A subset of invasive breast carcinoma data from primary tumor tissue. See ?tcga
for more information on loading the full dataset or metadata.
library(tcgaViz)
library(ggplot2)
data(tcga)
head(tcga$genes)
#> # A tibble: 6 x 2
#> sample ICOS
#> <chr> <dbl>
#> 1 TCGA-3C-AAAU-01 1.25
#> 2 TCGA-A2-A04Q-01 7.79
#> 3 TCGA-A2-A0T4-01 4.97
#> 4 TCGA-A8-A08S-01 3.69
#> 5 TCGA-A8-A09B-01 2.55
#> 6 TCGA-A8-A0AD-01 3.72
head(tcga$cells$Cibersort_ABS)
#> # A tibble: 6 x 24
#> sample study B_cell_naive B_cell_memory B_cell_plasma T_cell_CD8.
#> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 TCGA-3C-AAAU-01 BRCA 0 0.0221 0.0192 0.0129
#> 2 TCGA-A2-A04Q-01 BRCA 0.0274 0.0249 0.0236 0.118
#> 3 TCGA-A2-A0T4-01 BRCA 0.0167 0 0.0159 0.0432
#> 4 TCGA-A8-A08S-01 BRCA 0 0.00425 0 0.0217
#> 5 TCGA-A8-A09B-01 BRCA 0.0146 0 0.00612 0.0256
#> 6 TCGA-A8-A0AD-01 BRCA 0.000919 0.000797 0.00290 0
#> # … with 18 more variables: T_cell_CD4._naive <dbl>,
#> # T_cell_CD4._memory_resting <dbl>, T_cell_CD4._memory_activated <dbl>,
#> # T_cell_follicular_helper <dbl>, T_cell_regulatory_.Tregs. <dbl>,
#> # T_cell_gamma_delta <dbl>, NK_cell_resting <dbl>, NK_cell_activated <dbl>,
#> # Monocyte <dbl>, Macrophage_M0 <dbl>, Macrophage_M1 <dbl>,
#> # Macrophage_M2 <dbl>, Myeloid_dendritic_cell_resting <dbl>,
#> # Myeloid_dendritic_cell_activated <dbl>, Mast_cell_activated <dbl>,
#> # Mast_cell_resting <dbl>, Eosinophil <dbl>, Neutrophil <dbl>
And perform a significance of a Wilcoxon adjusted test according to the expression level (high or low) of a selected gene.
<- convert2biodata(
df algorithm = "Cibersort_ABS",
disease = "breast invasive carcinoma",
tissue = "Primary Tumor",
gene_x = "ICOS"
)<- calculate_pvalue(df))
(stats #> Breast Invasive Carcinoma (BRCA; Primary Tumor)
#> Wilcoxon-Mann-Whitney test with Benjamini & Hochberg correction (n_low = 16; n_high = 14).
#> # A tibble: 6 x 9
#> `Cell type` `Average(High)` `Average(Low)` `SD(High)` `SD(Low)`
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 Macrophage_M1 0.0454 0.00943 0.0328 0.0116
#> 2 Macrophage_M2 0.109 0.0697 0.0321 0.0368
#> 3 T_cell_CD4._memory_resting 0.0504 0.0122 0.0377 0.0124
#> 4 T_cell_CD8. 0.0498 0.0127 0.0387 0.00934
#> 5 T_cell_follicular_helper 0.0352 0.0119 0.0259 0.00691
#> 6 T_cell_gamma_delta 0.00823 0.000956 0.0101 0.00258
#> # … with 4 more variables: Average(High - Low) <dbl>, P-value <dbl>,
#> # P-value adjusted <dbl>, Significance <chr>
plot(df, stats = stats)
With ggplot2::theme() expressions.
<- convert2biodata(
(df algorithm = "Cibersort_ABS",
disease = "breast invasive carcinoma",
tissue = "Primary Tumor",
gene_x = "ICOS",
stat = "quantile"
))#> # A tibble: 352 x 3
#> high cell_type value
#> * <fct> <fct> <dbl>
#> 1 25% B_cell_naive 0.00001
#> 2 75% B_cell_naive 0.0274
#> 3 25% B_cell_naive 0.0146
#> 4 75% B_cell_naive 0.0112
#> 5 25% B_cell_naive 0.0141
#> 6 25% B_cell_naive 0.00546
#> 7 75% B_cell_naive 0.0289
#> 8 75% B_cell_naive 0.00376
#> 9 25% B_cell_naive 0.00001
#> 10 75% B_cell_naive 0.00118
#> # … with 342 more rows
<- calculate_pvalue(
(stats
df,method_test = "t_test",
method_adjust = "bonferroni",
p_threshold = 0.01
))#> Breast Invasive Carcinoma (BRCA; Primary Tumor)
#> Student's t-test with bonferroni correction (n_low = 8; n_high = 8).
