greatly lower predicted specificity
of the primer set, however an efficiency of 50% (0.5) may be too low in actuality
to amplify the target group due to error in melt temperature predictions.

worstScore Numeric specifying the score cutoff to remove target sites from consideration.
For example, a worstScore of -5 will remove all primer sets scoring below -5,
although this may eventually result in no primer sets meeting the design criteria.

numPrimerSets Integer giving the optimal number of primer sets (forward and reverse primer
sets) to design. If set to zero then all possible forward and reverse primers are
returned, but the primer sets minimizing potential cross-amplifications are not
chosen.

minProductSize Integer giving the minimum number of nucleotides desired in the PCR product.

maxProductSize Integer giving the maximum number of nucleotides desired in the PCR product.

maxSearchSize Integer giving the maximum number of nucleotides to search for false priming
upstream and downstream of the expected binding site.

batchSize Integer specifying the number of primers to simulate hybridization per batch
that is passed to CalculateEfficiencyPCR.

46 DesignPrimers

maxDistance Numeric specifying the maximal fraction of mismatched base pairings on a
rolling basis beginning from the 3’ end of the primer.

primerDimer Numeric giving the maximum amplification efficiency of potential primer-dimer
products.

ragged5Prime Logical specifying whether the 5’ end or 3’ end of primer permutations targeting
the same site should be varying lengths.

taqEfficiency Logical determining whether to make use of elongation efficiency and maxDis-
tance to increase predictive accuracy for Taq DNA Polymerase amplifying primers
with mismatches near the 3’ terminus. Note that this should be set to FALSE if
using a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

induceMismatch Logical or integer specifying whether to induce a mismatch in the primer with
the template DNA. If TRUE then a mismatch is induced at the 6th primer position.
If an integer value is provided between 2 and 6 then a mismatch is induced in
that primer position, where the 3’-end is defined as position 1.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

Primers are designed for use with Taq DNA Polymerase to maximize sensitivity and specificity for
the target group of sequences. The design makes use of Taq’s bias against certain 3’ terminal mis-
match types in order to increase specificity further than can be achieve with hybridization efficiency
alone.

Primers are designed from a set of tiles to target each identifier while minimizing affinity for
all other tiled groups. Arguments provide constraints that ensure the designed primer sets meet
the specified criteria as well as being optimized for the particular experimental conditions. A
search is conducted through all tiles in the same alignment position to estimate the chance of cross-
amplification with a non-target group.

If numPrimers is greater than or equal to one then the set of forward and reverse primers that
minimizes potential false positive overlap is returned. This will also initiate a thorough search
through all target sites upstream and downstream of the expected binding sites to ensure that the
primers do not bind to nearby positions. Lowering the maxSearchSize will speed up the thorough
search at the expense of potentially missing an unexpected target site. The number of possible
primer sets assessed is increased with the size of numPrimers.

Value

A different data.frame will be returned depending on number of primer sets requested. If no
primer sets are required then columns contain the forward and reverse primers for every possible
position scored by their potential to amplify other identified groups. If one or more primer sets are
requested then columns contain information for the optimal set of forward and reverse primers that
could be used in combination to give the fewest potential cross-amplifications.

Note

The program OligoArrayAux (http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux)
must be installed in a location accessible by the system. For example, the following code should
print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux

DesignProbes 47

To install OligoArrayAux from the downloaded source folder on Unix-like platforms, open the shell
(or Terminal on Mac OS) and type:

cd oligoarrayaux # change directory to the correct folder name

./configure

make

sudo make install

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignSignatures, TileSeqs

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
not run (must have OligoArrayAux installed first):
Not run: tiles <- TileSeqs(db, identifier=c("Acinetobacter","Pseudomonas"))
Not run: primers <- DesignPrimers(tiles, identifier="Acinetobacter", start=280, end=420,

minProductSize=50, numPrimerSets=1)
End(Not run)

DesignProbes Design FISH Probes Targeting a Specific Group of Sequences

Description

Assists in the design of single or dual probes targeting a specific group of sequences while mini-
mizing the potential to cross-hybridize with other groups of sequences.

Usage

DesignProbes(tiles,
identifier = "",
start = 1,
end = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,
minCoverage = 0.9,
minGroupCoverage = 0.2,
hybTemp = 46,
P = 2.5e-07,

48 DesignProbes

Na = 1,
FA = 35,
minEfficiency = 0.5,
worstScore = -Inf,
numProbeSets = 0,
batchSize = 1000,
target = "SSU",
verbose = TRUE)

Arguments

tiles A set of tiles representing each group of sequences, as in the format created by
the function TileSeqs.

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which probes will be
designed. If "" then all identifiers are selected.

start Integer specifying the starting position in the alignment where potential target
sites begin. Preferably a position that is included in most sequences in the align-
ment.

end Integer specifying the ending position in the alignment where potential target
sites end. Preferably a position that is included in most sequences in the align-
ment.

minLength Integer providing the minimum length of probes to consider in the design.

maxLength Integer providing the maximum length of probes to consider in the design, which
must be less than or equal to the maxLength of tiles.

maxPermutations

Integer providing the maximum number of probe permutations required to reach
the desired coverage of a target site.

minCoverage Numeric giving the minimum fraction of the target group’s sequences that must
be covered by the designed probe(s).

minGroupCoverage

Numeric giving the minimum fraction of the target group that must have se-
quence information (not terminal gaps) in the target site’s region.

hybTemp Numeric specifying the hybridization temperature, typically 46 degrees Celsius.

P Numeric giving the molar concentration of probes during hybridization.

Na Numeric giving the molar sodium concentration in the hybridization buffer. Val-
ues may range between 0.01M and 1M. Note that salt correction from 1 molar
is not available for the thermodynamic rules of RNA/RNA interactions.

FA Numeric concentration (as percent v/v) of the denaturant formamide in the hy-
bridization buffer.

minEfficiency Numeric giving the minimum equilibrium hybridization efficiency desired for
designed probe(s) at the defined experimental conditions.

worstScore Numeric specifying the score cutoff to remove target sites from consideration.
For example, a worstScore of -5 will remove all probes scoring below -5, al-
though this may eventually result in no probes meeting the design criteria.

numProbeSets Integer giving the optimal number of dual probe sets to design. If set to zero then
all potential single probes are returned, and the probe sets minimizing potential
false cross-hybridizations are not chosen.

DesignProbes 49

batchSize Integer specifying the number of probes to simulate hybridization per batch that
is passed to CalculateEfficiencyFISH.

target The target molecule used in the generation of tiles. Either "SSU" for the small-
subunit rRNA, "LSU" for the large-subunit rRNA, or "Other". Used to determine
the domain for dG3 calculations, which is plus or minus 200 nucleotides of the
target site if "Other".

verbose Logical indicating whether to display progress.

Details

Probes are designed to maximize sensitivity and specificity to the target group(s) (identifier(s)).
If numProbeSets > 0 then that many pairs of probes with minimal cross-hybridization overlap are
returned, enabling increased specificity with a dual-color approach.

Probes are designed from a set of tiles to target each identifier while minimizing affinity for all
other tiled groups. Arguments provide constraints that ensure the designed probes meet the specified
criteria as well as being optimized for the particular experimental conditions. A search is conducted
through all tiles in the same alignment position to estimate the chance of cross-hybridization with a
non-target group.

Two models are used in design, both of which were experimentally calibrated using denaturation
profiles from 5 organisms belonging to all three domains of life. Probe lengths are chosen to meet
the minEfficiency using a fast model of probe-target hybridization. Candidate probes are then
confirmed using a slower model that also takes into account probe-folding and target-folding. Fi-
nally, probes are scored for their inability to cross-hybridize with non-target groups by using the
fast model and taking into account any mismatches.

Value

A different data.frame will be returned depending on number of primer sets requested. If no
probe sets are required then columns contain the designed probes for every possible position scored
by their potential to cross-hybridize with other identified groups. If one or more probe sets are
requested then columns contain information for the optimal set of probes (probe one and probe
two) that could be used in combination to give the fewest potential cross-hybridizations.

Note

The program OligoArrayAux (http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux)
must be installed in a location accessible by the system. For example, the following code should
print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

To install OligoArrayAux from the downloaded source folder on Unix-like platforms, open the shell
(or Terminal on Mac OS) and type:

cd oligoarrayaux # change directory to the correct folder name

./configure

make

sudo make install

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

http://mfold.rna.albany.edu/?q=DINAMelt/OligoArrayAux

50 DesignSignatures

References

ES Wright et al. (2014) "Automated Design of Probes for rRNA-Targeted Fluorescence In Situ
Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification." Applied
and Environmental Microbiology, doi:10.1128/AEM.01685-14.

See Also

CalculateEfficiencyFISH, TileSeqs

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
not run (must have OligoArrayAux installed first):
Not run: tiles <- TileSeqs(db, identifier=c("Acinetobacter","Pseudomonas"))
Not run: probes <- DesignProbes(tiles, identifier="Acinetobacter", start=280, end=420)

DesignSignatures Design PCR Primers for Amplifying Group-Specific Signatures

Description

Aids the design of pairs of primers for amplifying a unique “signature” from each group of se-
quences. Signatures are distinct PCR products that can be differentiated by their length, melt tem-
perature, or sequence.

Usage

DesignSignatures(dbFile,
tblName = "DNA",
identifier = "",
focusID = NA,
type = "melt",
resolution = 0.5,
levels = 10,
enzymes = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,
annealingTemp = 64,
P = 4e-07,
monovalent = 0.07,
divalent = 0.003,
dNTPs = 8e-04,
minEfficiency = 0.8,
ampEfficiency = 0.5,
numPrimerSets = 100,
minProductSize = 70,
maxProductSize = 400,
kmerSize = 8,
searchPrimers = 500,
maxDictionary = 20000,

DesignSignatures 51

primerDimer = 1e-07,
taqEfficiency = TRUE,
processors = NULL,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the DNA sequences are located.

