Dealing with an <summarised_result>
object can be
difficult to handle specially when we are trying to filter. For example,
difficult tasks would be to filter to a certain result_type or when
there are many strata joined together filter only one of the variables.
On the other hand it exists the tidy
format that makes it easy to filter, but then you loose the
<summarised_result>
object. There exist some
functions that only work with <summarised_result>
objects.
visOmopResults package contains some functionalities that helps on this process:
filterSettings
to filter the
<summarised_result>
object using the
settings()
attribute.filterGroup
to filter the
<summarised_result>
object using the
group_name-group_level tidy columns.filterStrata
to filter the
<summarised_result>
object using the
strata_name-starta_level tidy columns.filterAdditional
to filter the
<summarised_result>
object using the
additional_name-additional_level tidy columns.In this vignette we will also cover two types of utility functions:
unite*
type functions: to join multiple columns in the
name-level structure.*Columns
type functions: to identify the columns that
are contained in a name-level structure.Now we will see some examples.
For this example we will use some mock data.
Let’s generate two sets of results:
We can change the settings of the second set of results simulating that results come from a different package ans set of results:
result2 <- result2 |>
omopgenerics::newSummarisedResult(settings = tibble(
result_id = 1L,
result_type = "second_mock_result",
package_name = "omopgenerics",
package_version = "1.0.0",
my_parameter = TRUE
))
We can now merge both results in a unique
<summarised_result>
object:
result <- bind(result1, result2)
settings(result)
#> # A tibble: 2 × 5
#> result_id result_type package_name package_version my_parameter
#> <int> <chr> <chr> <chr> <lgl>
#> 1 1 mock_summarised_result visOmopResults 0.4.0 NA
#> 2 2 second_mock_result omopgenerics 1.0.0 TRUE
result
#> # A tibble: 252 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mock cohort_name cohort1 overall overall
#> 2 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Male
#> 3 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Male
#> 4 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 5 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 6 1 mock cohort_name cohort1 sex Male
#> 7 1 mock cohort_name cohort1 sex Female
#> 8 1 mock cohort_name cohort1 age_group <40
#> 9 1 mock cohort_name cohort1 age_group >=40
#> 10 1 mock cohort_name cohort2 overall overall
#> # ℹ 242 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
You could potentially add the settings with
addSettings()
, then filter and finally eliminate the
columns. Let’s see an example where we subset to the results that have
my_parameter == TRUE:
resultMyParam <- result |>
addSettings(settingsColumns = "my_parameter") |>
filter(my_parameter == TRUE) |>
select(!"my_parameter")
resultMyParam
#> # A tibble: 126 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 2 mock cohort_name cohort1 overall overall
#> 2 2 mock cohort_name cohort1 age_group &&& sex <40 &&& Male
#> 3 2 mock cohort_name cohort1 age_group &&& sex >=40 &&& Male
#> 4 2 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 5 2 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 6 2 mock cohort_name cohort1 sex Male
#> 7 2 mock cohort_name cohort1 sex Female
#> 8 2 mock cohort_name cohort1 age_group <40
#> 9 2 mock cohort_name cohort1 age_group >=40
#> 10 2 mock cohort_name cohort2 overall overall
#> # ℹ 116 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
This approach has some problems:
settings(resultMyParam)
#> # A tibble: 2 × 5
#> result_id result_type package_name package_version my_parameter
#> <int> <chr> <chr> <chr> <lgl>
