The tab_model()
function also allows the computation of
standard errors, confidence intervals and p-values based on robust
covariance matrix estimation from model parameters. Robust estimation is
based on the packages sandwich and
clubSandwich, so all models supported by either of
these packages work with tab_model()
.
There are two arguments that allow for choosing different methods and
options of robust estimation: vcov.fun
and
vcov.args
. Let us start with a simple example, which uses a
heteroskedasticity-consistent covariance matrix estimation with
estimation-type “HC3” (i.e. sandwich::vcovHC(type = "HC3")
is called):
data(iris)
model <- lm(Petal.Length ~ Sepal.Length * Species + Sepal.Width, data = iris)
# model parameters, where SE, CI and p-values are based on robust estimation
tab_model(model, vcov.fun = "HC3", show.se = TRUE)
Petal Length | ||||
---|---|---|---|---|
Predictors | Estimates | std. Error | CI | p |
(Intercept) | 0.87 | 0.45 | -0.03 – 1.76 | 0.059 |
Sepal Length | 0.04 | 0.12 | -0.19 – 0.28 | 0.711 |
Species [versicolor] | -0.78 | 0.69 | -2.15 – 0.59 | 0.265 |
Species [virginica] | -0.41 | 0.63 | -1.66 – 0.83 | 0.513 |
Sepal Width | 0.11 | 0.08 | -0.05 – 0.27 | 0.190 |
Sepal Length × Species [versicolor] |
0.61 | 0.13 | 0.35 – 0.87 | <0.001 |
Sepal Length × Species [virginica] |
0.68 | 0.12 | 0.45 – 0.91 | <0.001 |
Observations | 150 | |||
R2 / R2 adjusted | 0.979 / 0.978 |
If another covariance matrix estimation is required, use the
vcov.fun
-argument. This argument needs the suffix for the
related vcov*()
-functions as value,
i.e. vcov.fun = "CL"
would call
sandwich::vcovCL()
, or vcov.fun = "HAC"
would
call sandwich::vcovHAC()
.
The specific estimation type can be changed with
vcov.args
. E.g., sandwich::vcovCL()
accepts
estimation types HC0 to HC3. In the next example, we use a clustered
covariance matrix estimation with HC1-estimation type.
# change estimation-type
tab_model(model, vcov.fun = "CL", vcov.args = list(type = "HC1"), show.se = TRUE)
Petal Length | ||||
---|---|---|---|---|
Predictors | Estimates | std. Error | CI | p |
(Intercept) | 0.87 | 0.42 | 0.03 – 1.70 | 0.042 |
Sepal Length | 0.04 | 0.11 | -0.18 – 0.26 | 0.692 |
Species [versicolor] | -0.78 | 0.65 | -2.07 – 0.51 | 0.237 |
Species [virginica] | -0.41 | 0.59 | -1.57 – 0.75 | 0.483 |
Sepal Width | 0.11 | 0.08 | -0.05 – 0.27 | 0.170 |
Sepal Length × Species [versicolor] |
0.61 | 0.12 | 0.37 – 0.85 | <0.001 |
Sepal Length × Species [virginica] |
0.68 | 0.11 | 0.46 – 0.90 | <0.001 |
Observations | 150 | |||
R2 / R2 adjusted | 0.979 / 0.978 |
# compare standard errors to result from sandwich-package
unname(sqrt(diag(sandwich::vcovCL(model))))
#> [1] 0.42197635 0.11148130 0.65274212 0.58720711 0.07934029 0.12251570 0.11058144
Usually, clustered covariance matrix estimation is used when there is
a cluster-structure in the data. The variable indicating the
cluster-structure can be defined in sandwich::vcovCL()
with
the cluster
-argument. In tab_model()
,
additional arguments that should be passed down to functions from the
sandwich package can be specified in
vcov.args
:
iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris)))
# change estimation-type, defining additional arguments
tab_model(
model,
vcov.fun = "CL",
vcov.args = list(type = "HC1", cluster = iris$cluster),
show.se = TRUE
)
Petal Length | ||||
---|---|---|---|---|
Predictors | Estimates | std. Error | CI | p |
(Intercept) | 0.87 | 0.34 | 0.20 – 1.53 | 0.011 |
Sepal Length | 0.04 | 0.07 | -0.10 – 0.19 | 0.540 |
Species [versicolor] | -0.78 | 0.52 | -1.80 – 0.25 | 0.137 |
Species [virginica] | -0.41 | 0.26 | -0.94 – 0.11 | 0.120 |
Sepal Width | 0.11 | 0.07 | -0.03 – 0.25 | 0.131 |
Sepal Length × Species [versicolor] |
0.61 | 0.10 | 0.42 – 0.80 | <0.001 |
Sepal Length × Species [virginica] |
0.68 | 0.05 | 0.58 – 0.78 | <0.001 |
Observations | 150 | |||
R2 / R2 adjusted | 0.979 / 0.978 |
Cluster-robust estimation of the variance-covariance matrix can also
be achieved using clubSandwich::vcovCR()
. Thus, when
vcov.fun = "CR"
, the related function from the
clubSandwich package is called. Note that this function
requires the specification of the
cluster
-argument.