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which primers will be
designed. If "" then all identifiers are selected.

focusID Optional character string specifying which of the identifiers will be used in
the initial step of designing primers. If NA (the default), then the identifier
with the most sequence information is used as the focusID.

type Character string indicating the type of signature being used to differentiate the
PCR products from each group. This should be (an abbreviation of) one of
"melt", "length", or "sequence".

resolution Numeric specifying the “resolution” of the experiment, or a vector giving the
boundaries of bins. (See details section below.)

levels Numeric giving the number of “levels” that can be distinguished in each bin.
(See details section below.)

enzymes Named character vector providing the cut sites of one or more restriction en-
zymes. Cut sites must be delineated in the same format as RESTRICTION_ENZYMES.

minLength Integer providing the minimum length of primers to consider in the design.

maxLength Integer providing the maximum length of primers to consider in the design.
maxPermutations

Integer providing the maximum number of permutations allowed in a forward
or reverse primer to attain greater coverage of sequences.

annealingTemp Numeric indicating the desired annealing temperature that will be used in the
PCR experiment.

P Numeric giving the molar concentration of primers in the reaction.

monovalent The molar concentration of monovalent ([Na] and [K]) ions in solution that will
be used to determine a sodium equivalent concentration.

divalent The molar concentration of divalent ([Mg]) ions in solution that will be used to
determine a sodium equivalent concentration.

dNTPs Numeric giving the molar concentration of free nucleotides added to the solution
that will be used to determine a sodium equivalent concentration.

minEfficiency Numeric giving the minimum efficiency of hybridization desired for the primer
set.

ampEfficiency Numeric giving the minimum efficiency required for theoretical amplification of
the primers. Note that ampEfficiency must be less than or equal to minEfficiency.
Lower values of ampEfficiency will allow for more PCR products, although
very low values are unrealistic experimentally.

numPrimerSets Integer giving the optimal number of primer sets (forward and reverse primer
sets) to design.

52 DesignSignatures

minProductSize Integer giving the minimum number of nucleotides desired in the PCR product.

maxProductSize Integer giving the maximum number of nucleotides desired in the PCR product.

kmerSize Integer giving the size of k-mers to use in the preliminary search for potential
primers.

searchPrimers Numeric specifying the number of forward and reverse primers to use in search-
ing for potential PCR products. A lower value will result in a faster search, but
potentially neglect some useful primers.

maxDictionary Numeric giving the maximum number of primers to search for simultaneously
in any given step.

primerDimer Numeric giving the maximum amplification efficiency of potential primer-dimer
products.

taqEfficiency Logical determining whether to make use of elongation efficiency to increase
predictive accuracy for Taq DNA Polymerase amplifying primers with mis-
matches near the 3’ terminus. Note that this should be set to FALSE if using
a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

Signatures are group-specific PCR products that can be differentiated by either their melt tempera-
ture profile, length, or sequence. DesignSignatures assists in finding the optimal pair of forward
and reverse primers for obtaining a distinguishable signature from each group of sequences. Groups
are delineated by their unique identifier in the database. The algorithm works by progressively
narrowing the search for optimal primers: (1) the most frequent k-mers are found; (2) these are used
to design primers initially matching the focusID group; (3) the most common forward and reverse
primers are selected based on all of the groups, and ambiguity is added up to maxPermutations;
(4) a final search is performed to find the optimal forward and reverse primer. Pairs of primers are
scored by the distance between the signatures generated for each group, which depends on the type
of experiment.

The arguments resolution and levels control the theoretical resolving power of the experiment.
The signature for a group is discretized or grouped into “bins” each with a certain magnitude of
the signal. Here resolution determines the separation between distinguishable “bins”, and levels
controls the range of values in each bin. A high-accuracy experiment would have many bins and/or
many levels. While levels is interpreted similarly for every type of experiment, resolution is
treated differently depending on type. If type is "melt", then resolution can be either a vector
of different melt temperatures, or a single number giving the change in temperatures that can be
differentiated. A high-resolution melt (HRM) assay would typically have a resolution between 0.25
and 1 degree Celsius. If type is "length" then resolution is either the number of bins between
the minProductSize and maxProductSize, or the bin boundaries. For example, resolution can
be lower (wider bins) at long lengths, and higher (narrower bins) at shorter lengths. If type is
"sequence" then resolution sets the k-mer size used in differentiating amplicons. Oftentimes, 4
to 6-mers are used for the classification of amplicons.

The signatures can be diversified by using a restriction enzyme to digest the PCR products when
type is "melt" or "length". If enzymes are supplied then the an additional search is made to find
the best enzyme to use with each pair of primers. In this case, the output includes all of the primer
pairs, as well as any enzymes that will digest the PCR products of that primer pair. The output is re-
scored to rank the top primer pair and enzyme combination. Note that enzymes is inapplicable when
type is "sequence" because restriction enzymes do not alter the sequence of the DNA. Also, it is

DesignSignatures 53

recommended that only a subset of the available RESTRICTION_ENZYMES are used as input enzymes
in order to accelerate the search for the best enzyme.

Value

A data.frame with the top-scoring pairs of forward and reverse primers, their score, the total
number of PCR products, and associated columns for the restriction enzyme (if enzyme is not NULL).

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Coming soon!

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignPrimers, DigestDNA, Disambiguate, MeltDNA,
RESTRICTION_ENZYMES

Examples

below are suggested inputs for different types of experiments
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")

Not run:
High Resolution Melt (HRM) assay:
primers <- DesignSignatures(db,

resolution=seq(80, 100, 0.25), # degrees Celsius
minProductSize=55, # base pairs
maxProductSize=400)

Primers for next-generation sequencing:
primers <- DesignSignatures(db,

type="sequence",
minProductSize=300, # base pairs
maxProductSize=700,
resolution=5, # 5-mers
levels=5)

Primers for community fingerprinting:
primers <- DesignSignatures(db,

type="length",
levels=2, # presence/absence
minProductSize=200, # base pairs
maxProductSize=1400,
resolution=c(seq(200, 700, 3),

seq(705, 1000, 5),
seq(1010, 1400, 10)))

Primers for restriction fragment length polymorphism (RFLP):
data(RESTRICTION_ENZYMES)
myEnzymes <- RESTRICTION_ENZYMES[c("EcoRI", "HinfI", "SalI")]
primers <- DesignSignatures(db,

type="length",

54 DigestDNA

levels=2, # presence/absence
minProductSize=200, # base pairs
maxProductSize=600,
resolution=c(seq(50, 100, 3),

seq(105, 200, 5),
seq(210, 600, 10)),

enzymes=myEnzymes)

End(Not run)

DigestDNA Simulate Restriction Digestion of DNA

Description

Restriction enzymes can be used to cut double-stranded DNA into fragments at specific cut sites.
DigestDNA performs an in-silico restriction digest of the input DNA sequence(s) given one or more
restriction sites.

Usage

DigestDNA(sites,
myDNAStringSet,
type = "fragments",
strand = "both",
processors = NULL)

Arguments

sites A character vector of DNA recognition sequences and their enzymes’ corre-
sponding cut site(s).

myDNAStringSet A DNAStringSet object or character vector with one or more sequences in 5’ to
3’ orientation.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) either "fragments" or "positions".

strand Character string indicating the strand(s) to cut. This should be (an abbreviation
of) one of "both", "top", or "bottom". The top strand is defined as the input
DNAStringSet sequence, and the bottom strand is its reverse complement.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

In the context of a restriction digest experiment with a known DNA sequence, it can be useful to
predict the expected DNA fragments in-silico. Restriction enzymes make cuts in double-stranded
DNA at specific positions near their recognition site. The recognition site may be somewhat am-
biguous, as represented by the IUPAC_CODE_MAP. Cuts that occur at different positions on the top
and bottom strands result in sticky-ends, whereas those that occur at the same position result in
fragments with blunt-ends. Multiple restriction sites can be supplied to simultaneously digest the
DNA. In this case, sites for the different restriction enzymes may be overlapping, which could
result in multiple close-proximity cuts that would not occur experimentally. Also, note that cut sites
will not be matched to non-DNA_BASES in myDNAStringSet.

Disambiguate 55

Value

DigestDNA can return two types of results: cut positions or the resulting DNA fragments corre-
sponding to the top, bottom, or both strands. If type is "positions" then the output is a list with
the cut location(s) in each sequence in myDNAStringSet. The cut location is defined as the position
after the cut relative to the 5’-end. For example, a cut at 6 would occur between positions 5 and 6,
where the respective strand’s 5’ nucleotide is defined as position 1.

If type is "fragments" (the default), then the result is a DNAStringSetList. Each element of the
list contains the top and/or bottom strand fragments after digestion of myDNAStringSet, or the
original sequence if no cuts were made. Sequences are named by whether they originated from
the top or bottom strand, and list elements are named based on the input DNA sequences. The
top strand is defined by myDNAStringSet as it is input, whereas the bottom strand is its reverse
complement.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

DesignSignatures, RESTRICTION_ENZYMES

Examples

digest hypothetical DNA sequences with BamHI
data(RESTRICTION_ENZYMES)
site <- RESTRICTION_ENZYMES[c("BamHI")]
dna <- DNAStringSet(c("AAGGATCCAA", "GGGATCAT"))
dna # top strand
reverseComplement(dna) # bottom strand
names(dna) <- c("hyp1", "hyp2")
d <- DigestDNA(site, dna)
d # fragments in a DNAStringSetList
unlist(d) # all fragments as one DNAStringSet

Restriction digest of Yeast Chr. 1 with EcoRI and EcoRV
data(yeastSEQCHR1)
sites <- RESTRICTION_ENZYMES[c("EcoRI", "EcoRV")]
seqs <- DigestDNA(sites, yeastSEQCHR1)
seqs[[1]]

pos <- DigestDNA(sites, yeastSEQCHR1, type="positions")
str(pos)

Disambiguate Expand Ambiguities into All Permutations of a DNAStringSet

Description

Performs the inverse function of ConsensusSequence by expanding any ambiguities present in
sequences.

56 DistanceMatrix

Usage

Disambiguate(myXStringSet)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object of sequences.

