tabnet 0.6.0
New features
- parsnip models now allow transparently passing case weights through
workflows::add_case_weights()
parameters (#151)
- parsnip models now support
tabnet_model
and
from_epoch
parameters (#143)
Bugfixes
- Adapt
tune::finalize_workflow()
test to {parsnip} v1.2
breaking change. (#155)
autoplot()
now position the “has_checkpoint” points
correctly when a tabnet_fit()
is continuing a previous
training using tabnet_model =
. (#150)
- Explicitely warn that
tabnet_model
option will not be
used in tabnet_pretrain()
tasks. (#150)
tabnet 0.5.0
New features
- {tabnet} now allows hierarchical multi-label classification through
{data.tree} hierarchical
Node
dataset. (#126)
tabnet_pretrain()
now allows different GLU blocks in
GLU layers in encoder and in decoder through the config()
parameters num_idependant_decoder
and
num_shared_decoder
(#129)
- Add
reduce_on_plateau
as option for
lr_scheduler
at tabnet_config()
(@SvenVw, #120)
- use zeallot internally with %<-% for code readability (#133)
- add FR translation (#131)
tabnet 0.4.0
New features
- Add explicit legend in
autoplot.tabnet_fit()
(#67)
- Improve unsupervised vignette content. (#67)
tabnet_pretrain()
now allows missing values in
predictors. (#68)
tabnet_explain()
now works for
tabnet_pretrain
models. (#68)
- Allow missing-values values in predictor for unsupervised training.
(#68)
- Improve performance of
random_obfuscator()
torch_nn
module. (#68)
- Add support for early stopping (#69)
tabnet_fit()
and predict()
now allow
missing values in predictors. (#76)
tabnet_config()
now supports a
num_workers=
parameters to control parallel dataloading
(#83)
- Add a vignette on missing data (#83)
tabnet_config()
now has a flag
skip_importance
to skip calculating feature importance
(@egillax, #91)
- Export and document
tabnet_nn
- Added
min_grid.tabnet
method for tune
(@cphaarmeyer,
#107)
- Added
tabnet_explain()
method for parsnip models (@cphaarmeyer,
#108)
tabnet_fit()
and predict()
now allow
multi-outcome, all numeric or all factors but not
mixed. (#118)
Bugfixes
tabnet_explain()
is now correctly handling missing
values in predictors. (#77)
dataloader
can now use num_workers>0
(#83)
- new default values for
batch_size
and
virtual_batch_size
improves performance on mid-range
devices.
- add default
engine="torch"
to tabnet parsnip model
(#114)
- fix
autoplot()
warnings turned into errors with
{ggplot2} v3.4 (#113)
tabnet 0.3.0
- Added an
update
method for tabnet models to allow the
correct usage of finalize_workflow
(#60).
tabnet 0.2.0
New features
- Allow model fine-tuning through passing a pre-trained model to
tabnet_fit()
(@cregouby, #26)
- Explicit error in case of missing values (@cregouby, #24)
- Better handling of larger datasets when running
tabnet_explain()
.
- Add
tabnet_pretrain()
for unsupervised pretraining
(@cregouby,
#29)
- Add
autoplot()
of model loss among epochs (@cregouby, #36)
- Added a
config
argument to
fit() / pretrain()
so one can pass a pre-made config list.
(#42)
- In
tabnet_config()
, new mask_type
option
with entmax
additional to default sparsemax
(@cmcmaster1,
#48)
- In
tabnet_config()
, loss
now also takes
function (@cregouby,
#55)
Bugfixes
- Fixed bug in GPU training. (#22)
- Fixed memory leaks when using custom autograd function.
- Batch predictions to avoid OOM error.
Internal improvements
tabnet 0.1.0
- Added a
NEWS.md
file to track changes to the
package.