
Package ‘wbs’
November 4, 2024

Type Package

Title Wild Binary Segmentation for Multiple Change-Point Detection

Version 1.4.1

Date 2019-04-17

Depends graphics

Description Provides efficient implementation of the Wild Binary Segmentation and Binary
Segmentation algorithms for estimation of the number and locations of
multiple change-points in the piecewise constant function plus Gaussian
noise model.

License GPL-2

NeedsCompilation yes

Repository CRAN

RoxygenNote 6.1.1

Date/Publication 2024-11-04 18:35:34 UTC

Author Rafal Baranowski [aut, cre],
Piotr Fryzlewicz [aut]

Maintainer Rafal Baranowski <package_maintenance@rbaranowski.com>

Contents
wbs-package . 2
bic.penalty . 3
changepoints . 3
fixed.intervals . 5
mbic.penalty . 6
means.between.cpt . 7
plot.sbs . 8
plot.wbs . 9
print.sbs . 9
print.wbs . 10
random.intervals . 10
sbs . 11

1

2 wbs-package

ssic.penalty . 12
wbs . 13

Index 15

wbs-package Wild Binary Segmentation for multiple change-point detection

Description

The package implements Wild Binary Segmentation, a technique for consistent estimation of the
number and locations of multiple change-points in data. It also provides a fast implementation of
the standard Binary Segmentation algorithm.

Details

The main routines of the package are wbs, sbs and changepoints.

References

P. Fryzlewicz (2014), Wild Binary Segmentation for multiple change-point detection. Annals of
Statistics, to appear. (http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf)

Examples

#an example in which standard Binary Segmentation fails to detect change points
x <- rnorm(300)+ c(rep(0,130),rep(-1,20),rep(1,20),rep(0,130))

s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt
in this example, both algorithms work well
x <- rnorm(300) + c(rep(1,50),rep(0,250))

s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt

http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf

bic.penalty 3

bic.penalty Bayesian Information Criterion penalty term

Description

The function evaluates the penalty term for the standard Bayesian Information Criterion applied
to the change-point detection problem. This routine is typically not called directly by the user; its
name can be passed as an argument to changepoints.

Usage

bic.penalty(n, cpt)

Arguments

n the number of observations

cpt a vector with localisations of change-points

Value

the penalty term k log(n) where k denotes the number of elements in cpt

Examples

x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="bic.penalty")
w.cpt$cpt.ic
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="bic.penalty")
w.cpt$cpt.ic

changepoints Change-points detected by WBS or BS

Description

The function applies user-specified stopping criteria to extract change-points from object gener-
ated by wbs or sbs. For object of class ’sbs’, the function returns change-points whose corre-
sponding test statistic exceeds threshold given in th. For object of class ’wbs’, the change-points
can be also detected using information criteria with penalties specified in penalty.

4 changepoints

Usage

changepoints(object, ...)

S3 method for class 'sbs'
changepoints(object, th = NULL, th.const = 1.3,
Kmax = NULL, ...)

S3 method for class 'wbs'
changepoints(object, th = NULL, th.const = 1.3,
Kmax = 50, penalty = c("ssic.penalty", "bic.penalty",
"mbic.penalty"), ...)

Arguments

object an object of ’wbs’ or ’sbs’ class returned by, respectively, wbs and sbs functions

... further arguments that may be passed to the penalty functions

th a vector of positive scalars

th.const a vector of positive scalars

Kmax a maximum number of change-points to be detected

penalty a character vector with names of penalty functions used

Details

For the change-point detection based on thresholding (object of class ’sbs’ or ’wbs’), the user can
either specify the thresholds in th directly, determine the maximum number Kmax of change-points
to be detected, or let th depend on th.const.

When Kmax is given, the function automatically sets th to the lowest threshold such that the number
of detected change-points is lower or equal than Kmax. Note that for the BS algorithm it might be
not possible to find the threshold such that exactly Kmax change-points are found.

When th and Kmax are omitted, the threshold value is set to

th = sigma× th.const
√
2 log(n),

where sigma is the Median Absolute Deviation estimate of the noise level and n is the number of
elements in x.

For the change-point detection based on information criteria (object of class ’wbs’ only), the user
can specify both the maximum number of change-points (Kmax) and a type of the penalty used.
Parameter penalty should contain a list of characters with names of the functions of at least two
arguments (n and cpt). For each penalty given, the following information criterion is minimized
over candidate sets of change-points cpt:

n

2
log σ̂2

k + penalty(n, cpt),

where k denotes the number of elements in cpt, σ̂k is the corresponding maximum likelihood esti-
mator of the residual variance.

fixed.intervals 5

Value

sigma Median Absolute Deviation estimate of the noise level

th a vector of thresholds

no.cpt.th the number of change-points detected for each value of th

cpt.th a list with the change-points detected for each value of th

Kmax a maximum number of change-points detected

ic.curve a list with values of the chosen information criteria

no.cpt.ic the number of change-points detected for each information criterion considered

cpt.ic a list with the change-points detected for each information criterion considered

