The package sftime
extends package sf
to
store and handle spatiotemporal data. To this end, sftime
introduces a dedicated time column that stores the temporal information
alongside the simple features column of an sf
object.
The time column can consists of any collection of a class that allows
to be sorted - reflecting the native order of time. Besides well-known
time classes such as Date
or POSIXct
, it also
allows for custom class definitions that come with the necessary methods
to make sorting work (we will see a example below).
This vignette briefly explains and illustrates the ideas and
decisions behind the implementation of sftime
.
# load required packages
library(sftime)
#> Loading required package: sf
#> Linking to GEOS 3.11.2, GDAL 3.6.2, PROJ 9.2.0; sf_use_s2() is TRUE
library(sf)
library(stars)
#> Loading required package: abind
library(spacetime)
#> The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
#> which was just loaded, will retire in October 2023.
#> Please refer to R-spatial evolution reports for details, especially
#> https://r-spatial.org/r/2023/05/15/evolution4.html.
#> It may be desirable to make the sf package available;
#> package maintainers should consider adding sf to Suggests:.
#> The sp package is now running under evolution status 2
#> (status 2 uses the sf package in place of rgdal)
library(ggplot2)
library(tidyr)
library(magrittr)
#>
#> Attaching package: 'magrittr'
#> The following object is masked from 'package:tidyr':
#>
#> extract
sftime
classAn sftime
object is an sf
object with an
additional time column that contains the temporal information alongside
the simple features column. This allows it to handle irregular and
regular temporal information.
For spatiotemporal data with regular temporal data (raster or vector
data cubes: data where each geometry is observed at the same set of time
instances), package stars
is developed as a powerful
alternative (e.g. time series of remote sensing imagery, regular
measurements of entire measurement network). sftime
fills
the gap for data where arbitrary combinations of geometry and time
occur, including irregularly collected sensor data or (spatiotemporal)
point pattern data.
sftime
objects can be constructed directly from
sfc
objects by combining them with a vector representing
temporal information:
# example sfc object
x_sfc <-
sf::st_sfc(
sf::st_point(1:2),
sf::st_point(c(1,3)),
sf::st_point(2:3),
sf::st_point(c(2,1))
)
# create an sftime object directly from x_sfc
x_sftime1 <- sftime::st_sftime(a = 1:4, x_sfc, time = Sys.time()- 0:3 * 3600 * 24)
# first create the sf object and from this the sftime object
x_sf <- sf::st_sf(a = 1:4, x_sfc, time = x_sftime1$time)
x_sftime2 <- sftime::st_sftime(x_sf)
x_sftime3 <- sftime::st_as_sftime(x_sf) # alernative option
identical(x_sftime1, x_sftime2)
#> [1] TRUE
identical(x_sftime1, x_sftime3)
#> [1] TRUE
x_sftime1
#> Spatiotemporal feature collection with 4 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 1 xmax: 2 ymax: 3
#> CRS: NA
#> Time column with classes: 'POSIXct', 'POSIXt'.
#> Ranging from 2024-09-08 10:45:00.261298 to 2024-09-11 10:45:00.261298.
#> a x_sfc time
#> 1 1 POINT (1 2) 2024-09-11 10:45:00
#> 2 2 POINT (1 3) 2024-09-10 10:45:00
#> 3 3 POINT (2 3) 2024-09-09 10:45:00
#> 4 4 POINT (2 1) 2024-09-08 10:45:00
Methods for sftime
objects are:
methods(class = "sftime")
#> [1] $<- [ [[<- cbind
#> [5] coerce drop_na filter gather
#> [9] initialize nest pivot_longer plot
#> [13] print rbind separate separate_rows
#> [17] show slotsFromS3 spread st_as_sftime
#> [21] st_cast st_crop st_difference st_drop_geometry
#> [25] st_filter st_intersection st_join st_sym_difference
#> [29] st_time st_time<- st_union transform
#> [33] unite unnest
#> see '?methods' for accessing help and source code
Methods for sf
objects which are not listed above work
also for sftime
objects.
