Contents

1 Installation

You can install the release version of sparseMatrixStats from BioConductor:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("sparseMatrixStats")

2 Introduction

The sparseMatrixStats package implements a number of summary functions for sparse matrices from the Matrix package.

Let us load the package and create a synthetic sparse matrix.

library(sparseMatrixStats)
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#> 
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#> 
#>     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#>     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#>     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#>     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#>     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#>     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#>     colWeightedMeans, colWeightedMedians, colWeightedSds,
#>     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#>     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#>     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#>     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#>     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#>     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#>     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#>     rowWeightedSds, rowWeightedVars
# Matrix defines the sparse Matrix class
# dgCMatrix that we will use
library(Matrix)
# For reproducibility
set.seed(1)

Create a synthetic table with customers, items, and how often they bought that item.

customer_ids <- seq_len(100)
item_ids <-  seq_len(30)
n_transactions <- 1000
customer <- sample(customer_ids, size = n_transactions, replace = TRUE,
                    prob = runif(100))
item <- sample(item_ids, size = n_transactions, replace = TRUE,
               prob = runif(30))

tmp <- table(paste0(customer, "-", item))
tmp2 <- strsplit(names(tmp), "-")
purchase_table <- data.frame(
  customer = as.numeric(sapply(tmp2, function(x) x[1])),
  item = as.numeric(sapply(tmp2, function(x) x[2])),
  n = as.numeric(tmp)
)

head(purchase_table, n = 10)
#>    customer item n
#> 1         1   15 2
#> 2         1   20 1
#> 3         1   22 1
#> 4         1   23 1
#> 5         1   30 1
#> 6       100   11 1
#> 7       100   15 3
#> 8       100   17 1
#> 9       100   19 1
#> 10      100   20 2

Let us turn the table into a matrix to simplify the analysis:

purchase_matrix <- sparseMatrix(purchase_table$customer, purchase_table$item, 
                x = purchase_table$n,
                dims = c(100, 30),
                dimnames = list(customer = paste0("Customer_", customer_ids),
                                item = paste0("Item_", item_ids)))
purchase_matrix[1:10, 1:15]
#> 10 x 15 sparse Matrix of class "dgCMatrix"
#>   [[ suppressing 15 column names 'Item_1', 'Item_2', 'Item_3' ... ]]
#>              item
#> customer                                   
#>   Customer_1  . . . . . . . . . . . . . . 2
#>   Customer_2  . . 2 . . . . . . . . . . . 1
#>   Customer_3  . . 1 . . . . . 1 . . 1 . . 1
#>   Customer_4  . . . . . 1 . . 1 1 . 1 . 1 3
#>   Customer_5  . . . . . . . . . . . 1 . . .
#>   Customer_6  . . . 1 . 1 1 . . 1 1 . . . 1
#>   Customer_7  2 . 1 . . 1 . 1 1 . 1 2 . . 1
#>   Customer_8  . . . . . . . . 1 . . . . . .
#>   Customer_9  . . . . . 2 . . 1 . . . . 1 .
#>   Customer_10 . . . . . . . . . . . . . . .

We can see that some customers did not buy anything, where as some bought a lot.

sparseMatrixStats can help us to identify interesting patterns in this data:

# How often was each item bough in total?
colSums2(purchase_matrix)
#>  [1] 34 13 30 10 12 34 29 31 71 28 20 40  0 48 52 27 30 55 14 46  8 41 40 73 56
#> [26] 83 20 18 13 24

# What is the range of number of items each 
# customer bought?
head(rowRanges(purchase_matrix))
#>      [,1] [,2]
#> [1,]    0    2
#> [2,]    0    2
#> [3,]    0    3
#> [4,]    0    3
#> [5,]    0    1
#> [6,]    0    4

# What is the variance in the number of items
# each customer bought?
head(rowVars(purchase_matrix))
#> [1] 0.23448276 0.40919540 0.39195402 0.74022989 0.06436782 0.81034483