Examples

#we generates gaussian noise + Poisson process signal with 10 jumps on average
set.seed(10)
N <- rpois(1,10)
true.cpt <- sample(1000,N)
m1 <- matrix(rep(1:1000,N),1000,N,byrow=FALSE)
m2 <- matrix(rep(true.cpt,1000),1000,N,byrow=TRUE)
x <- rnorm(1000) + apply(m1>=m2,1,sum)

we apply the BS and WBS algorithms with default values for their parameters

s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt

#we can use different stopping criteria, invoking sbs/wbs functions is not necessary

s.cpt <- changepoints(s,th.const=c(1,1.3))
s.cpt
w.cpt <- changepoints(w,th.const=c(1,1.3))
w.cpt

fixed.intervals Fixed intervals

Description

The function generates approximately M intervals with endpoints in 1,2,...,n, without random draw-
ing. This routine can be used inside wbs function and is typically not called directly by the user.

6 mbic.penalty

Usage

fixed.intervals(n, M)

Arguments

n a number of endpoints to choose from

M a number of intervals to generate

Details

Function finds the minimal m such that M ≤ m(m−1)
2 . Then it generates m approximately equally-

spaced positive integers lower than n and returns all possible intervals consisting of any two of these
points.

Value

a 2-column matrix with start (first column) and end (second column) points of an interval in each
row

See Also

random.intervals wbs

Examples

fixed.intervals(10,100)

mbic.penalty Modified Bayes Information Criterion penalty term

Description

The function evaluates the penalty term for the Modified Bayes Information Criterion proposed in
N. Zhang and D. Siegmund (2007). This routine is typically not called directly by the user; its name
can be passed as an argument to changepoints.

Usage

mbic.penalty(n, cpt)

Arguments

n the number of observations

cpt a vector with localisations of change-points

means.between.cpt 7

Value

the penalty term

3

2
k log(n) +

1

2

k+1∑
i=1

log
li
n
,

where k denotes the number of elements in cpt and li are the lengths of the intervals between
changepoints in cpt

References

N. Zhang and D. Siegmund (2007), A modified Bayes information criterion with applications to the
analysis of comparative genomic hybridization data, Biometrics.

Examples

x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="mbic.penalty")
w.cpt$cpt.ic

means.between.cpt Means between change-points

Description

The function finds the average of the input vector x between change-points given in cpt.

Usage

means.between.cpt(x, cpt = NULL, ...)

Arguments

x a vector

cpt a vector of integers with localisations of change-points

... further arguments passed to mean method

Value

a vector of the same length as x, piecewise constant and equal to the mean between change-points
given in cpt

8 plot.sbs

Examples

x <- rnorm(100)+c(rep(-1,50),rep(1,50))
cpt <- 50
means.between.cpt(x,cpt)
w <- wbs(x)
cpt <- changepoints(w)
means.between.cpt(x,cpt=cpt$cpt.ic$sbic)

plot.sbs Plot for an ’sbs’ object

Description

Plots the input vector used to generate ’sbs’ object x with fitted piecewise constant function, equal
to the mean between change-points specified in cpt.

Usage

S3 method for class 'sbs'
plot(x, cpt, ...)

Arguments

x an object of class ’sbs’, returned by sbs

cpt a vector of integers with localisations of change-points

... other parameters which may be passed to plot and changepoints

Details

When cpt is omitted, the function automatically finds change-points using changepoints function
with a default value of the threshold.

See Also

sbs changepoints

plot.wbs 9

plot.wbs Plot for a ’wbs’ object

Description

Plots the input vector used to generate ’wbs’ object x with fitted piecewise constant function, equal
to the mean between change-points specified in cpt.

Usage

S3 method for class 'wbs'
plot(x, cpt, ...)

Arguments

x an object of class ’wbs’, returned by wbs

cpt a vector of integers with localisations of change-points
... other parameters which may be passed to plot and changepoints

Details

When cpt is omitted, the function automatically finds change-points using changepoints function
with strengthened Schwarz Information Criterion as a stopping criterion for the WBS algorithm.

See Also

wbs changepoints ssic.penalty

print.sbs Print for an ’sbs’ object

Description

Print for an ’sbs’ object

Usage

S3 method for class 'sbs'
print(x, ...)

Arguments

x an object of class ’sbs’
... further arguments passed to print method

See Also

sbs

10 random.intervals

print.wbs Print for a ’wbs’ object

Description

Print for a ’wbs’ object

Usage

S3 method for class 'wbs'
print(x, ...)

Arguments

x an object of class ’wbs’

... further arguments passed to print method

See Also

wbs

random.intervals Random intervals

Description

The function generates M intervals, whose endpoints are are drawn uniformly without replacements
from 1,2,..., n. This routine can be used inside wbs function and is typically not called directly by
the user.