Details

Ambiguity codes in the IUPAC_CODE_MAP can be used to represent multiple nucleotides at a single
position. Using these letters, multiple oligonucleotide permutations can be represented with a single
ambiguous sequence. This function expands each sequence in the DNAStringSet input into all of
its permutations. Note that sequences with many ambiguities can result in a very large number of
potential permutations.

Value

A DNAStringSetList or RNAStringSetList with one element for each sequence in myXStringSet.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

ConsensusSequence

Examples

dna <- DNAStringSet(c("ACST", "NNN"))
dna_list <- Disambiguate(dna)
dna_list[[1]]
dna_list[[2]]
unlist(dna_list)

rna <- RNAStringSet(c("ACGU", "AGAU")) # 2 permutations
rna <- ConsensusSequence(rna) # "ASRU"
Disambiguate(rna) # 4 permutations

DistanceMatrix Calculate the Distances Between Sequences

Description

Calculates a distance matrix for an XStringSet. Each element of the distance matrix corresponds
to the dissimilarity between two sequences in the XStringSet.

DistanceMatrix 57

Usage

DistanceMatrix(myXStringSet,
includeTerminalGaps = FALSE,
penalizeGapLetterMatches = TRUE,
penalizeGapGapMatches = FALSE,
correction = "none",
processors = NULL,
verbose = TRUE)

Arguments

myXStringSet An XStringSet object of aligned sequences (DNAStringSet, RNAStringSet,
or AAStringSet).

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" characters on
each end of the sequence) into the calculation of distance.

penalizeGapLetterMatches

Logical specifying whether or not to consider gap-to-letter matches as mis-
matches. If FALSE, then gap-to-letter matches are not included in the total length
used to calculate distance.

penalizeGapGapMatches

Logical specifying whether or not to consider gap-to-gap matches as mismatches.
If FALSE (the default), then gap-to-gap matches are not included in the total
length used to calculate distance.

correction The substitution model used for distance correction. This should be (an abbre-
viation of) either "none" or "Jukes-Cantor".

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

The uncorrected distance matrix represents the hamming distance between each of the sequences
in myXStringSet. Ambiguity can be represented using the characters of the IUPAC_CODE_MAP
for DNAStringSet and RNAStringSet inputs, or using the AMINO_ACID_CODE for an AAStringSet
input. For example, the distance between an ’N’ and any other nucleotide base is zero. The letters
B (N or D), J (I or L), Z (Q or E), and X (any letter) are degenerate in the AMINO_ACID_CODE.

If includeTerminalGaps = FALSE then terminal gaps ("-" or "." characters) are not included in
sequence length. This can be faster since only the positions common to each pair of sequences are
compared. Sequences with no overlapping region in the alignment are given a value of NA, unless
includeTerminalGaps = TRUE, in which case distance is 100%.

Penalizing gap-to-gap and gap-to-letter mismatches specifies whether to penalize these special mis-
match types and include them in the total length when calculating distance. Both "-" and "." charac-
ters are interpreted as gaps. The default behavior is to calculate distance as the fraction of positions
that differ across the region of the alignment shared by both sequences (not including gap-to-gap
matches).

The elements of the distance matrix can be referenced by dimnames corresponding to the names of
the XStringSet. Additionally, an attribute named "correction" specifying the method of correction
used can be accessed using the function attr.

58 FindChimeras

Value

A symmetric matrix where each element is the distance between the sequences referenced by the re-
spective row and column. The dimnames of the matrix correspond to the names of the XStringSet.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

IdClusters

Examples

defaults compare intersection of internal ranges:
dna <- DNAStringSet(c("ANGCT-","-ACCT-"))
d <- DistanceMatrix(dna)
d[1,2] is 1 base in 4 = 0.25

compare the entire sequence ranges:
dna <- DNAStringSet(c("ANGCT-","-ACCT-"))
d <- DistanceMatrix(dna, includeTerminalGaps=TRUE,

penalizeGapGapMatches=TRUE)
d[1,2] is now 3 bases in 6 = 0.50

compare union of internal ranges:
dna <- DNAStringSet(c("ANGCT-","-ACCT-"))
d <- DistanceMatrix(dna, includeTerminalGaps=TRUE,

penalizeGapGapMatches=FALSE)
d[1,2] is now 2 bases in 5 = 0.40

gap ("-") and unknown (".") characters are interchangeable:
dna <- DNAStringSet(c("ANGCT.",".ACCT-"))
d <- DistanceMatrix(dna, includeTerminalGaps=TRUE,

penalizeGapGapMatches=FALSE)
d[1,2] is still 2 bases in 5 = 0.40

FindChimeras Find Chimeras In A Sequence Database

Description

Finds chimeras present in a database of sequences. Makes use of a reference database of (presumed
to be) good quality sequences.

Usage

FindChimeras(dbFile,
tblName = "DNA",
identifier = "",
dbFileReference,
tblNameReference = "DNA",
batchSize = 100,

FindChimeras 59

minNumFragments = 20000,
tb.width = 5,
multiplier = 20,
minLength = 70,
minCoverage = 0.6,
overlap = 100,
minSuspectFragments = 6,
showPercentCoverage = FALSE,
add2tbl = FALSE,
maxGroupSize = -1,
minGroupSize = 100,
excludeIDs = NULL,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file to be checked for chimeric sequences.

tblName Character string specifying the table in which to check for chimeras.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

dbFileReference

A SQLite connection object or a character string specifying the path to the refer-
ence database file of (presumed to be) good quality sequences. A 16S reference
database is available from DECIPHER.cee.wisc.edu.

tblNameReference

Character string specifying the table with reference sequences.

batchSize Number sequences to tile with fragments at a time.
minNumFragments

Number of suspect fragments to accumulate before searching through other
groups.

tb.width A single integer [1..14] giving the number of nucleotides at the start of each
fragment that are part of the trusted band.

multiplier A single integer specifying the multiple of fragments found out-of-group greater
than fragments found in-group in order to consider a sequence a chimera.

minLength Minimum length of a chimeric region in order to be considered as a chimera.

minCoverage Minimum fraction of coverage necessary in a chimeric region.

overlap Number of nucleotides at the end of the sequence that the chimeric region must
overlap in order to be considered a chimera.

minSuspectFragments

Minimum number of suspect fragments belonging to another group required to
consider a sequence a chimera.

showPercentCoverage

Logical indicating whether to list the percent coverage of suspect fragments in
each chimeric region in the output.

add2tbl Logical or a character string specifying the table name in which to add the result.

maxGroupSize Maximum number of sequences searched in a group. A value of less than 0
means the search is unlimited.

DECIPHER.cee.wisc.edu

60 FindChimeras

minGroupSize The minimum number of sequences in a group to be considered as part of the
search for chimeras. May need to be set to a small value for reference database
with mostly small groups.

excludeIDs Optional character vector of identifier(s) to exclude from database searches,
or NULL (the default) to not exclude any.

verbose Logical indicating whether to display progress.

Details

FindChimeras works by finding suspect fragments that are uncommon in the group where the
sequence belongs, but very common in another group where the sequence does not belong. Each
sequence in the dbFile is tiled into short sequence segments called fragments. If the fragments
are infrequent in their respective group in the dbFileReference then they are considered suspect.
If enough suspect fragments from a sequence meet the specified constraints then the sequence is
flagged as a chimera.

The default parameters are optimized for full-length 16S sequences (> 1,000 nucleotides). Shorter
16S sequences require two parameters that are different than the defaults: minLength = 40, and
minSuspectFragments = 2.

Groups are determined by the identifier present in each database. For this reason, the groups in the
dbFile should exist in the groups of the dbFileReference. The reference database is assumed to
contain many sequences of only good quality.

If a reference database is not present then it is feasible to create a reference database by using the
input database as the reference database. Removing chimeras from the reference database and then
iteratively repeating the process can result in a clean reference database.

For non-16S sequences it may be necessary to optimize the parameters for the particular sequences.
The simplest way to perform an optimization is to experiment with different input parameters on ar-
tificial chimeras such as those created using CreateChimeras. Adjusting input parameters until the
maximum number of artificial chimeras are identified is the easiest way to determine new defaults.

Value

A data.frame containing only the sequences that meet the specifications for being chimeric. The
chimera column contains information on the chimeric region and to which group it belongs. The
row.names of the data.frame correspond to those of the sequences in the dbFile.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2012) "DECIPHER: A Search-Based Approach to Chimera Identification for 16S
rRNA Sequences." Applied and Environmental Microbiology, doi:10.1128/AEM.06516-11.

See Also

CreateChimeras, Add2DB

FindSynteny 61

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
It is necessary to set dbFileReference to the file path of the
16S reference database available from DECIPHER.cee.wisc.edu
chimeras <- FindChimeras(db, dbFileReference=db)

FindSynteny Finds Synteny In A Sequence Database

Description

Finds syntenic blocks between groups of sequences in a database.

Usage

FindSynteny(dbFile,
tblName = "DNA",
identifier = "",
useFrames = TRUE,

alphabet = c("MF", "ILV", "A", "C", "WYQHP", "G", "TSN", "RK", "DE"),
geneticCode = GENETIC_CODE,
sepCost = -0.01,
gapCost = -0.2,
shiftCost = -20,
codingCost = -3,
maxSep = 5000,
maxGap = 5000,
minScore = 200,
dropScore = -100,
maskRepeats = TRUE,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the sequences are located.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

useFrames Logical specifying whether to use 6-frame amino acid translations to help find
more distant hits. If FALSE then faster but less sensitive to distant homology.

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD.

geneticCode Either a character vector giving the genetic code to use in translation, or a list
containing one genetic code for each identifier. If a list is provided then it must
be named by the corresponding identifiers in the database.