#> # A tibble: 1 x 9
#> `Cell type` `Average(75%)` `Average(25%)` `SD(75%)` `SD(25%)` `Average(75% - …
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Macrophage… 0.117 0.0456 0.0274 0.0216 0.0719
#> # … with 3 more variables: P-value <dbl>, P-value adjusted <dbl>,
#> # Significance <chr>
plot(
df,stats = stats,
type = "boxplot",
dots = TRUE,
xlab = "Expression level of the 'ICOS' gene by cell type",
ylab = "Percent of relative abundance\n(from the Cibersort_ABS algorithm)",
title = toupper("Differential analysis of immune cell type abundance
based on RNASeq gene-level expression from The Cancer Genome Atlas"),
axis.text.y = element_text(size = 8, hjust = 0.5),
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(size = , face = "italic", hjust = 0.5),
draw = FALSE
+ labs(
) subtitle = paste("Breast Invasive Carcinoma (BRCA; Primary Tumor):",
"Student's t-test with Bonferroni (P < 0.01)")
)
#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.3.3 tcgaViz_1.0.2
#>
#> loaded via a namespace (and not attached):
#> [1] fs_1.5.0 usethis_2.0.1 httr_1.4.2
#> [4] rprojroot_2.0.2 tools_4.0.5 backports_1.2.1
#> [7] bslib_0.2.5 utf8_1.2.1 R6_2.5.0
#> [10] DT_0.18 lazyeval_0.2.2 colorspace_2.0-1
#> [13] withr_2.4.2 tidyselect_1.1.1 curl_4.3.1
#> [16] compiler_4.0.5 cli_2.5.0 xml2_1.3.2
#> [19] shinyjs_2.0.0 desc_1.3.0 plotly_4.9.3
#> [22] sass_0.4.0 scales_1.1.1 readr_1.4.0
#> [25] stringr_1.4.0 digest_0.6.27 shinyFeedback_0.3.0
#> [28] foreign_0.8-81 rmarkdown_2.8 rio_0.5.26
#> [31] pkgconfig_2.0.3 htmltools_0.5.1.1 attempt_0.3.1
#> [34] highr_0.9 fastmap_1.1.0 htmlwidgets_1.5.3
#> [37] rlang_0.4.11 readxl_1.3.1 rstudioapi_0.13
#> [40] shiny_1.6.0 farver_2.1.0 jquerylib_0.1.4
#> [43] generics_0.1.0 jsonlite_1.7.2 dplyr_1.0.6
#> [46] zip_2.1.1 car_3.0-10 config_0.3.1
#> [49] magrittr_2.0.1 Rcpp_1.0.6 munsell_0.5.0
#> [52] fansi_0.4.2 abind_1.4-5 lifecycle_1.0.0
#> [55] stringi_1.6.1 yaml_2.2.1 carData_3.0-4
#> [58] plyr_1.8.6 grid_4.0.5 promises_1.2.0.1
#> [61] forcats_0.5.1 crayon_1.4.1 haven_2.4.1
#> [64] hms_1.0.0 knitr_1.33 pillar_1.6.1
#> [67] ggpubr_0.4.0 ggsignif_0.6.1 reshape2_1.4.4
#> [70] pkgload_1.2.1 glue_1.4.2 evaluate_0.14
#> [73] golem_0.3.1 data.table_1.14.0 remotes_2.3.0
#> [76] vctrs_0.3.8 httpuv_1.6.1 testthat_3.0.2
#> [79] cellranger_1.1.0 gtable_0.3.0 purrr_0.3.4
#> [82] tidyr_1.1.3 xfun_0.23 openxlsx_4.2.3
#> [85] mime_0.10 xtable_1.8-4 broom_0.7.6
#> [88] roxygen2_7.1.1 rstatix_0.7.0 later_1.2.0
#> [91] viridisLite_0.4.0 dockerfiler_0.1.3 tibble_3.1.2
#> [94] ellipsis_0.3.2