# How many items did a customer not buy at all, one time, 2 times,
# or exactly 4 times?
head(rowTabulates(purchase_matrix, values = c(0, 1, 2, 4)))
#>             0 1 2 4
#> Customer_1 25 4 1 0
#> Customer_2 25 2 3 0
#> Customer_3 25 4 0 0
#> Customer_4 19 8 1 0
#> Customer_5 28 2 0 0
#> Customer_6 20 7 2 1

2.1 Alternative Matrix Creation

In the previous section, I demonstrated how to create a sparse matrix from scratch using the sparseMatrix() function. However, often you already have an existing matrix and want to convert it to a sparse representation.

mat <- matrix(0, nrow=10, ncol=6)
mat[sample(seq_len(60), 4)] <- 1:4
# Convert dense matrix to sparse matrix
sparse_mat <- as(mat, "dgCMatrix")
sparse_mat
#> 10 x 6 sparse Matrix of class "dgCMatrix"
#>                  
#>  [1,] . . . . . .
#>  [2,] . . . . 4 .
#>  [3,] . . . . . .
#>  [4,] . . . . . .
#>  [5,] . . . . . .
#>  [6,] 1 . . 2 . .
#>  [7,] . . 3 . . .
#>  [8,] . . . . . .
#>  [9,] . . . . . .
#> [10,] . . . . . .

The sparseMatrixStats package is a derivative of the matrixStats package and implements it’s API for sparse matrices. For example, to calculate the variance for each column of mat you can do

apply(mat, 2, var)
#> [1] 0.1 0.0 0.9 0.4 1.6 0.0

However, this is quite inefficient and matrixStats provides the direct function

matrixStats::colVars(mat)
#> [1] 0.1 0.0 0.9 0.4 1.6 0.0

Now for sparse matrices, you can also just call

sparseMatrixStats::colVars(sparse_mat)
#> [1] 0.1 0.0 0.9 0.4 1.6 0.0

3 Benchmark

If you have a large matrix with many exact zeros, working on the sparse representation can considerably speed up the computations.

I generate a dataset with 10,000 rows and 50 columns that is 99% empty

big_mat <- matrix(0, nrow=1e4, ncol=50)
big_mat[sample(seq_len(1e4 * 50), 5000)] <- rnorm(5000)
# Convert dense matrix to sparse matrix
big_sparse_mat <- as(big_mat, "dgCMatrix")

I use the bench package to benchmark the performance difference:

bench::mark(
  sparseMatrixStats=sparseMatrixStats::colVars(big_sparse_mat),
  matrixStats=matrixStats::colVars(big_mat),
  apply=apply(big_mat, 2, var)
)
#> # A tibble: 3 × 6
#>   expression             min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>        <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 sparseMatrixStats  82.36µs  88.85µs    10552.        NA     2.03
#> 2 matrixStats          2.8ms   2.84ms      353.        NA     0   
#> 3 apply               6.42ms   6.59ms      146.        NA   117.

As you can see sparseMatrixStats is ca. 50 times fast than matrixStats, which in turn is 7 times faster than the apply() version.

4 Session Info

sessionInfo()
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.2 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] Matrix_1.5-4.1           sparseMatrixStats_1.12.2 MatrixGenerics_1.12.2   
#> [4] matrixStats_1.0.0        BiocStyle_2.28.0        
#> 
#> loaded via a namespace (and not attached):
#>  [1] vctrs_0.6.3         cli_3.6.1           knitr_1.43         
#>  [4] rlang_1.1.1         xfun_0.39           bench_1.1.3        
#>  [7] jsonlite_1.8.7      glue_1.6.2          htmltools_0.5.5    
#> [10] sass_0.4.6          fansi_1.0.4         rmarkdown_2.23     
#> [13] grid_4.3.1          tibble_3.2.1        evaluate_0.21      
#> [16] jquerylib_0.1.4     fastmap_1.1.1       lifecycle_1.0.3    
#> [19] yaml_2.3.7          bookdown_0.34       BiocManager_1.30.21
#> [22] compiler_4.3.1      pkgconfig_2.0.3     Rcpp_1.0.10        
#> [25] lattice_0.21-8      digest_0.6.32       R6_2.5.1           
#> [28] utf8_1.2.3          pillar_1.9.0        magrittr_2.0.3     
#> [31] bslib_0.5.0         tools_4.3.1         cachem_1.0.8