62 FindSynteny

sepCost Cost per nucleotide separation between hits to apply when chaining hits into
blocks.

gapCost Cost for gaps between hits to apply when chaining hits into blocks.

shiftCost Cost for shifting between different reading frames when chaining reduced amino
acid hits into blocks.

codingCost Cost for switching between coding and non-coding hits when chaining hits into
blocks.

maxSep Maximal separation (in nucleotides) between hits in the same block.

maxGap The maximum number of gaps between hits in the same block.

minScore The minimum score required for a chain of hits to become a block.

dropScore The change from maximal score required to stop extending blocks.

maskRepeats Logical specifying whether to “soft” mask repeats when searching for hits.

verbose Logical indicating whether to display progress.

Details

Long nucleotide sequences, such as genomes, are often not collinear, or may be composed of many
smaller segments (e.g., contigs). FindSynteny searches for “hits” between sequences that can be
chained into collinear “blocks” of synteny. Hits are defined as k-mer exact nucleotide matches or k-
mer matches in a reduced amino acid alphabet (if useFrames is TRUE). Hits are chained into blocks
as long as they are: (1) within the same sequence, (2) within maxSep and maxGap distance, and (3)
help maintain the score above minScore. Blocks are extended from their first and last hit until their
score drops below dropScore from the maximum that was reached. This process results in a set of
hits and blocks stored in an object of class “Synteny”.

Value

An object of class “Synteny”.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

AlignSynteny, Synteny-class

Examples

db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db, minScore=50)
synteny
pairs(synteny) # scatterplot matrix

FormGroups 63

FormGroups Forms Groups By Rank

Description

Agglomerates sequences into groups within a certain size range based on taxonomic rank.

Usage

FormGroups(dbFile,
tblName = "DNA",
goalSize = 1000,
minGroupSize = 500,
maxGroupSize = 10000,
add2tbl = FALSE,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the rank information is located.

goalSize Number of sequences required in each group to stop adding more sequences.

minGroupSize Minimum number of sequences in each group required to stop trying to recom-
bine with a larger group.

maxGroupSize Maximum number of sequences in each group allowed to continue agglomera-
tion.

add2tbl Logical or a character string specifying the table name in which to add the result.

verbose Logical indicating whether to print database queries and other information.

Details

FormGroups uses the “rank” field in the dbFile table to group sequences with similar taxonomic
rank. Rank information must be present in the tblName, such as that created when importing se-
quences from a GenBank formatted file. The rank information must not contain repeated taxonomic
names belonging to different lineages.

Beginning with the least common ranks, the algorithm agglomerates groups with similar ranks
until the goalSize is reached. If the group size is below minGroupSize then further agglomer-
ation is attempted with a larger group. If additional agglomeration results in a group larger than
maxGroupSize then the agglomeration is undone so that the group is smaller.

Value

Returns a data.frame of rank and id for each group. If add2tbl is not FALSE then the tblName is
updated with the group as the identifier.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

64 HEC_MI

See Also

IdentifyByRank

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
g <- FormGroups(db, goalSize=10, minGroupSize=5, maxGroupSize=20)

HEC_MI Mutual Information for Protein Secondary Structure Prediction

Description

Arrays containing values of mutual information for single residues (HEC_MI1) and pairs of residues
(HEC_MI2) located within 10 residues of the position being predicted (position "0"). The arrays have
dimensions corresponding to the 20 (standard) amino acids, positions (-10 to 10), and states (helix
("H"), sheet ("E"), or coil ("C")).

Usage

data("HEC_MI1")
data("HEC_MI2")

Format

The format of HEC_MI1 is: num [1:20, 1:21, 1:3] 0.04264 -0.00117 0.02641 0.08264 -0.04876 ...
- attr(*, "dimnames")=List of 3 ..$: chr [1:20] "A" "R" "N" "D"$: chr [1:21] "-10" "-9" "-8"
"-7"$: chr [1:3] "H" "E" "C"

The format of HEC_MI2 is: num [1:20, 1:20, 1:21, 1:21, 1:3] 2.56 -Inf -Inf -Inf -Inf ... - attr(*,
"dimnames")=List of 5 ..$: chr [1:20] "A" "R" "N" "D"$: chr [1:20] "A" "R" "N" "D"$:
chr [1:21] "-10" "-9" "-8" "-7"$: chr [1:21] "-10" "-9" "-8" "-7"$: chr [1:3] "H" "E" "C"

Details

The values in each matrix were derived based on a set of 15,201 proteins in the ASTRAL Com-
pendium (Chandonia, 2004). The 8-states assigned by the Dictionary of Protein Secondary Struc-
ture (DSSP) were reduced to 3-states via H = G, H, or I; E = E; and C = B, S, C, or T.

References

Chandonia, J. M. (2004). The ASTRAL Compendium in 2004. Nucleic Acids Research, 32(90001),
189D-192. doi:10.1093/nar/gkh034.

Examples

data(HEC_MI1)
the contribution of an arginine ("R")
located 3 residues left of center
to a helical ("H") state at the center
HEC_MI1["R", "-3", "H"]

data(HEC_MI2)

IdClusters 65

the contribution of arginine and lysine ("K")
located at positions -1 and +1, respectively
to a coil ("C") state at the center position
HEC_MI2["R", "K", "-1", "1", "C"]

matplot(-10:10, t(HEC_MI1[,, "H"]),
type="l", col=1:8, lty=rep(1:3, each=8),
xlab="Amino Acid Position Relative to Center",
ylab="Log-Odds of Helix at Center Position")

legend("bottomleft",
lwd=1, col=1:8, lty=rep(1:3, each=8),
legend=dimnames(HEC_MI1)[[1]], ncol=2)

IdClusters Cluster Sequences By Distance or Sequence

Description

Groups the sequences represented by a distance matrix into clusters of similarity.

Usage

IdClusters(myDistMatrix = NULL,
method = "UPGMA",
cutoff = -Inf,
showPlot = FALSE,
asDendrogram = FALSE,
myXStringSet = NULL,
model = MODELS,
processors = NULL,
verbose = TRUE)

Arguments

myDistMatrix A symmetric N x N distance matrix with the values of dissimilarity between N
sequences, or NULL if method is "inexact".

method An agglomeration method to be used. This should be (an abbreviation of) one
of "complete", "single", "UPGMA", "WPGMA", "NJ", "ML", or "inexact". (See
details section below.)

cutoff A vector with the maximum edge length separating the sequences in the same
cluster. Multiple cutoffs may be provided in ascending or descending order. If
asDendrogram=TRUE or showPlot=TRUE then only one cutoff may be specified.
(See details section below.)

showPlot Logical specifying whether or not to plot the resulting dendrogram. Not appli-
cable if method='inexact'.

asDendrogram Logical. If TRUE then the object returned is of class dendrogram. Not applicable
if method='inexact'.

myXStringSet If method is "ML", the DNAStringSet or RNAStringSet used in the creation of
myDistMatrix. If method is "inexact", the DNAStringSet, RNAStringSet, or
AAStringSet to cluster. Not applicable for other methods.

66 IdClusters

model One or more of the available MODELS of DNA evolution. Only applicable if
method is "ML".

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

IdClusters groups the input sequences into clusters using a set dissimilarities representing the
distance between N sequences. Initially a phylogenetic tree is formed using the specified method.
Then each leaf (sequence) of the tree is assigned to a cluster based on its edge lengths to the other
sequences. The available clustering methods are described as follows:

Ultrametric methods: The method complete assigns clusters using complete-linkage so that se-
quences in the same cluster are no more than cutoff percent apart. The method single assigns
clusters using single-linkage so that sequences in the same cluster are within cutoff of at least
one other sequence in the same cluster. UPGMA (the default) or WPGMA assign clusters using average-
linkage which is a compromise between the sensitivity of complete-linkage clustering to outliers
and the tendency of single-linkage clustering to connect distant relatives that do not appear to be
closely related. UPGMA produces an unweighted tree, where each leaf contributes equally to the
average edge lengths, whereas WPGMA produces a weighted result.

Additive methods: NJ uses the Neighbor-Joining method proposed by Saitou and Nei that does
not assume lineages evolve at the same rate (the molecular clock hypothesis). The NJ method
is typically the most phylogenetically accurate of the above distance-based methods. ML cre-
ates a neighbor-joining tree and then iteratively maximizes the likelihood of the tree given the
aligned sequences (myXStringSet). This is accomplished through a combination of optimizing
edge lengths with Brent’s method and improving tree topology with nearest-neighbor interchanges
(NNIs). When method="ML", one or more MODELS of DNA evolution must be specified. Model
parameters are iteratively optimized to maximize likelihood, except base frequencies which are em-
pirically determined. If multiple models are given, the best model is automatically chosen based on
BIC calculated from the likelihood and the sample size (defined as the number of variable sites in
the DNA sequence).

Sequence-only method: inexact uses a greedy incremental algorithm to directly assign sequences
to clusters without a distance matrix. First the sequences are ordered by length and the longest
sequence becomes the first cluster seed. If the second sequence is less than cutoff percent distance
then it is added to the cluster, otherwise it becomes a new cluster representative. The remaining se-
quences are matched to cluster representatives using an ordered k-mer strategy, and then compared
to the top hits with pairwise alignment. This approach, finding the closest cluster representatives
followed by pairwise alignment to obtain the percent identity, is repeated until all sequences belong
to a cluster. This process results in clusters with members generally separated by less than cutoff
distance.

Cutoffs may be provided in ascending or descending order, except for inexact clustering, which
requires descending cutoffs. If multiple cutoffs are provided in descending order then clustering at
each new value of cutoff is continued within the prior cutoff’s clusters. In this way clusters at
lower values of cutoff are completely contained within their umbrella clusters at higher values of
cutoff. This is useful for defining taxonomy, where lower level groups (e.g., genera) are expected
not to straddle multiple higher level groups (e.g., families). If multiple cutoffs are provided in
ascending order then clustering at each level of cutoff is independent of the prior level. This may
result in fewer clusters for NJ and ML methods, but will have no impact on ultrametric methods.

