teal
application to use cross table with various
datasets typesThis vignette will guide you through the four parts to create a
teal
application using various types of datasets using the
cross table module tm_t_crosstable()
:
app
variablelibrary(teal.modules.general) # used to create the app
library(dplyr) # used to modify data sets
Inside this app 2 datasets will be used
ADSL
A wide data set with subject dataADLB
A long data set with lab measurements for each
subject<- within(data, {
data <- teal.modules.general::rADSL
ADSL <- teal.modules.general::rADLB %>%
ADLB mutate(CHGC = as.factor(case_when(
< 1 ~ "N",
CHG > 1 ~ "P",
CHG TRUE ~ "-"
)))
})<- c("ADSL", "ADLB")
datanames datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]
app
variableThis is the most important section. We will use the
teal::init()
function to create an app. The data will be
handed over using teal.data::teal_data()
. The app itself
will be constructed by multiple calls of tm_t_crosstable()
using different combinations of data sets.
# configuration for the single wide dataset
<- tm_t_crosstable(
mod1 label = "Single wide dataset",
x = data_extract_spec(
"ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = names(data[["ADSL"]])[5],
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
)
),y = data_extract_spec(
"ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = names(data[["ADSL"]])[6],
multiple = FALSE,
fixed = FALSE
)
)
)
# configuration for the same long datasets (different subsets)
<- tm_t_crosstable(
mod2 label = "Same long datasets (different subsets)",
x = data_extract_spec(
dataname = "ADLB",
filter = filter_spec(
vars = "PARAMCD",
choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE
),select = select_spec(
choices = variable_choices(data[["ADLB"]]),
selected = "AVISIT",
multiple = TRUE,
fixed = FALSE,
ordered = TRUE,
label = "Select variable:"
)
),y = data_extract_spec(
dataname = "ADLB",
filter = filter_spec(
vars = "PARAMCD",
choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE
),select = select_spec(
choices = variable_choices(data[["ADLB"]]),
selected = "LOQFL",
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
)
)
# initialize the app
<- init(
app data = data,
modules = modules(
modules(
label = "Cross table",
mod1,
mod2
)
) )
A simple shiny::shinyApp()
call will let you run the
app. Note that app is only displayed when running this code inside an
R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))