Usage

random.intervals(n, M)

Arguments

n a number of endpoints to choose from

M a number of intervals to generate

Value

a M by 2 matrix with start (first column) and end (second column) points of an interval in each row

See Also

fixed.intervals wbs

sbs 11

Examples

random.intervals(10,100)

sbs Change-point detection via standard Binary Segmentation

Description

The function applies the Binary Segmentation algorithm to identify potential locations of the change-
points in the mean of the input vector x. The object returned by this routine can be further passed
to the changepoints function, which finds the final estimate of the change-points based on thresh-
olding.

Usage

sbs(x, ...)

Default S3 method:
sbs(x, ...)

Arguments

x a numeric vector

... not in use

Value

an object of class "sbs", which contains the following fields

x the vector provided

n the length of x

res a 6-column matrix with results, where ’s’ and ’e’ denote start- end points of
the intervals in which change-points candidates ’cpt’ have been found; column
’CUSUM’ contains corresponding value of CUSUM statistic; ’min.th’ is the
smallest threshold value for which given change-point candidate would be not
added to the set of estimated change-points; the last column is the scale at which
the change-point has been found

Examples

x <- rnorm(300) + c(rep(1,50),rep(0,250))
s <- sbs(x)
s.cpt <- changepoints(s)
s.cpt
th <- c(s.cpt$th,0.7*s.cpt$th)
s.cpt <- changepoints(s,th=th)
s.cpt

12 ssic.penalty

ssic.penalty Strengthened Schwarz Information Criterion penalty term

Description

The function evaluates the penalty term for the strengthened Schwarz Information Criterion pro-
posed in P. Fryzlewicz (2014). This routine is typically not called directly by the user; its name can
be passed as an argument to changepoints.

Usage

ssic.penalty(n, cpt, alpha = 1.01, ssic.type = c("log", "power"))

Arguments

n the number of observations

cpt a vector with localisations of change-points

alpha a scalar greater than one

ssic.type a string ("log" or "power")

Value

the penalty term k(log(n))alpha for ssic.penalty="log" or knalpha for ssic.penalty="power",
where k denotes the number of elements in cpt

References

P. Fryzlewicz (2014), Wild Binary Segmentation for multiple change-point detection. Annals of
Statistics, to appear. (http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf)

Examples

x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="ssic.penalty")
w.cpt$cpt.ic

http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf

wbs 13

wbs Change-point detection via Wild Binary Segmentation

Description

The function applies the Wild Binary Segmentation algorithm to identify potential locations of the
change-points in the mean of the input vector x. The object returned by this routine can be further
passed to the changepoints function, which finds the final estimate of the change-points based on
chosen stopping criteria.

Usage

wbs(x, ...)

Default S3 method:
wbs(x, M = 5000, rand.intervals = TRUE,

integrated = TRUE, ...)

Arguments

x a numeric vector
... not in use
M a number of intervals used in the WBS algorithm
rand.intervals a logical variable; if rand.intervals=TRUE intervals used in the procedure are

random, thus the output of the algorithm may slightly vary from run to run; for
rand.intervals=FALSE the intervals used depend on M and the length of x only,
hence the output is always the same for given input parameters

integrated a logical variable indicating the version of Wild Binary Segmentation algorithm
used; when integrated=TRUE, augmented version of WBS is launched, which
combines WBS and BS into one

Value

an object of class "wbs", which contains the following fields

x the input vector provided
n the length of x
M the number of intervals used
rand.intervals a logical variable indicating type of intervals
integrated a logical variable indicating type of WBS procedure
res a 6-column matrix with results, where ’s’ and ’e’ denote start- end points of

the intervals in which change-points candidates ’cpt’ have been found; column
’CUSUM’ contains corresponding value of CUSUM statistic; ’min.th’ is the
smallest threshold value for which given change-point candidate would be not
added to the set of estimated change-points; the last column is the scale at which
the change-point has been found

14 wbs

Examples

x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
plot(w)
w.cpt <- changepoints(w)
w.cpt
th <- c(w.cpt$th,0.7*w.cpt$th)
w.cpt <- changepoints(w,th=th)
w.cpt$cpt.th

Index

∗ math
wbs-package, 2

∗ models
wbs-package, 2

∗ ts
wbs-package, 2

bic.penalty, 3

changepoints, 2, 3, 3, 6, 8, 9, 11–13

fixed.intervals, 5, 10

mbic.penalty, 6
means.between.cpt, 7

plot.sbs, 8
plot.wbs, 9
print.sbs, 9
print.wbs, 10

random.intervals, 6, 10

sbs, 2–4, 8, 9, 11
ssic.penalty, 9, 12

wbs, 2–6, 9, 10, 13
wbs-package, 2

15

	wbs-package
	bic.penalty
	changepoints
	fixed.intervals
	mbic.penalty
	means.between.cpt
	plot.sbs
	plot.wbs
	print.sbs
	print.wbs
	random.intervals
	sbs
	ssic.penalty
	wbs
	Index