#> 1 1 mock_summarised_result visOmopResults 0.4.0 NA
#> 2 2 second_mock_result omopgenerics 1.0.0 TRUE
We can do the same solving the three problems using
filterSettings()
:
resultMyParam <- result |>
filterSettings(my_parameter == TRUE)
resultMyParam
#> # A tibble: 126 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 2 mock cohort_name cohort1 overall overall
#> 2 2 mock cohort_name cohort1 age_group &&& sex <40 &&& Male
#> 3 2 mock cohort_name cohort1 age_group &&& sex >=40 &&& Male
#> 4 2 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 5 2 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 6 2 mock cohort_name cohort1 sex Male
#> 7 2 mock cohort_name cohort1 sex Female
#> 8 2 mock cohort_name cohort1 age_group <40
#> 9 2 mock cohort_name cohort1 age_group >=40
#> 10 2 mock cohort_name cohort2 overall overall
#> # ℹ 116 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
settings(resultMyParam)
#> # A tibble: 1 × 5
#> result_id result_type package_name package_version my_parameter
#> <int> <chr> <chr> <chr> <lgl>
#> 1 2 second_mock_result omopgenerics 1.0.0 TRUE
Using the same mock data we can try to filter the rows that contain data related to ‘Female’, the problematic with the strata_name-strata_level display is that it is difficult to easily filter the “Female” columns:
result |>
select(strata_name, strata_level) |>
distinct()
#> # A tibble: 9 × 2
#> strata_name strata_level
#> <chr> <chr>
#> 1 overall overall
#> 2 age_group &&& sex <40 &&& Male
#> 3 age_group &&& sex >=40 &&& Male
#> 4 age_group &&& sex <40 &&& Female
#> 5 age_group &&& sex >=40 &&& Female
#> 6 sex Male
#> 7 sex Female
#> 8 age_group <40
#> 9 age_group >=40
One option that we could use is splitStrata()
,
filter()
and then uniteStrata()
again:
result |>
splitStrata() |>
filter(sex == "Female") |>
uniteStrata(c("age_group", "sex"))
#> # A tibble: 84 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 2 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 3 1 mock cohort_name cohort1 sex Female
#> 4 1 mock cohort_name cohort2 age_group &&& sex <40 &&& Female
#> 5 1 mock cohort_name cohort2 age_group &&& sex >=40 &&& Female
#> 6 1 mock cohort_name cohort2 sex Female
#> 7 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 8 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 9 1 mock cohort_name cohort1 sex Female
#> 10 1 mock cohort_name cohort2 age_group &&& sex <40 &&& Female
#> # ℹ 74 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
Problem of this is that:
strataColumns()
).We could do exactly the same with the function
filterStrata()
:
result |>
filterStrata(sex == "Female")
#> # A tibble: 84 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 2 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 3 1 mock cohort_name cohort1 sex Female
#> 4 1 mock cohort_name cohort2 age_group &&& sex <40 &&& Female
#> 5 1 mock cohort_name cohort2 age_group &&& sex >=40 &&& Female
#> 6 1 mock cohort_name cohort2 sex Female
#> 7 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 8 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 9 1 mock cohort_name cohort1 sex Female
#> 10 1 mock cohort_name cohort2 age_group &&& sex <40 &&& Female
#> # ℹ 74 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
filterGroup()
and filterAdditional()
work
exactly in the same way than filterStrata()
but with their
analogous columns.
A nice functionality that you may have is that is that if you filter by a column/setting that does not exist the output will be warning + return emptySummarisedResult() which can be quite hekpful in some occasions.
result |>
filterSettings(setting_that_does_not_exist == 1)
#> Warning: ! Variable filtering does not exist, returning empty result:
#> ℹ In argument: `setting_that_does_not_exist == 1`.