sftime
objectFunctions to get or set the time column of an sftime
object are:
# get the values from the time column
st_time(x_sftime1)
#> [1] "2024-09-11 10:45:00 CEST" "2024-09-10 10:45:00 CEST"
#> [3] "2024-09-09 10:45:00 CEST" "2024-09-08 10:45:00 CEST"
x_sftime1$time # alternative way
#> [1] "2024-09-11 10:45:00 CEST" "2024-09-10 10:45:00 CEST"
#> [3] "2024-09-09 10:45:00 CEST" "2024-09-08 10:45:00 CEST"
# set the values in the time column
st_time(x_sftime1) <- Sys.time()
st_time(x_sftime1)
#> [1] "2024-09-11 10:45:00 CEST" "2024-09-11 10:45:00 CEST"
#> [3] "2024-09-11 10:45:00 CEST" "2024-09-11 10:45:00 CEST"
# drop the time column to convert an sftime object to an sf object
st_drop_time(x_sftime1)
#> Simple feature collection with 4 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 1 xmax: 2 ymax: 3
#> CRS: NA
#> a x_sfc
#> 1 1 POINT (1 2)
#> 2 2 POINT (1 3)
#> 3 3 POINT (2 3)
#> 4 4 POINT (2 1)
x_sftime1
#> Spatiotemporal feature collection with 4 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 1 xmax: 2 ymax: 3
#> CRS: NA
#> Time column with classes: 'POSIXct', 'POSIXt'.
#> Ranging from 2024-09-11 10:45:00.3182 to 2024-09-11 10:45:00.3182.
#> a x_sfc time
#> 1 1 POINT (1 2) 2024-09-11 10:45:00
#> 2 2 POINT (1 3) 2024-09-11 10:45:00
#> 3 3 POINT (2 3) 2024-09-11 10:45:00
#> 4 4 POINT (2 1) 2024-09-11 10:45:00
# add a time column to an sf object converts it to an sftime object
st_time(x_sftime1, time_column_name = "time") <- Sys.time()
class(x_sftime1)
#> [1] "sftime" "sf" "data.frame"
# These can also be used with pipes
x_sftime1 <-
x_sftime1 %>%
st_drop_time() %>%
st_set_time(Sys.time(), time_column_name = "time")
sftime
sftime supports coercion to sftime
objects from the
following classes (grouped according to packages):
Conversion from sf
objects:
# define the geometry column
g <-
st_sfc(
st_point(c(1, 2)),
st_point(c(1, 3)),
st_point(c(2, 3)),
st_point(c(2, 1)),
st_point(c(3, 1))
)
# crate sf object
x4_sf <- st_sf(a = 1:5, g, time = Sys.time() + 1:5)
# convert to sftime
x4_sftime <- st_as_sftime(x4_sf)
class(x4_sftime)
#> [1] "sftime" "sf" "data.frame"
Conversion from stars
objects:
# load sample data
x5_stars <- stars::read_ncdf(system.file("nc/bcsd_obs_1999.nc", package = "stars"), var = c("pr", "tas"))
#> Will return stars object with 32076 cells.
#> No projection information found in nc file.
#> Coordinate variable units found to be degrees,
#> assuming WGS84 Lat/Lon.
# convert to sftime
x5_sftime <- st_as_sftime(x5_stars, time_column_name = "time")
st_as_sftime.stars
is a wrapper around
st_as_sf.stars
. As a consequence, some dimensions of the
stars
object can be dropped during conversion. Temporal
information in stars
objects are typically stored as
dimension of an attribute. Therefore, some argument settings to
st_as_sftime
can drop the dimension with temporal
information and therefore throw an error. For example, setting
merge = TRUE
drops dimension time
and
therefore conversion fails. Similarly, setting long = FALSE
returns the attribute values in a wide format, where each column is a
time point:
# failed conversion to sftime
x5_sftime <- st_as_sftime(x5_stars, merge = TRUE, time_column_name = "time")
#> Error in st_as_sftime.stars(x5_stars, merge = TRUE, time_column_name = "time"): `time_column_name` is not a column in the converted object.
x5_sftime <- st_as_sftime(x5_stars, long = FALSE, time_column_name = "time")
#> Error in st_as_sftime.stars(x5_stars, long = FALSE, time_column_name = "time"): `time_column_name` is not a column in the converted object.