IdConsensus 67

Value

If asDendrogram=FALSE (the default), then a data.frame is returned with a column for each cutoff
specified. This data.frame has dimensions N ∗M , where each one of N sequences is assigned to
a cluster at the M -level of cutoff. The row.names of the data.frame correspond to the dimnames
of myDistMatrix. If asDendrogram=TRUE, returns an object of class dendrogram that can be used
for further manipulation and plotting. Leaves of the dendrogram are randomly colored by cluster
number.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6), 368-376.

Ghodsi, M., Liu, B., & Pop, M. (2011) DNACLUST. BMC Bioinformatics, 12(1), 271. doi:10.1186/1471-
2105-12-271.

Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

See Also

DistanceMatrix, Add2DB, MODELS

Examples

using the matrix from the original paper by Saitou and Nei
m <- matrix(0,8,8)
m[2:8,1] <- c(7, 8, 11, 13, 16, 13, 17)
m[3:8,2] <- c(5, 8, 10, 13, 10, 14)
m[4:8,3] <- c(5, 7, 10, 7, 11)
m[5:8,4] <- c(8, 11, 8, 12)
m[6:8,5] <- c(5, 6, 10)
m[7:8,6] <- c(9, 13)
m[8,7] <- c(8)

returns an object of class "dendrogram"
myClusters <- IdClusters(m, cutoff=10, method="NJ", showPlot=TRUE, asDendrogram=TRUE)

example of specifying a cutoff
returns a data frame
IdClusters(m, cutoff=c(2,6,10,20))

IdConsensus Create Consensus Sequences by Groups

Description

Forms a consensus sequence representing the sequences in each group.

68 IdConsensus

Usage

IdConsensus(dbFile,
tblName = "DNA",
identifier = "",
type = "DNAStringSet",
colName = "id",
add2tbl = FALSE,
verbose = TRUE,
...)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table in which to form consensus.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

type The type of XStringSet (sequences) to use in forming consensus. This should
be (an abbreviation of) one of "DNAStringSet", "RNAStringSet", "AAStringSet",
or "BStringSet".

colName Column containing the group name of each sequence.

add2tbl Logical or a character string specifying the table name in which to add the result.

verbose Logical indicating whether to display progress.

... Additional arguments to be passed directly to ConsensusSequence for an AAStringSet,
DNAStringSet, or RNAStringSet, or to consensusString for a BStringSet.

Details

Creates a consensus sequence for each of the distinct groups defined in colName. The resulting
XStringSet contains as many consensus sequences as there are distinct groups in colName. For
example, it is possible to create a set of consensus sequences with one consensus sequence for each
"id" in the tblName.

Value

An XStringSet object containing the consensus sequence for each group. The names of the
XStringSet contain the number of sequences and name of each group.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Seqs2DB

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
con <- IdConsensus(db, colName="id", noConsensusChar="N")
BrowseSeqs(con)

IdentifyByRank 69

IdentifyByRank Identify By Taxonomic Rank

Description

Identifies sequences by a specific level of their taxonomic rank.

Usage

IdentifyByRank(dbFile,
tblName = "DNA",
level = Inf,
add2tbl = FALSE,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the rank information is located.
level Level of the taxonomic rank. (See details section below.)
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to print database queries and other information.

Details

IdentifyByRank simply identifies a sequence by a specific level of its taxonomic rank. Requires
that rank information be present in the tblName, such as that created when importing sequences
from a GenBank formatted file.

The input parameter level should be a non-zero integer giving the “level” of the taxonomic rank
to choose as the identifier. Negative levels are interpreted as that being many levels from the last
level in each rank.

If the specified level of rank does not exist then the closest rank is chosen. Therefore, the default
level (Inf) will always select the last taxonomic level (e.g., species).

Value

A data.frame with the rank and corresponding identifier as "id".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

FormGroups

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
ids <- IdentifyByRank(db)

70 IdLengths

IdLengths Determine the Number of Bases, Nonbases, and Width of Each Se-
quence

Description

Counts the number of bases (A, C, G, T) and ambiguities/degeneracies in each sequence.

Usage

IdLengths(dbFile,
tblName = "DNA",
identifier = "",
type = "DNAStringSet",
add2tbl = FALSE,
batchSize = 10000,
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the sequences are located.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

type The type of XStringSet being processed. This should be (an abbreviation of)
one of "DNAStringSet" or "RNAStringSet".

add2tbl Logical or a character string specifying the table name in which to add the result.

batchSize Integer specifying the number of sequences to process at a time.

verbose Logical indicating whether to display progress.

Value

A data.frame with the number of bases (“A”, “C”, “G”, or “T”), nonbases, and width of each se-
quence. The width is defined as the sum of bases and nonbases in each sequence. The row.names
of the data.frame correspond to the "row_names" in the tblName of the dbFile.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Add2DB

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
l <- IdLengths(db)

MaskAlignment 71

MaskAlignment Masks Highly Variable Regions of An Alignment

Description

Automatically masks poorly aligned regions of an alignment based on sequence conservation and
gap frequency.

Usage

MaskAlignment(myXStringSet,
windowSize = 5,
threshold = 1,
maxFractionGaps = 0.2,
showPlot = FALSE)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

windowSize Integer value specifying the size of the region to the left and right of the center-
point to use in calculating the moving average.

threshold Numeric giving the average entropy in bits from 0 to 2 below which a region is
masked.

maxFractionGaps

Numeric specifying the maximum faction of gaps in an alignment column to be
masked.

showPlot Logical specifying whether or not to show a plot of the positions that were kept
or masked.

Details

Poorly aligned regions of a multiple sequence alignment may lead to incorrect results in downstream
analyses, and require extra processing time. One method to mitigate their effects is to mask columns
of the alignment that may be poorly aligned, such as highly-variable regions or regions with many
insertions and deletions (gaps).

Highly variable regions are detected by their signature of having low information content. A moving
average of windowSize nucleotides to the left and right of the center-point is applied to smooth noise
in the information content signal along the sequence. Regions dropping below threshold bits or
more than maxFractionGaps are masked in the returned alignment.

Value

A MultipleAlignment object of the input type with masked columns where the input criteria are
met.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

72 MeltDNA

See Also

AlignSeqs, IdClusters

Examples

fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
masked_dna <- MaskAlignment(dna, showPlot=TRUE)

display only unmasked nucleotides for use in downstream analyses
not_masked <- as(masked_dna, "DNAStringSet")
BrowseSeqs(not_masked)

display only masked nucleotides that are covered by the mask
masked <- masked_dna
colmask(masked, append="replace", invert=TRUE) <- colmask(masked)
masked <- as(masked, "DNAStringSet")
BrowseSeqs(masked)

display the complete DNA sequence set including the mask
masks <- lapply(width(colmask(masked_dna)), rep, x="+")
masks <- unlist(lapply(masks, paste, collapse=""))
masked_dna <- replaceAt(dna, at=IRanges(colmask(masked_dna)), value=masks)
BrowseSeqs(masked_dna)

MeltDNA Simulate Melting of DNA

Description

The denaturation of double-stranded DNA occurs over a range of temperatures. Beginning from
a helical state, DNA will transition to a random-coil state as temperature is increased. MeltDNA
predicts the positional helicity, melt curve, or its negative derivate at different temperatures.

Usage

MeltDNA(myDNAStringSet,
type = "derivative",
temps = 50:100,
ions = 0.2)

Arguments

myDNAStringSet A DNAStringSet object or character vector with one or more sequences in 5’ to
3’ orientation.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) one of "derivative curves", "melt curves", or "positional probabilities".

temps Numeric vector of temperatures (in degrees Celsius).

ions Numeric giving the molar sodium equivalent ionic concentration. Values must
be at least 0.01M.

MeltDNA 73

Details

When designing a high resolution melt (HRM) assay, it is useful to be able to predict the results
before performing the experiment. Multi-state models of DNA melting can provide near-qualitative
agreement with experimental DNA melt curves obtained with quantitative PCR (qPCR). MeltDNA
employs the algorithm of Tostesen et al. (2003) with an approximation for loop entropy that runs in
nearly linear time and memory, which allows very long DNA sequences (up to 100,000 base pairs)
to be analyzed.

Denaturation is a highly cooperative process whereby regions of double-stranded DNA tend to melt
together. For short sequences (< 100 base pairs) there is typically a single transition from a helical
to random-coil state. Longer sequences may exhibit more complex melting behavior with multiple
peaks, as domains of the DNA melt at different temperatures. The melting curve represents the
average fractional helicity (Theta) at each temperature, and can be used for genotyping with high
resolution melt analysis.

Value

MeltDNA can return three types of results: positional helicity, melting curves, or the negative deriva-
tive of the melting curves. If type is "position", then a list is returned with one component for
each sequence in myDNAStringSet. Each list component contains a matrix with the probability of
helicity (Theta) at each temperature (rows) and every position in the sequence (columns).

If type is "melt", then a matrix with the average Theta across the entire sequence is returned.
This matrix has a row for each input temperature (temps), and a column for each sequence in
myDNAStringSet. For example, the value in element [3, 4] is the average helicity of the fourth
input sequence at the third input temperature. If type is "derivative" then the values in the matrix
are the derivative of the melt curve at each temperature.

Note

MeltDNA uses nearest neighbor parameters from SantaLucia (1998).

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4), 1460-1465.

Tostesen, E., et al. (2003). Speed-up of DNA melting algorithm with complete nearest neighbor
properties. Biopolymers, 70(3), 364-376. doi:10.1002/bip.10495.