#> # A tibble: 0 × 13
#> # ℹ 13 variables: result_id <int>, cdm_name <chr>, group_name <chr>,
#> # group_level <chr>, strata_name <chr>, strata_level <chr>,
#> # variable_name <chr>, variable_level <chr>, estimate_name <chr>,
#> # estimate_type <chr>, estimate_value <chr>, additional_name <chr>,
#> # additional_level <chr>
In this previous section we have mentioned the function
uniteStrata()
without explaining its functionality so let’s
cover it with a couple of examples. The uniteGroup()
,
uniteStrata()
and uniteAdditional()
functions
are the opposite to the split*()
type functions:
result |>
splitStrata()
#> # A tibble: 252 × 13
#> result_id cdm_name group_name group_level age_group sex variable_name
#> <int> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mock cohort_name cohort1 overall overall number subjects
#> 2 1 mock cohort_name cohort1 <40 Male number subjects
#> 3 1 mock cohort_name cohort1 >=40 Male number subjects
#> 4 1 mock cohort_name cohort1 <40 Female number subjects
#> 5 1 mock cohort_name cohort1 >=40 Female number subjects
#> 6 1 mock cohort_name cohort1 overall Male number subjects
#> 7 1 mock cohort_name cohort1 overall Female number subjects
#> 8 1 mock cohort_name cohort1 <40 overall number subjects
#> 9 1 mock cohort_name cohort1 >=40 overall number subjects
#> 10 1 mock cohort_name cohort2 overall overall number subjects
#> # ℹ 242 more rows
#> # ℹ 6 more variables: variable_level <chr>, estimate_name <chr>,
#> # estimate_type <chr>, estimate_value <chr>, additional_name <chr>,
#> # additional_level <chr>
result |>
splitStrata() |>
uniteStrata(c("age_group", "sex"))
#> # A tibble: 252 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mock cohort_name cohort1 overall overall
#> 2 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Male
#> 3 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Male
#> 4 1 mock cohort_name cohort1 age_group &&& sex <40 &&& Female
#> 5 1 mock cohort_name cohort1 age_group &&& sex >=40 &&& Female
#> 6 1 mock cohort_name cohort1 sex Male
#> 7 1 mock cohort_name cohort1 sex Female
#> 8 1 mock cohort_name cohort1 age_group <40
#> 9 1 mock cohort_name cohort1 age_group >=40
#> 10 1 mock cohort_name cohort2 overall overall
#> # ℹ 242 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
Note that missing will be not included (if all missing: overall-overall will be considered), for example:
age_group | sex | year |
---|---|---|
NA | NA | NA |
NA | Male | NA |
<40 | Female | 2010 |
>40 | NA | 2011 |
With uniteStrata(cols = c("age_group", "sex", "year"))
the output would be:
strata_name | strata_level |
---|---|
overall | overall |
sex | Male |
age_group &&& sex &&& year | <40 &&& Female &&& 2010 |
age_group &&& year | >40 &&& 2011 |
Note that is we split again then year will be a character vector instead of an integer. In future releases conserving type may be possible.
uniteGroup()
and uniteAdditional()
work
exactly in the same way than uniteStrata()
but with their
analogous columns.
Splitting and tidying your <summarised_result>
can
give you many advantages, as we have seen across the different
vignettes. One of the problems that you may face is the ability to know
which are the available settings
to add, or how many
columns will be generated when splitting group. That’s why
visOmopResults created some helper functions:
settingsColumns()
gives you the setting names that are
available in a <summarised_result>
object.groupColumns()
gives you the new columns that will be
generated when splitting group_name-group_level pair into different
columns.strataColumns()
gives you the new columns that will be
generated when splitting strata_name-strata_level pair into different
columns.additionalColumns()
gives you the new columns that will
be generated when splitting additional_name-additional_level pair into
different columns.tidyColumns()
gives you the columns that will have the
object if you tidy it (tidy(result)
). This function in very
useful to know which are the columns that can be included in
plot and table functions.Let’s see the different values with out example mock data set:
settingsColumns(result)
#> [1] "result_type" "package_name" "package_version" "my_parameter"
groupColumns(result)
#> [1] "cohort_name"
strataColumns(result)
#> [1] "age_group" "sex"
additionalColumns(result)
#> character(0)
tidyColumns(result)
#> [1] "cdm_name" "cohort_name" "age_group" "sex"
#> [5] "variable_name" "variable_level" "count" "mean"
#> [9] "sd" "percentage" "result_type" "package_name"
#> [13] "package_version" "my_parameter"