Conversion from spacetime
objects
# get sample data
example(STI, package = "spacetime")
#>
#> STI> sp = cbind(x = c(0,0,1), y = c(0,1,1))
#>
#> STI> row.names(sp) = paste("point", 1:nrow(sp), sep="")
#>
#> STI> library(sp)
#>
#> STI> sp = SpatialPoints(sp)
#>
#> STI> time = as.POSIXct("2010-08-05")+3600*(10:13)
#>
#> STI> m = c(10,20,30) # means for each of the 3 point locations
#>
#> STI> mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))
#>
#> STI> IDs = paste("ID",1:length(mydata))
#>
#> STI> mydata = data.frame(values = signif(mydata,3), ID=IDs)
#>
#> STI> stidf = as(STFDF(sp, time, mydata), "STIDF")
#>
#> STI> stidf[1:2,]
#> An object of class "STIDF"
#> Slot "data":
#> values ID
#> 1 8.91 ID 1
#> 2 18.80 ID 2
#>
#> Slot "sp":
#> SpatialPoints:
#> x y
#> point1 0 0
#> point2 0 1
#> Coordinate Reference System (CRS) arguments: NA
#>
#> Slot "time":
#> timeIndex
#> 2010-08-05 10:00:00 1
#> 2010-08-05 10:00:00 1
#>
#> Slot "endTime":
#> [1] "2010-08-05 11:00:00 CEST" "2010-08-05 11:00:00 CEST"
#>
#>
#> STI> all.equal(stidf, stidf[stidf,])
#> [1] TRUE
class(stidf)
#> [1] "STIDF"
#> attr(,"package")
#> [1] "spacetime"
# conversion to sftime
x1_sftime <- st_as_sftime(stidf)
Conversion from Track
, Tracks
,
TracksCollections
objects (trajectories
package)
# get a sample TracksCollection
x2_TracksCollection <- trajectories::rTracksCollection(p = 2, m = 3, n = 40)
# convert to sftime
x2_TracksCollection_sftime <- st_as_sftime(x2_TracksCollection)
x2_Tracks_sftime <- st_as_sftime(x2_TracksCollection@tracksCollection[[1]])
x2_Track_sftime <- st_as_sftime(x2_TracksCollection@tracksCollection[[1]]@tracks[[1]])
Conversion from cubble_df
objects
Both, nested and long-form cubble_df
can be converted to
class sftime
. If the cubble_df
object has no
simple features column (is not also of class sf
), the
function first converts longitude and latitude to a simple features
column using cubble::add_geometry_column()
.
# get a sample cubble_df object
climate_aus <- cubble::climate_aus
# convert to sftime
climate_aus_sftime <-
st_as_sftime(climate_aus[1:4, ])
#> CRS missing: using OGC:CRS84 (WGS84) as default
climate_aus_sftime <-
st_as_sftime(cubble::face_temporal(climate_aus)[1:4, ])
#> CRS missing: using OGC:CRS84 (WGS84) as default
Different subsetting methods exist for sftime
objects.
Since sftime
objects are built on top of sf
objects, all subsetting methods for sf
objects also work
for sftime
objects.
Above (section The sftime
class), the method to subset the time column was introduced:
st_time(x_sftime1)
#> [1] "2024-09-11 10:45:00 CEST" "2024-09-11 10:45:00 CEST"
#> [3] "2024-09-11 10:45:00 CEST" "2024-09-11 10:45:00 CEST"
Other subsetting functions work as for sf
objects,
e.g. selecting rows by row indices returns the specified rows. A key
difference is that the active time column of an sftime
object is not sticky — in contrast to the active simple feature column
in sf
objects.