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignSignatures

Examples

fas <- system.file("extdata", "IDH2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

plot the melt curve for the two alleles
temps <- seq(85, 100, 0.2)
m <- MeltDNA(dna,

74 MIQS

type="melt", temps=temps, ions=0.1)
matplot(temps, m,

type="l", xlab="Temperature (\u00B0C)", ylab="Average Theta")
legend("topright", names(dna), lty=seq_along(dna), col=seq_along(dna))

plot the negative derivative curve for a subsequence of the two alleles
temps <- seq(80, 95, 0.25)
m <- MeltDNA(subseq(dna, 492, 542),

type="derivative", temps=temps)
matplot(temps, m,

type="l", xlab="Temperature (\u00B0C)", ylab="-d(Theta)/dTemp")
legend("topright", names(dna), lty=seq_along(dna), col=seq_along(dna))

plot the positional helicity profile for the IDH2 allele
temps <- seq(90.1, 90.5, 0.1)
m <- MeltDNA(dna[1],

type="position", temps=temps, ions=0.1)
matplot(seq_len(dim(m[[1]])[2]), t(m[[1]]),

type="l", xlab="Nucleotide Position", ylab="Theta")
temps <- formatC(temps, digits=1, format="f")
legend("topright", legend=paste(temps, "\u00B0C", sep=""),

col=seq_along(temps), lty=seq_along(temps), bg="white")

MIQS MIQS Amino Acid Substitution Matrix

Description

The MIQS amino acid substitution matrix defined by Yamada & Tomii (2014).

Usage

data("MIQS")

Format

The format is: num [1:25, 1:25] 3.2 -1.3 -0.4 -0.4 1.5 -0.2 -0.4 0.4 -1.2 -1.3 ... - attr(*, "dim-
names")=List of 2 ..$: chr [1:25] "A" "R" "N" "D"$: chr [1:25] "A" "R" "N" "D" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. Values in the MIQS matrix are in units of third-bits
(log(odds ratio) ∗ 3/log(2)).

Source

Yamada, K., & Tomii, K. (2014). Revisiting amino acid substitution matrices for identifying dis-
tantly related proteins. Bioinformatics, 30(3), 317-325. doi:10.1093/bioinformatics/btt694.

MODELS 75

Examples

data(MIQS)
MIQS["A", "R"] # score for A/R pairing

data(BLOSUM62)
plot(BLOSUM62[1:20, 1:20], MIQS[1:20, 1:20])
abline(a=0, b=1)

MODELS Available Models of DNA Evolution

Description

The MODELS character vector contains the models of DNA evolution that can be used by IdClusters.

Usage

MODELS

Details

Six models of DNA evolution are available, with or without the discrete Gamma rates distribution.
These are described in order of increasing number of parameters as follows:

JC69 (Jukes and Cantor, 1969) The simplest substitution model that assumes equal base frequen-
cies (1/4) and equal mutation rates.

K80 (Kimura, 1980) Assumes equal base frequencies, but distinguishes between the rate of transi-
tions and transversions.

T92 (Tamura, 1992) In addition to distinguishing between transitions and transversions, a param-
eter is added to represent G+C content bias.

F81 (Felsenstein, 1981) Assumes equal mutation rates, but allows all bases to have different fre-
quencies.

HKY85 (Hasegawa, Kishino and Yano, 1985) Distinguishes transitions from transversions and
allows bases to have different frequencies.

TN93 (Tamura and Nei, 1993) Allows for unequal base frequencies and distinguishes between
transversions and the two possible types of transitions (i.e., A <-> G & C <-> T).

+G (Yang, 1993) Specifying a model+G4 adds a single parameter to any of the above models
to relax the assumption of equal rates among sites in the DNA sequence. The single parameter
specifies the shape of the Gamma Distribution. The continuous distribution is represented with 2-
10 discrete rates and their respective probabilities as determined by the Laguerre Quadrature method
(Felsenstein, 2001). For example, specifying a model+G8 would represent the continuous Gamma
Distribution with eight rates and their associated probabilities.

References

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6), 368-376.

Felsenstein, J. (2001). Taking Variation of Evolutionary Rates Between Sites into Account in Infer-
ring Phylogenies. Journal of molecular evolution, 53(4-5), 447-455.

76 NNLS

Hasegawa, M., Kishino H., Yano T. (1985). Dating of human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160-174.

Jukes, T. and Cantor C. (1969). Evolution of Protein Molecules. New York: Academic Press. pp.
21-132.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120.

Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G+C content biases. Molecular Biology and Evolution, 9(4), 678-687.

Tamura, K. and Nei M. (1993). Estimation of the number of nucleotide substitutions in the control
region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution,
10(3), 512-526.

Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences when substi-
tution rates differ over sites. Molecular Biology and Evolution, 10(6), 1396-1401.

See Also

IdClusters

Examples

MODELS

NNLS Sequential Coordinate-wise Algorithm for the Non-negative Least
Squares Problem

Description

Consider the linear system Ax = b where A ∈ Rm x n, x ∈ Rn, and b ∈ Rm. The technique of least
squares proposes to compute x so that the sum of squared residuals is minimized. NNLS solves the
least squares problem min ||Ax = b||2 subject to the constraint x ≥ 0. This implementation of the
Sequential Coordinate-wise Algorithm uses a sparse input matrix A, which makes it efficient for
large sparse problems.

Usage

NNLS(A,
b,
precision = sqrt(.Machine$double.eps),
processors = NULL,
verbose = TRUE)

Arguments

A List representing the sparse matrix with integer components i and j, numeric
component x. The fourth component, dimnames, is a list of two components
that contains the names for every row (component 1) and column (component
2).

b Numeric matrix for the set of observed values. (See details section below.)

NNLS 77

precision The desired accuracy.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

The input b can be either a matrix or a vector of numerics. If it is a matrix then it is assumed that
each column contains a set of observations, and the output x will have the same number of columns.
This allows multiple NNLS problems using the same A matrix to be solved simultaneously, and
greatly accelerates computation relative to solving each sequentially.

Value

A list of two components:

x The matrix of non-negative values that best explains the observed values given
by b.

res A matrix of residuals given by Ax− b.

References

Franc, V., et al. (2005). Sequential coordinate-wise algorithm for the non-negative least squares
problem. Computer Analysis of Images and Patterns, 407-414.

See Also

Array2Matrix, DesignArray

Examples

unconstrained least squares:
A <- matrix(c(1, -3, 2, -3, 10, -5, 2, -5, 6), ncol=3)
b <- matrix(c(27, -78, 64), ncol=1)
x <- solve(crossprod(A), crossprod(A, b))

Non-negative least squares:
w <- which(A > 0, arr.ind=TRUE)
A <- list(i=w[,"row"], j=w[,"col"], x=A[w],

dimnames=list(1:dim(A)[1], 1:dim(A)[2]))
x_nonneg <- NNLS(A, b)

compare the unconstrained and constrained solutions:
cbind(x, x_nonneg$x)

the input value "b" can also be a matrix:
b2 <- matrix(b, nrow=length(b), ncol=2) # repeat b in two columns
x_nonneg <- NNLS(A, b2) # solution is repeated in two output columns

78 OrientNucleotides

OrientNucleotides Orient nucleotide sequences

Description

Orients nucleotide sequences to match the directionality and complementarity of specified reference
sequences.

Usage

OrientNucleotides(myXStringSet,
reference = which.max(width(myXStringSet)),
type = "sequences",
orientation = "all",
threshold = 0.05,
verbose = TRUE,
processors = NULL)

Arguments

myXStringSet A DNAStringSet or RNAStringSet of unaligned sequences.

reference The index of reference sequences with the same (desired) orientation. By default
the first sequence with maximum width will be used.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) either "sequences", "orientations", or "both".

orientation Character string(s) indicating the allowed reorientation(s) of non-reference se-
quences. This should be (an abbreviation of) either "all", "reverse", "complement",
and/or "both" (for reverse complement).

threshold Numeric giving the decrease in k-mer distance required to adopt the alternative
orientation.

verbose Logical indicating whether to display progress.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

Details

Biological sequences can sometimes have inconsistent orientation that interferes with their analysis.
OrientNucleotides will reorient sequences by changing their directionality and/or complemen-
tarity to match specified reference sequences in the same set. The process works by finding the
k-mer distance between the reference sequence(s) and each allowed orientation of the sequences.
Alternative orientations that lessen the distance by at least threshold are adopted. Note that this
procedure requires a moderately similar reference sequence be available for each sequence that
needs to be reoriented. Sequences for which a corresponding reference is unavailable will most
likely be left alone because alternative orientations will not pass the threshold. For this reason, it
is recommended to specify several markedly different sequences as references.

PredictHEC 79

Value

OrientNucleotides can return two types of results: the relative orientations of sequences and/or
the reoriented sequences. If type is "sequences" (the default) then the reoriented sequences are
returned. If type is "orientations" then a character vector is returned that specifies whether
sequences were reversed ("r"), complemented ("c"), reversed complemented ("rc"), or in the same
orientation ("") as the reference sequences (marked by NA). If type is "both" then the output is a
list with the first component containing the "orientations" and the second component containing
the "sequences".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

CorrectFrameshifts

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db, remove="all")
DNA <- dna # 175 sequences

reorient subsamples of the first 169 sequences
s <- sample(169, 30)
DNA[s] <- reverseComplement(dna[s])
s <- sample(169, 30)
DNA[s] <- reverse(dna[s])
s <- sample(169, 30)
DNA[s] <- complement(dna[s])

DNA <- OrientNucleotides(DNA, reference=170:175)
DNA==dna

PredictHEC Predict Protein Secondary Structure

Description

Predicts 3-state protein secondary structure based on the primary (amino acid) sequence using the
GOR IV method (Garnier et al., 1996).

Usage

PredictHEC(myAAStringSet,
type = "states",
windowSize = 7,
background = c(H = -0.12, E = -0.25, C = 0.23),
HEC_MI1 = NULL,
HEC_MI2 = NULL)

80 PredictHEC

Arguments

myAAStringSet An AAStringSet object of sequences.

type Character string indicating the type of results desired. This should be (an unam-
biguous abbreviation of) one of "states", "scores", or "probabilities".

windowSize Numeric specifying the number of residues to the left or right of the center
position to use in the prediction.

background Numeric vector with the background “scores” for each of the three states (H, E,
and C).

HEC_MI1 An array of dimensions 20 x 21 x 3 giving the mutual information for single
residues.

HEC_MI2 An array of dimensions 20 x 20 x 21 x 21 x 3 giving the mutual information for
pairs of residues.