# create fake-cluster-variable, to demonstrate cluster robust standard errors
iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris)))
# cluster-robust estimation
tab_model(
model,
vcov.fun = "CR1",
vcov.args = list(cluster = iris$cluster),
show.se = TRUE
)
Petal Length | ||||
---|---|---|---|---|
Predictors | Estimates | std. Error | CI | p |
(Intercept) | 0.87 | 0.33 | 0.21 – 1.52 | 0.010 |
Sepal Length | 0.04 | 0.07 | -0.10 – 0.18 | 0.531 |
Species [versicolor] | -0.78 | 0.51 | -1.78 – 0.23 | 0.129 |
Species [virginica] | -0.41 | 0.26 | -0.92 – 0.10 | 0.112 |
Sepal Width | 0.11 | 0.07 | -0.03 – 0.25 | 0.123 |
Sepal Length × Species [versicolor] |
0.61 | 0.09 | 0.42 – 0.79 | <0.001 |
Sepal Length × Species [virginica] |
0.68 | 0.05 | 0.58 – 0.78 | <0.001 |
Observations | 150 | |||
R2 / R2 adjusted | 0.979 / 0.978 |
Finally, robust estimation can be combined with standardization.
However, robust covariance matrix estimation only works for
show.std = "std"
.
# model parameters, robust estimation on standardized model
tab_model(
model,
show.std = "std",
vcov.fun = "HC"
)
Petal Length | ||||||
---|---|---|---|---|---|---|
Predictors | Estimates | std. Beta | CI | standardized CI | p | std. p |
(Intercept) | 0.87 | -1.30 | -0.03 – 1.76 | -1.44 – -1.16 | 0.059 | <0.001 |
Sepal Length | 0.04 | 0.02 | -0.19 – 0.28 | -0.09 – 0.13 | 0.711 | 0.711 |
Species [versicolor] | -0.78 | 1.57 | -2.15 – 0.59 | 1.40 – 1.74 | 0.265 | <0.001 |
Species [virginica] | -0.41 | 2.02 | -1.66 – 0.83 | 1.84 – 2.20 | 0.513 | <0.001 |
Sepal Width | 0.11 | 0.03 | -0.05 – 0.27 | -0.01 – 0.07 | 0.190 | 0.190 |
Sepal Length × Species [versicolor] |
0.61 | 0.28 | 0.35 – 0.87 | 0.16 – 0.41 | <0.001 | <0.001 |
Sepal Length × Species [virginica] |
0.68 | 0.32 | 0.45 – 0.91 | 0.21 – 0.43 | <0.001 | <0.001 |
Observations | 150 | |||||
R2 / R2 adjusted | 0.979 / 0.978 |
For linear mixed models, that by definition have a clustered (“hierarchical” or multilevel) structure in the data, it is also possible to estimate a cluster-robust covariance matrix. This is possible due to the clubSandwich package, thus we need to define the same arguments as in the above example.