Therefore, the active time column of an sftime
object
always has to be selected explicitly. If omitted, the subset will
simplify to an sf
objects without the active time
column:
# selecting rows and columns (works just as for sf objects)
x_sftime1[1, ]
#> Spatiotemporal feature collection with 1 feature and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 2 xmax: 1 ymax: 2
#> CRS: NA
#> Time column with classes: 'POSIXct', 'POSIXt'.
#> Representing 2024-09-11 10:45:00.323867.
#> a x_sfc time
#> 1 1 POINT (1 2) 2024-09-11 10:45:00
x_sftime1[, 3]
#> Spatiotemporal feature collection with 4 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 1 xmax: 2 ymax: 3
#> CRS: NA
#> Time column with classes: 'POSIXct', 'POSIXt'.
#> Ranging from 2024-09-11 10:45:00.323867 to 2024-09-11 10:45:00.323867.
#> time x_sfc
#> 1 2024-09-11 10:45:00 POINT (1 2)
#> 2 2024-09-11 10:45:00 POINT (1 3)
#> 3 2024-09-11 10:45:00 POINT (2 3)
#> 4 2024-09-11 10:45:00 POINT (2 1)
# beware: the time column is not sticky. If omitted, the subset becomes an sf object
class(x_sftime1[, 1])
#> [1] "sf" "data.frame"
class(x_sftime1["a"]) # the same
#> [1] "sf" "data.frame"
x_sftime1[, 1]
#> Simple feature collection with 4 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1 ymin: 1 xmax: 2 ymax: 3
#> CRS: NA
#> a x_sfc
#> 1 1 POINT (1 2)
#> 2 2 POINT (1 3)
#> 3 3 POINT (2 3)
#> 4 4 POINT (2 1)
# to retain the time column and an sftime object, explicitly select the time column during subsetting:
class(x_sftime1[, c(1, 3)])
#> [1] "sftime" "sf" "data.frame"
class(x_sftime1[c("a", "time")]) # the same
#> [1] "sftime" "sf" "data.frame"
For quick plotting, a plot method exists for sftime
objects, which plots longitude-latitude coordinates and colors simple
features according to values of a specified variable. Different panels
are plotted for different time intervals which can be specified. Simple
feature geometries might be overlaid several times when multiple
observations fall in the same time interval. This is similar to
stplot()
from package spacetime with
mode = "xy"
:
coords <- matrix(runif(100), ncol = 2)
g <- sf::st_sfc(lapply(1:50, function(i) st_point(coords[i, ]) ))
x_sftime4 <-
st_sftime(
a = 1:200,
b = rnorm(200),
id_object = as.factor(rep(1:4,each=50)),
geometry = g,
time = as.POSIXct("2020-09-01 00:00:00") + 0:49 * 3600 * 6
)
#> Warning in data.frame(..., check.names = FALSE): row names were found from a
#> short variable and have been discarded
plot(x_sftime4, key.pos = 4)
#> NULL
The plotting method internally uses the plot
method for
sf
objects. This makes it possible to customize plot
appearance using the arguments of plot.sf()
, for
example:
#> NULL
To create customized plots or plots which have different variables on plot axes than longitude and latitude, we recommend using ggplot2. For example, the plot method output can be mimicked by:
library(ggplot2)
ggplot() +
geom_sf(data = x_sftime4, aes(color = b)) +
facet_wrap(~ cut_number(time, n = 6)) +
theme(
panel.spacing.x = unit(4, "mm"),
panel.spacing.y = unit(4, "mm")
)
This strategy can also be used to create other plots, for example
plotting the id of entities over time (similar to stplot()
with mode = "xt"
):
Or for plotting time series of values of all variables with different
panels for each entity (location) defined via a categorical variable
(similar to stplot()
with mode = "tp"
):
x_sftime4 %>%