Details

The GOR (Garnier-Osguthorpe-Robson) method is an information-theory method for prediction
of secondary structure based on the primary sequence of a protein. Version IV of the method
makes 3-state predictions based on the mutual information contained in single residues and pairs of
residues within windowSize residues of the position being assigned. This approach is about 65%
accurate, and is one of the most accurate methods for assigning secondary structure that only use
a single sequence. This implementation of GOR IV does not use decision constants or the number
of contiguous states when assigning the final state. Note that characters other than the standard 20
amino acids are not assigned a state.

Value

If type is "states" (the default), then the output is a character vector with the secondary structure
assignment ("H", "E", or "C") for each residue in myAAStringSet.

Otherwise, the output is a list with one element for each sequence in myAAStringSet. Each list
element contains a matrix with dimensions 3 (H, E, or C) by the number of residues in the se-
quence. If type is "scores", then values in the matrix represent log-odds “scores”. If type is
"probabilities" then the values represent the normalized probabilities of the three states at a
position.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary
structure from amino acid sequence. Methods in Enzymology, 266, 540-553.

See Also

HEC_MI1, HEC_MI2

RESTRICTION_ENZYMES 81

Examples

fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
aa <- translate(dna)
hec <- PredictHEC(aa)
head(hec)

RESTRICTION_ENZYMES Common Restriction Enzyme’s Cut Sites

Description

A character vector of common restriction sites named by the restriction enzyme that cuts at each
site. Sequence specificity is listed in 5’ to 3’ orientation based on the IUPAC_CODE_MAP. The cut site
is either signified by a “/” for palindromic sites, or two numbers giving the position of the top and
bottom cut positions relative to the site’s 3’-end.

Usage

data(RESTRICTION_ENZYMES)

Format

The format is: Named chr [1:224] "GACGT/C" "G/GTACC" "GT/MKAC" ... - attr(*, "names")=
chr [1:224] "AatII" "Acc65I" "AccI" "AciI" ...

Source

Restriction enzymes sold by New England BioLabs.

Examples

data(RESTRICTION_ENZYMES)

SearchDB Obtain Specific Sequences from A Database

Description

Returns the set of sequences meeting the search criteria.

http://www.neb.com

82 SearchDB

Usage

SearchDB(dbFile,
tblName = "DNA",
identifier = "",
type = "XStringSet",
limit = -1,
replaceChar = "-",
nameBy = "row_names",
orderBy = "row_names",
countOnly = FALSE,
removeGaps = "none",
clause = "",
verbose = TRUE)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table where the sequences are located.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" (the default) then all identifiers are selected.

type The type of XStringSet (sequences) to return. This should be (an unambiguous
abbreviation of) one of "XStringSet", "DNAStringSet", "RNAStringSet",
"AAStringSet", "BStringSet", "QualityScaledXStringSet", "QualityScaledDNAStringSet",
"QualityScaledRNAStringSet", "QualityScaledAAStringSet", or "QualityScaledBStringSet".
If type is "XStringSet" or "QualityScaledXStringSet" then an attempt is
made to guess the type of sequences based on their composition.

limit Number of results to display. The default (-1) does not limit the number of
results.

replaceChar Optional character used to replace any characters of the sequence that are not
present in the XStringSet’s alphabet. Not applicable if type=="BStringSet".
(See details section below.)

nameBy Character string giving the column name for naming the XStringSet.

orderBy Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.

countOnly Logical specifying whether to return only the number of sequences.

removeGaps Determines how gaps ("-" or "." characters) are removed in the sequences. This
should be (an unambiguous abbreviation of) one of "none", "all" or "common".

clause An optional character string to append to the query as a clause.

verbose Logical indicating whether to display queries as they are sent to the database.

Details

If type is "DNAStringSet" then all U’s are converted to T’s before creating the DNAStringSet, and
vise-versa if type is "RNAStringSet". All remaining characters not in the XStringSet’s alphabet
are converted to replaceChar. Quality information is interpreted as PredQuality scores.

Seqs2DB 83

Value

An XStringSet or QualityScaledXStringSet with the sequences that meet the specified criteria.
The names of the object correspond to the value in the nameBy column of the database.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Seqs2DB, DB2Seqs

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
get all sequences in the default table:
dna <- SearchDB(db)
select a random sequence:
dna <- SearchDB(db, orderBy="random()", limit=1)
remove gaps from "Mycobacterium" sequences:
dna <- SearchDB(db, identifier="Mycobacterium", removeGaps="all")
provide a more complex query:
dna <- SearchDB(db, nameBy="description", orderBy="bases", removeGaps="common",

clause="where nonbases is 0")

Seqs2DB Add Sequences from Text File to Database

Description

Adds sequences to a database.

Usage

Seqs2DB(seqs,
type,
dbFile,
identifier,
tblName = "DNA",
chunkSize = 1e5,
replaceTbl = FALSE,
verbose = TRUE)

Arguments

seqs A connection object or a character string specifying the file path to the file
containing the sequences, an XStringSet object if type is XStringSet, or a
QualityScaledXStringSet object if type is QualityScaledXStringSet.

type The type of the sequences (seqs) being imported. This should be (an unambigu-
ous abbreviation of) one of "FASTA", "FASTQ", "GenBank", "XStringSet", or
"QualityScaledXStringSet".

84 StaggerAlignment

dbFile A SQLite connection object or a character string specifying the path to the
database file. If the dbFile does not exist then a new database is created at
this location.

identifier Character string specifying the "id" to give the imported sequences in the database.

tblName Character string specifying the table in which to add the sequences.

chunkSize Number of lines of the seqs to read at a time.

replaceTbl Logical. If FALSE (the default) then the sequences are appended to any already
existing in the table. If TRUE then any sequences already in the table are over-
written.

verbose Logical indicating whether to display each query as it is sent to the database.

Details

Sequences are imported into the database in chunks of lines specified by chunkSize. The sequences
can then be identified by searching the database for the identifier provided. Sequences are added
to the database verbatim, so that no sequence information is lost when the sequences are exported
from the database. The sequence names are recorded into a column named “description” in the
database.

Value

The total number of sequences in the database table is returned after import.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

SearchDB, DB2Seqs

Examples

gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
dbConn <- dbConnect(SQLite(), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Bacteria")
BrowseDB(dbConn)
dna <- SearchDB(dbConn, nameBy="description")
dbDisconnect(dbConn)

StaggerAlignment Produce a Staggered Alignment

Description

Staggers overlapping characters in a multiple sequence alignment that are better explained by mul-
tiple insertions than multiple deletions.

StaggerAlignment 85

Usage

StaggerAlignment(myXStringSet,
tree = NULL,
threshold = 3,
fullLength = FALSE,
processors = NULL,
verbose = TRUE)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

tree A bifurcating dendrogram representing the evolutionary relationships between
sequences, such as that created by IdClusters. The root should be the topmost
node of the tree.

threshold Numeric giving the ratio of insertions to deletions that must be met to stagger
a region of the alignment. Specifically, the number of insertions divided by
deletions must be less than threshold to stagger.

fullLength Logical specifying whether the sequences are full-length (TRUE), or terminal
gaps should be treated as missing data (FALSE, the default). Either a single
logical, a vector with one logical per sequence, or a list with right and left
components containing logicals for the right and left sides of the alignment.

processors The number of processors to use, or NULL (the default) for all available proces-
sors.

verbose Logical indicating whether to display progress.

Details

Multiple sequence aligners typically maximize true homologies at the expense of increased false
homologies. StaggerAlignment creates a “staggered alignment” which separates regions of the
alignment that are likely not homologous into separate regions. This re-balances the trade-off be-
tween true positives and false positives by decreasing the number of false homologies at the loss of
some true homologies. The resulting alignment is less aesthetically pleasing because it is widened
by the introduction of many gaps. However, in an evolutionary sense a staggered alignment is more
correct because each aligned position represents a hypothesis about evolutionary events: overlap-
ping characters between any two sequences represent positions common to their ancestor sequence
that may have evolved through substitution.

The single parameter threshold controls the degree of staggering. Its value represents the ratio
of insertions to deletions that must be crossed in order to stagger a region. A threshold of 1
would mean any region that could be better explained by separate insertions than deletions should
be staggered. A higher value for threshold makes it more likely to stagger, and vise-versa. A very
high value would conservatively stagger most regions with gaps, resulting in few false homologies
but also fewer true homologies. The default value (3) is intended to remove more false homologies
than it eliminates in true homologies. It may be preferable to tailor the threshold depending on
the purpose of the alignment, as some downstream procedures (such as tree building) may be more
or less sensitive to false homologies.

Value

An XStringSet of aligned sequences.

86 Synteny

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Coming soon!

See Also

AdjustAlignment, AlignSeqs, IdClusters

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db, remove="all")
alignedDNA <- AlignSeqs(dna)
staggerDNA <- StaggerAlignment(alignedDNA)
BrowseSeqs(staggerDNA, highlight=1)

Synteny Synteny blocks and hits

Description

Syntenic blocks are DNA segments composed of conserved hits occurring in the same order on two
sequences. The two sequences are typically chromosomes of different species that are hypothesized
to contain homology. Class "Synteny" provides objects and functions for storing and viewing
syntenic blocks and hits that are shared between sequences.

Usage

S3 method for class 'Synteny'
pairs(x,

bounds = TRUE,
boxBlocks = FALSE,
labels = abbreviate(rownames(x), 9),
gap = 0.5,
line.main = 3,
cex.labels = NULL,
font.labels = 1,
...)

S3 method for class 'Synteny'
plot(x,

labels = abbreviate(rownames(x), 9),
...)

S3 method for class 'Synteny'
print(x,

quote = FALSE,
right = TRUE,
...)

Synteny 87

Arguments

x An object of class “Synteny”.

bounds Logical specifying whether to plot sequence boundaries as horizontal or vertical
lines.

boxBlocks Logical indicating whether to draw a rectangle around hits belonging to the same
block of synteny.

labels Character vector providing names corresponding to each “identifier” for labels
on the diagonal.

gap Distance between subplots, in margin lines.

line.main If main is specified, line.main provides the line argument to mtext.

cex.labels Magnification of labels on the diagonal.

font.labels Font of labels on the diagonal.

quote Logical indicating whether to print the output surrounded by quotes.

right Logical specifying whether to right align strings.

