Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.8.2 graph_1.78.0
## [3] cowplot_1.1.1 lubridate_1.9.2
## [5] forcats_1.0.0 stringr_1.5.0
## [7] dplyr_1.1.2 purrr_1.0.1
## [9] readr_2.1.4 tidyr_1.3.0
## [11] tibble_3.2.1 tidyverse_2.0.0
## [13] TCGAutils_1.20.2 curatedTCGAData_1.22.2
## [15] MultiAssayExperiment_1.26.0 SummarizedExperiment_1.30.2
## [17] Biobase_2.60.0 GenomicRanges_1.52.0
## [19] GenomeInfoDb_1.36.1 IRanges_2.34.1
## [21] S4Vectors_0.38.1 BiocGenerics_0.46.0
## [23] MatrixGenerics_1.12.2 matrixStats_1.0.0
## [25] ggraph_2.1.0 ggplot2_3.4.2
## [27] BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 httr_1.4.6
## [3] GenomicDataCommons_1.24.2 prabclus_2.3-2
## [5] Rgraphviz_2.44.0 numDeriv_2016.8-1.1
## [7] tools_4.3.1 utf8_1.2.3
## [9] R6_2.5.1 vegan_2.6-4
## [11] mgcv_1.9-0 sn_2.1.1
## [13] permute_0.9-7 withr_2.5.0
## [15] graphite_1.46.0 prettyunits_1.1.1
## [17] gridExtra_2.3 flexclust_1.4-1
## [19] cli_3.6.1 sandwich_3.0-2
## [21] labeling_0.4.2 sass_0.4.6
## [23] diptest_0.76-0 mvtnorm_1.2-2
## [25] robustbase_0.99-0 proxy_0.4-27
## [27] Rsamtools_2.16.0 FMStable_0.1-4
## [29] Linnorm_2.24.1 plotrix_3.8-2
## [31] limma_3.56.2 RSQLite_2.3.1
## [33] generics_0.1.3 BiocIO_1.10.0
## [35] gtools_3.9.4 wesanderson_0.3.6
## [37] Matrix_1.6-0 fansi_1.0.4
## [39] abind_1.4-5 logger_0.2.2
## [41] lifecycle_1.0.3 multcomp_1.4-25
## [43] yaml_2.3.7 edgeR_3.42.4
## [45] mathjaxr_1.6-0 BiocFileCache_2.8.0
## [47] Rtsne_0.16 grid_4.3.1
## [49] blob_1.2.4 promises_1.2.0.1
## [51] gdata_2.19.0 ppcor_1.1
## [53] bdsmatrix_1.3-6 ExperimentHub_2.8.1
## [55] crayon_1.5.2 lattice_0.21-8
## [57] GenomicFeatures_1.52.1 KEGGREST_1.40.0
## [59] magick_2.7.4 pillar_1.9.0
## [61] knitr_1.43 rjson_0.2.21
## [63] fpc_2.2-10 corpcor_1.6.10
## [65] codetools_0.2-19 mutoss_0.1-13
## [67] glue_1.6.2 RcppArmadillo_0.12.4.1.0
## [69] data.table_1.14.8 vctrs_0.6.3
## [71] png_0.1-8 Rdpack_2.4
## [73] mnem_1.16.0 gtable_0.3.3
## [75] kernlab_0.9-32 assertthat_0.2.1
## [77] amap_0.8-19 cachem_1.0.8
## [79] xfun_0.39 rbibutils_2.2.13
## [81] S4Arrays_1.0.4 mime_0.12
## [83] RcppEigen_0.3.3.9.3 tidygraph_1.2.3
## [85] survival_3.5-5 fastICA_1.2-3
## [87] statmod_1.5.0 interactiveDisplayBase_1.38.0
## [89] ellipsis_0.3.2 TH.data_1.1-2
## [91] tsne_0.1-3.1 nlme_3.1-162
## [93] naturalsort_0.1.3 bit64_4.0.5
## [95] progress_1.2.2 gmodels_2.18.1.1
## [97] filelock_1.0.2 bslib_0.5.0
## [99] colorspace_2.1-0 DBI_1.1.3
## [101] nnet_7.3-19 mnormt_2.1.1
## [103] tidyselect_1.2.0 bit_4.0.5
## [105] compiler_4.3.1 curl_5.0.1
## [107] rvest_1.0.3 expm_0.999-7
## [109] xml2_1.3.5 TFisher_0.2.0
## [111] ggdendro_0.1.23 DelayedArray_0.26.6
## [113] shadowtext_0.1.2 bookdown_0.34
## [115] rtracklayer_1.60.0 harmonicmeanp_3.0
## [117] sfsmisc_1.1-15 scales_1.2.1
## [119] DEoptimR_1.1-0 RBGL_1.76.0
## [121] rappdirs_0.3.3 snowfall_1.84-6.2
## [123] apcluster_1.4.10 digest_0.6.33
## [125] rmarkdown_2.23 XVector_0.40.0
## [127] htmltools_0.5.5 pkgconfig_2.0.3
## [129] highr_0.10 dbplyr_2.3.3
## [131] fastmap_1.1.1 rlang_1.1.1
## [133] shiny_1.7.4.1 farver_2.1.1
## [135] jquerylib_0.1.4 zoo_1.8-12
## [137] jsonlite_1.8.7 BiocParallel_1.34.2
## [139] mclust_6.0.0 RCurl_1.98-1.12
## [141] magrittr_2.0.3 modeltools_0.2-23
## [143] GenomeInfoDbData_1.2.10 munsell_0.5.0
## [145] Rcpp_1.0.11 viridis_0.6.3
## [147] stringi_1.7.12 zlibbioc_1.46.0
## [149] MASS_7.3-60 plyr_1.8.8
## [151] AnnotationHub_3.8.0 org.Hs.eg.db_3.17.0
## [153] flexmix_2.3-19 parallel_4.3.1
## [155] ggrepel_0.9.3 Biostrings_2.68.1
## [157] graphlayouts_1.0.0 splines_4.3.1
## [159] multtest_2.56.0 hms_1.1.3
## [161] locfit_1.5-9.8 qqconf_1.3.2
## [163] igraph_1.5.0 fastcluster_1.2.3
## [165] reshape2_1.4.4 biomaRt_2.56.1
## [167] BiocVersion_3.17.1 XML_3.99-0.14
## [169] evaluate_0.21 metap_1.8
## [171] pcalg_2.7-8 BiocManager_1.30.21
## [173] tzdb_0.4.0 tweenr_2.0.2
## [175] httpuv_1.6.11 polyclip_1.10-4
## [177] clue_0.3-64 BiocBaseUtils_1.2.0
## [179] ggforce_0.4.1 xtable_1.8-4
## [181] restfulr_0.0.15 e1071_1.7-13
## [183] later_1.3.1 viridisLite_0.4.2
## [185] class_7.3-22 snow_0.4-4
## [187] ggm_2.5 memoise_2.0.1
## [189] AnnotationDbi_1.62.2 GenomicAlignments_1.36.0
## [191] ellipse_0.4.5 cluster_2.1.4
## [193] timechange_0.2.0
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.