tidyr::pivot_longer(cols = c("a", "b"), names_to = "variable", values_to = "value") %>%
ggplot() +
geom_path(aes(y = value, x = time, color = variable)) +
facet_wrap(~ id_object)
Or for plotting time series of values of all variables for all
entities defined via a categorical variable with different panels for
each variable (similar to stplot()
with
mode = "ts"
):
The time column is a special column of the underlying sf object which
defines time information (timestamps and temporal ordering) alongside
the simple features column of an sf object. Common time representations
in R (e.g. POSIXct
, POSIXlt
,
Date
, yearmon
, yearqtr
) are
allowed, as well as optional user-defined types. Let us look at a simple
example where we define a time column based on POSIXct
(tc <- as.POSIXct("2020-09-01 08:00:00")-0:3*3600*24)
#> [1] "2020-09-01 08:00:00 CEST" "2020-08-31 08:00:00 CEST"
#> [3] "2020-08-30 08:00:00 CEST" "2020-08-29 08:00:00 CEST"
The ordering is not altered upon construction (as in some other
representations). If a different order is required, the
order
function and sort
method can be applied
to the time column:
tc
#> [1] "2020-09-01 08:00:00 CEST" "2020-08-31 08:00:00 CEST"
#> [3] "2020-08-30 08:00:00 CEST" "2020-08-29 08:00:00 CEST"
order(tc)
#> [1] 4 3 2 1
sort(tc)
#> [1] "2020-08-29 08:00:00 CEST" "2020-08-30 08:00:00 CEST"
#> [3] "2020-08-31 08:00:00 CEST" "2020-09-01 08:00:00 CEST"
In some applications it might be useful to have more complex temporal information such as intervals of different length. The following example is also meant as template for other user-defined classes which could be used to build the time column of the sftime class.
At first, we will need a few helper functions:
# utility functions
as.character.interval <- function(x) {
paste0("[", x[1], ", ", x[2], "]")
}
print.interval <- function(x, ...) {
cat("Interval:", as.character(x), "\n")
}
#'[.intervals' <- function(x, i) {
# sx <- unclass(x)[i]
# class(sx) <- "intervals"
# sx
#}
Now, we can define the different intervals used to represent our temporal information:
# time interval definition
i1 <- c(5.3,12)
class(i1) <- "interval"
i2 <- c(3.1,6)
class(i2) <- "interval"
i3 <- c(1.4,6.9)
class(i3) <- "interval"
i4 <- c(1,21)
class(i4) <- "interval"
intrvls <- structure(list(i1, i2, i3, i4), class = "Intervals")
# provide dedicated generic to xtfrm for class intervals
The advantage is to be able to define different sorting approaches:
xtfrm.Intervals <- function(x) sapply(x, mean)
# - sort by centre
(tc <- intrvls)
#> [[1]]
#> Interval: [5.3, 12]
#>
#> [[2]]
#> Interval: [3.1, 6]
#>
#> [[3]]
#> Interval: [1.4, 6.9]
#>
#> [[4]]
#> Interval: [1, 21]
#>
#> attr(,"class")
#> [1] "Intervals"
order(tc)
#> [1] 3 2 1 4
sort(tc)[1]
#> [[1]]
#> Interval: [1.4, 6.9]
# - sort by end
xtfrm.Intervals <- function(x) sapply(x, max)
(tc <- intrvls)
#> [[1]]
#> Interval: [5.3, 12]
#>
#> [[2]]
#> Interval: [3.1, 6]
#>
#> [[3]]
#> Interval: [1.4, 6.9]
#>
#> [[4]]
#> Interval: [1, 21]
#>
#> attr(,"class")
#> [1] "Intervals"
order(tc)
#> [1] 2 3 1 4
sort(tc)[1]
#> [[1]]
#> Interval: [3.1, 6]
# - sort by start
xtfrm.Intervals <- function(x) sapply(x, min)
tc <- intrvls
order(tc)
#> [1] 4 3 2 1
sort(tc)[1]
#> [[1]]
#> Interval: [1, 21]
Based on the sorting procedure (begin, centre or end of the interval), the smallest element (each last line) and the order of the time column changes.