Showcases the use of SEtools to merge objects of the SummarizedExperiment class.
SEtools 1.14.0
The SEtools package is a set of convenience functions for the Bioconductor class SummarizedExperiment. It facilitates merging, melting, and plotting SummarizedExperiment
objects.
NOTE that the heatmap-related and melting functions have been moved to a standalone package, sechm.
The old sehm
function of SEtools
should be considered deprecated, and most SEtools
functions are conserved for legacy/reproducibility reasons (or until they find a better home).
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SEtools")
Or, to install the latest development version:
BiocManager::install("plger/SEtools")
To showcase the main functions, we will use an example object which contains (a subset of) whole-hippocampus RNAseq of mice after different stressors:
suppressPackageStartupMessages({
library(SummarizedExperiment)
library(SEtools)
})
## Warning: replacing previous import 'utils::findMatches' by
## 'S4Vectors::findMatches' when loading 'AnnotationDbi'
data("SE", package="SEtools")
SE
## class: SummarizedExperiment
## dim: 100 20
## metadata(0):
## assays(2): counts logcpm
## rownames(100): Egr1 Nr4a1 ... CH36-200G6.4 Bhlhe22
## rowData names(2): meanCPM meanTPM
## colnames(20): HC.Homecage.1 HC.Homecage.2 ... HC.Swim.4 HC.Swim.5
## colData names(2): Region Condition
This is taken from Floriou-Servou et al., Biol Psychiatry 2018.
se1 <- SE[,1:10]
se2 <- SE[,11:20]
se3 <- mergeSEs( list(se1=se1, se2=se2) )
se3
## class: SummarizedExperiment
## dim: 100 20
## metadata(3): se1 se2 anno_colors
## assays(2): counts logcpm
## rownames(100): AC139063.2 Actr6 ... Zfp667 Zfp930
## rowData names(2): meanCPM meanTPM
## colnames(20): se1.HC.Homecage.1 se1.HC.Homecage.2 ... se2.HC.Swim.4
## se2.HC.Swim.5
## colData names(3): Dataset Region Condition
All assays were merged, along with rowData and colData slots.
By default, row z-scores are calculated for each object when merging. This can be prevented with:
se3 <- mergeSEs( list(se1=se1, se2=se2), do.scale=FALSE)
If more than one assay is present, one can specify a different scaling behavior for each assay:
se3 <- mergeSEs( list(se1=se1, se2=se2), use.assays=c("counts", "logcpm"), do.scale=c(FALSE, TRUE))
Differences to the cbind
method include prefixes added to column names, optional scaling, handling of metadata (e.g. for sechm
)
It is also possible to merge by rowData columns, which are specified through the mergeBy
argument.
In this case, one can have one-to-many and many-to-many mappings, in which case two behaviors are possible:
aggFun
, the features of each object will by aggregated by mergeBy
using this function before merging.rowData(se1)$metafeature <- sample(LETTERS,nrow(se1),replace = TRUE)
rowData(se2)$metafeature <- sample(LETTERS,nrow(se2),replace = TRUE)
se3 <- mergeSEs( list(se1=se1, se2=se2), do.scale=FALSE, mergeBy="metafeature", aggFun=median)
## Aggregating the objects by metafeature
## Merging...
sechm::sechm(se3, features=row.names(se3))
A single SE can also be aggregated by using the aggSE
function:
se1b <- aggSE(se1, by = "metafeature")
## Aggregation methods for each assay:
## counts: sum; logcpm: expsum
se1b
## class: SummarizedExperiment
## dim: 25 10
## metadata(0):
## assays(2): counts logcpm
## rownames(25): A B ... Y Z
## rowData names(0):
## colnames(10): HC.Homecage.1 HC.Homecage.2 ... HC.Handling.4
## HC.Handling.5
## colData names(2): Region Condition
If the aggregation function(s) are not specified, aggSE
will try to guess decent aggregation functions from the assay names.
This is similar to scuttle::sumCountsAcrossFeatures
, but preserves other SE slots.
Calculate an assay of log-foldchanges to the controls:
SE <- log2FC(SE, fromAssay="logcpm", controls=SE$Condition=="Homecage")
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] SEtools_1.14.0 sechm_1.8.0
## [3] SummarizedExperiment_1.30.0 Biobase_2.60.0
## [5] GenomicRanges_1.52.0 GenomeInfoDb_1.36.0
## [7] IRanges_2.34.0 S4Vectors_0.38.0
## [9] BiocGenerics_0.46.0 MatrixGenerics_1.12.0
## [11] matrixStats_0.63.0 BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.1.3 bitops_1.0-7 rlang_1.1.0
## [4] magrittr_2.0.3 clue_0.3-64 GetoptLong_1.0.5
## [7] RSQLite_2.3.1 compiler_4.3.0 mgcv_1.8-42
## [10] png_0.1-8 vctrs_0.6.2 sva_3.48.0
## [13] stringr_1.5.0 pkgconfig_2.0.3 shape_1.4.6
## [16] crayon_1.5.2 fastmap_1.1.1 magick_2.7.4
## [19] XVector_0.40.0 ca_0.71.1 utf8_1.2.3
## [22] rmarkdown_2.21 bit_4.0.5 xfun_0.39
## [25] zlibbioc_1.46.0 cachem_1.0.7 jsonlite_1.8.4
## [28] blob_1.2.4 highr_0.10 DelayedArray_0.26.0
## [31] BiocParallel_1.34.0 parallel_4.3.0 cluster_2.1.4
## [34] R6_2.5.1 bslib_0.4.2 stringi_1.7.12
## [37] RColorBrewer_1.1-3 limma_3.56.0 genefilter_1.82.0
## [40] jquerylib_0.1.4 Rcpp_1.0.10 bookdown_0.33
## [43] iterators_1.0.14 knitr_1.42 splines_4.3.0
## [46] Matrix_1.5-4 tidyselect_1.2.0 yaml_2.3.7
## [49] TSP_1.2-4 doParallel_1.0.17 codetools_0.2-19
## [52] curl_5.0.0 lattice_0.21-8 tibble_3.2.1
## [55] KEGGREST_1.40.0 evaluate_0.20 Rtsne_0.16
## [58] survival_3.5-5 zip_2.3.0 Biostrings_2.68.0
## [61] circlize_0.4.15 pillar_1.9.0 BiocManager_1.30.20
## [64] foreach_1.5.2 generics_0.1.3 RCurl_1.98-1.12
## [67] ggplot2_3.4.2 munsell_0.5.0 scales_1.2.1
## [70] xtable_1.8-4 glue_1.6.2 pheatmap_1.0.12
## [73] tools_4.3.0 data.table_1.14.8 openxlsx_4.2.5.2
## [76] annotate_1.78.0 locfit_1.5-9.7 registry_0.5-1
## [79] XML_3.99-0.14 Cairo_1.6-0 grid_4.3.0
## [82] seriation_1.4.2 AnnotationDbi_1.62.0 edgeR_3.42.0
## [85] colorspace_2.1-0 nlme_3.1-162 GenomeInfoDbData_1.2.10
## [88] randomcoloR_1.1.0.1 cli_3.6.1 fansi_1.0.4
## [91] ComplexHeatmap_2.16.0 dplyr_1.1.2 V8_4.3.0
## [94] gtable_0.3.3 DESeq2_1.40.0 sass_0.4.5
## [97] digest_0.6.31 rjson_0.2.21 memoise_2.0.1
## [100] htmltools_0.5.5 lifecycle_1.0.3 httr_1.4.5
## [103] GlobalOptions_0.1.2 bit64_4.0.5