... Other graphical parameters for pairs or plot, including: main, cex.main,
font.main, and oma. Other arguments for print, including print.gap and
max.

Details

Objects of class Synteny are stored as square matrices of list elements with dimnames giving the
“identifier” of the corresponding sequences. The synteny matrix can be separated into three parts:
along, above, and below the diagonal. Each list element along the diagonal contains an integer
vector with the width of the sequence(s) belonging to that “identifier”. List elements above the
diagonal (column j > row i) each contain a matrix with “hits” corresponding to matches between
sequences i and j. List elements below the diagonal each contain a matrix with “blocks” of synteny
between sequences j and i.

The pairs method creates a scatterplot matrix from a Synteny object. Dot plots above the diagonal
show hits between identifier i and j, where forward hits are colored in black, and hits to the reverse
strand of identifier j are colored in red. Plots below the diagonal show blocks of synteny colored
by their score, from green (highest scoring) to blue to magenta (lowest scoring). The plot method
displays a block view of the sequence groups in the same order as the input object (x). The endpoints
of each block are connected by a pair of lines, which can cross if one block corresponds to the
opposite strand of the other sequence.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

AlignSynteny, FindSynteny

Examples

a small example:
dbConn <- dbConnect(SQLite(), ":memory:")
s1 <- DNAStringSet("ACTAGACCCAGACCGATAAACGGACTGGACAAG")
s3 <- reverseComplement(s1)
s2 <- c(s1, s3)

88 TerminalChar

Seqs2DB(c(c(s1, s2), s3),
"XStringSet",
dbConn,
c("s1", "s2", "s2", "s3"))

syn <- FindSynteny(dbConn, minScore=1)
syn # Note: > 100% hits because of sequence reuse across blocks
pairs(syn, boxBlocks=TRUE)
plot(syn)
dbDisconnect(dbConn)

a larger example:
db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db, minScore=50)
class(synteny) # 'Synteny'
synteny

accessing parts
i <- 1
j <- 2
synteny[i, i][[1]] # width of sequences in i
synteny[j, j][[1]] # width of sequences in j
head(synteny[i, j][[1]]) # hits between i & j
synteny[j, i][[1]] # blocks between i & j

plotting
pairs(synteny) # dot plots
plot(synteny) # block view

TerminalChar Determine the Number of Terminal Characters

Description

Counts the number of terminal characters for every sequence in an XStringSet. Terminal charac-
ters are defined as a specific character repeated at the beginning and end of a sequence.

Usage

TerminalChar(myXStringSet,
char = "")

Arguments

myXStringSet An XStringSet object of sequences.

char A single character giving the terminal character to count, or an empty character
("") indicating to count both gap ("-") and unknown (".") characters.

Value

A matrix containing the results for each sequence in its respective row. The first column contains
the number of leading char, the second contains the number of trailing char, and the third contains
the total number of characters in-between.

TileSeqs 89

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

IdLengths

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
dna <- SearchDB(db)
t <- TerminalChar(dna)

TileSeqs Form a Set of Tiles for Each Group of Sequences.

Description

Creates a set of tiles that represent each group of sequences in the database for downstream appli-
cations.

Usage

TileSeqs(dbFile,
tblName = "DNA",
identifier = "",
minLength = 26,
maxLength = 27,
maxTilePermutations = 10,
minCoverage = 0.9,
add2tbl = FALSE,
verbose = TRUE,
...)

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file.

tblName Character string specifying the table of sequences to use for forming tiles.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

minLength Integer providing the minimum number of nucleotides in each tile. Typically the
same or slightly less than maxLength.

maxLength Integer providing the maximum number of nucleotides in each tile. Tiles are
designed primarily for this length, which should ideally be slightly greater than
the maximum length of oligos used in downstream functions.

maxTilePermutations

Integer specifying the maximum number of tiles in each target site.

90 TileSeqs

minCoverage Numeric providing the fraction of coverage that is desired for each target site in
the group. For example, a minCoverage of 0.9 request that additional tiles are
added until 90% of the group is represented by the tile permutations.

add2tbl Logical or a character string specifying the table name in which to add the result.

verbose Logical indicating whether to display progress.

... Additional arguments to be passed directly to SearchDB.

Details

TileSeqs will create a set of overlapping tiles representing each target site in an alignment of se-
quences. The most common tile permutations are added until the desired minimum group coverage
is obtained. The dbFile is assumed to contain DNAStringSet sequences (any U’s are converted to
T’s).

Target sites with one more more tiles not meeting a set of requirements are marked with misprime
equals TRUE. Requirements include minimum group coverage, minimum length, and maximum
length. Additionally, tiles are required not to contain more than four runs of a single base or four
di-nucleotide repeats.

Value

A data.frame with a row for each tile, and multiple columns of information. The row_names col-
umn gives the row number. The start, end, start_aligned, and end_aligned columns provide
positioning of the tile in a consensus sequence formed from the group. The column misprime is
a logical specifying whether the tile meets the specified constraints. The columns width and id
indicate the tile’s length and group of origin, respectively.

The coverage field gives the fraction of sequences containing the tile in the group that encompass
the tile’s start and end positions in the alignment, whereas groupCoverage contains the fraction of
all sequences in the group containing a tile at their respective target site. For example, if only a
single sequence out of 10 has information (no gap) in the first alignment position, then coverage
would be 100% (1.0), while groupCoverage would be 10% (0.1).

The final column, target_site, provides the sequence of the tile.

Note

If add2tbl is TRUE then the tiles will be added to the database table that currently contains the
sequences used for tiling. The added tiles may cause interference when querying a table of se-
quences. Therefore, it is recommended to add the tiles to their own table, for example, by using
add2tbl="Tiles".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

DesignPrimers

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
tiles <- TileSeqs(db, identifier="Pseudomonas")

Index

∗Topic datasets
deltaGrules, 39
deltaHrules, 40
deltaSrules, 41
HEC_MI, 64
MIQS, 74
RESTRICTION_ENZYMES, 81

∗Topic data
MODELS, 75

∗Topic package
DECIPHER-package, 2

[.Synteny (Synteny), 86

Add2DB, 5, 60, 67, 70
AdjustAlignment, 6, 16, 86
AlignDB, 8, 13, 16, 18
AlignProfiles, 7, 10, 10, 15, 16, 18
AlignSeqs, 8, 10, 13, 14, 18, 72, 86
AlignSynteny, 13, 16, 16, 18, 62, 87
AlignTranslation, 8, 10, 13, 16, 17, 34
Amplify (DECIPHER-defunct), 38
AmplifyDNA, 19, 30, 38, 47, 53, 73
Array2Matrix, 21, 43, 77

BrowseDB, 6, 22, 25
BrowseSeqs, 23, 23, 38
BrowseSequences (DECIPHER-defunct), 38

CalculateEfficiencyArray, 25
CalculateEfficiencyFISH, 27, 50
CalculateEfficiencyPCR, 19, 20, 28, 47, 53,

73
ConsensusSequence, 25, 30, 56, 68
CorrectFrameshifts, 18, 32, 79
CreateChimeras, 35, 60

DB2Seqs, 36, 83, 84
DECIPHER (DECIPHER-package), 2
DECIPHER-defunct, 38
DECIPHER-package, 2
deltaGrules, 26, 39
deltaHrules, 40
deltaSrules, 41
DesignArray, 22, 42, 77

DesignPrimers, 20, 30, 44, 53, 90
DesignProbes, 28, 47
DesignSignatures, 20, 30, 47, 50, 55, 73
DigestDNA, 53, 54
Disambiguate, 28, 29, 31, 53, 55
DistanceMatrix, 56, 67

FindChimeras, 36, 58
FindSynteny, 17, 61, 87
FormGroups, 63, 69

HEC_MI, 64
HEC_MI1, 80
HEC_MI1 (HEC_MI), 64
HEC_MI2, 80
HEC_MI2 (HEC_MI), 64

IdClusters, 16, 58, 65, 72, 76, 85, 86
IdConsensus, 31, 67
IdentifyByRank, 64, 69
IdLengths, 70, 89

MaskAlignment, 71
MeltDNA, 20, 53, 72
MIQS, 13, 74
MODELS, 67, 75

NNLS, 22, 43, 76

OrientNucleotides, 34, 78

pairs.Synteny (Synteny), 86
plot.Synteny (Synteny), 86
PredictHEC, 79
print.Synteny (Synteny), 86

RESTRICTION_ENZYMES, 51, 53, 55, 81

SearchDB, 6, 81, 84
Seqs2DB, 6, 31, 36, 68, 83, 83
StaggerAlignment, 8, 16, 84
Synteny, 86
Synteny-class (Synteny), 86

TerminalChar, 88
TileSeqs, 28, 47, 50, 89

91

	DECIPHER-package
	Add2DB
	AdjustAlignment
	AlignDB
	AlignProfiles
	AlignSeqs
	AlignSynteny
	AlignTranslation
	AmplifyDNA
	Array2Matrix
	BrowseDB
	BrowseSeqs
	CalculateEfficiencyArray
	CalculateEfficiencyFISH
	CalculateEfficiencyPCR
	ConsensusSequence
	CorrectFrameshifts
	CreateChimeras
	DB2Seqs
	DECIPHER-defunct
	deltaGrules
	deltaHrules
	deltaSrules
	DesignArray
	DesignPrimers
	DesignProbes
	DesignSignatures
	DigestDNA
	Disambiguate
	DistanceMatrix
	FindChimeras
	FindSynteny
	FormGroups
	HEC_MI
	IdClusters
	IdConsensus
	IdentifyByRank
	IdLengths
	MaskAlignment
	MeltDNA
	MIQS
	MODELS
	NNLS
	OrientNucleotides
	PredictHEC
	RESTRICTION_ENZYMES
	SearchDB
	Seqs2DB
	StaggerAlignment
	Synteny
	TerminalChar
	TileSeqs
	Index