library(lme4)
data(iris)
set.seed(1234)
iris$grp <- as.factor(sample(1:3, nrow(iris), replace = TRUE))
# fit example model
model <- lme4::lmer(
Sepal.Length ~ Species * Sepal.Width + Petal.Length + (1 | grp),
data = iris
)
# normal model parameters, like from 'summary()'
tab_model(model)
Sepal Length | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.55 | 0.76 – 2.35 | <0.001 |
Species [versicolor] | 0.41 | -0.67 – 1.50 | 0.454 |
Species [virginica] | -0.41 | -1.56 – 0.74 | 0.483 |
Sepal Width | 0.66 | 0.44 – 0.89 | <0.001 |
Petal Length | 0.82 | 0.69 – 0.95 | <0.001 |
Species [versicolor] × Sepal Width |
-0.48 | -0.85 – -0.12 | 0.010 |
Species [virginica] × Sepal Width |
-0.36 | -0.71 – -0.00 | 0.048 |
Random Effects | |||
σ2 | 0.09 | ||
τ00 grp | 0.01 | ||
ICC | 0.07 | ||
N grp | 3 | ||
Observations | 150 | ||
Marginal R2 / Conditional R2 | 0.860 / 0.870 |
# model parameters, cluster robust estimation for mixed models
tab_model(
model,
vcov.fun = "CR1",
vcov.args = list(cluster = iris$grp)
)
Sepal Length | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.55 | 0.76 – 2.35 | <0.001 |
Species [versicolor] | 0.41 | -1.17 – 1.99 | 0.608 |
Species [virginica] | -0.41 | -0.78 – -0.03 | 0.033 |
Sepal Width | 0.66 | 0.46 – 0.86 | <0.001 |
Petal Length | 0.82 | 0.72 – 0.91 | <0.001 |
Species [versicolor] × Sepal Width |
-0.48 | -1.18 – 0.21 | 0.172 |
Species [virginica] × Sepal Width |
-0.36 | -0.57 – -0.15 | 0.001 |
Random Effects | |||
σ2 | 0.09 | ||
τ00 grp | 0.01 | ||
ICC | 0.07 | ||
N grp | 3 | ||
Observations | 150 | ||
Marginal R2 / Conditional R2 | 0.860 / 0.870 |
Again, robust estimation can be combined with standardization for
linear mixed models as well, which in such cases also only works for
show.std = "std"
.
# model parameters, cluster robust estimation on standardized mixed model
tab_model(
model,
show.std = "std",
vcov.fun = "CR1",
vcov.args = list(cluster = iris$grp)
)
Sepal Length | ||||||
---|---|---|---|---|---|---|
Predictors | Estimates | std. Beta | CI | standardized CI | p | std. p |
(Intercept) | 1.55 | 0.97 | 0.76 – 2.35 | 0.82 – 1.12 | <0.001 | <0.001 |
Species [versicolor] | 0.41 | -1.29 | -1.17 – 1.99 | -1.95 – -0.63 | 0.608 | <0.001 |
Species [virginica] | -0.41 | -1.81 | -0.78 – -0.03 | -2.26 – -1.37 | 0.033 | <0.001 |
Sepal Width | 0.66 | 0.35 | 0.46 – 0.86 | 0.24 – 0.45 | <0.001 | <0.001 |
Petal Length | 0.82 | 1.74 | 0.72 – 0.91 | 1.54 – 1.94 | <0.001 | <0.001 |
Species [versicolor] × Sepal Width |
-0.48 | -0.25 | -1.18 – 0.21 | -0.62 – 0.11 | 0.172 | 0.172 |
Species [virginica] × Sepal Width |
-0.36 | -0.19 | -0.57 – -0.15 | -0.30 – -0.08 | 0.001 | 0.001 |
Random Effects | ||||||
σ2 | 0.09 | |||||
τ00 grp | 0.01 | |||||
ICC | 0.07 | |||||
N grp | 3 | |||||
Observations | 150 | |||||
Marginal R2 / Conditional R2 | 0.860 / 0.870 |