Example 4: Adverse Events Table

The fourth example produces an Adverse Events table by severity, with treatment groups on separate pages. The report shows statistics for All Adverse Events and System Organ Class/Preferred Term.

Program

Note the following about this example:

library(sassy)

options("logr.autolog" = TRUE, 
        "logr.notes" = FALSE,
        "logr.on" = TRUE,
        "procs.print" = FALSE)

# Get temp directory
tmp <- tempdir()

# Open log
lf <- log_open(file.path(tmp, "example4.log"))

# Get data
dir <- system.file("extdata", package = "sassy")


# Get Data ----------------------------------------------------------------

sep("Prepare Data")

# Create libname for csv data
libname(sdtm, dir, "csv", quiet = TRUE) 

put("Filter DM data")
datastep(sdtm$DM, 
         keep = v(USUBJID, ARM, ARMCD),
         where = expression(ARM != "SCREEN FAILURE"), {}) -> dm

put("Get population counts")
proc_freq(dm, tables = ARM, 
          output = long, 
          options = v(nopercent, nonobs)) -> arm_pop 

put ("Create lookup for AE severity")
sevn <- c(MILD = 1, MODERATE = 2, SEVERE = 3) |> put()

put("Prepare table data")
datastep(sdtm$AE, merge = dm, 
         merge_by = "USUBJID",
         merge_in = v(inA, inB),
         keep = v(USUBJID, ARM, AESEV, AESEVN, AESOC, AEDECOD),
         where = expression(inB == 1 & inA != 0), 
         {
           AESEVN <- fapply(AESEV, sevn)   
         }) -> ae_sub 


# Prepare Formats ---------------------------------------------------------

sep("Prepare Formats")
fc <- fcat(CNT = "%3d",
           PCT = "(%5.1f)",
           CAT2 = c(MILD = "Mild", 
                    MODERATE = "Moderate", 
                    SEVERE = "Severe"))


# Perform Calculations ----------------------------------------------------
sep("Perform Calculations")


put("Get SOC Frequencies")
proc_freq(ae_sub, 
          tables = v(AESOC * AESEV),
          by = "ARM") -> ae_soc 


put("Combine columns for SOC")
datastep(ae_soc, 
         format = fc,
         rename = list(VAR1 = "VAR", CAT1 = "CAT"),
         drop = v(VAR2, CNT, PCT),
         {
           VARORD <- 1
           CNTPCT <- fapply2(CNT, PCT)
           CAT2 <- fapply(CAT2)
           
         }) -> ae_soc_c


put("Pivot SOC frequencies")
proc_transpose(ae_soc_c, id = v(BY, CAT2), 
               var = CNTPCT, 
               copy = v(VAR, VARORD),
               by = CAT) -> ae_soc_t 


put("Get PT Frequencies")
proc_freq(ae_sub, 
          tables = "AEDECOD * AESEV",
          by = "ARM",
          options = nonobs) -> ae_pt 

put("Get unique SOC and PT combinations")
proc_sort(ae_sub, keep = v(AESOC, AEDECOD), 
          by = v(AESOC, AEDECOD), options = nodupkey) -> evnts 

put("Combine columns for PT")
datastep(ae_pt, 
         format = fc,
         rename = list(VAR1 = "VAR", CAT1 = "CAT"),
         drop = v(VAR2, CNT, PCT),
         {
           VARORD <- 2
           CNTPCT <- fapply2(CNT, PCT)
           CAT2 <- fapply(CAT2)
           
         }) -> ae_pt_c 


put("Pivot PT frequencies")
proc_transpose(ae_pt_c, id = v(BY, CAT2), 
               var = CNTPCT, 
               copy = v(VAR, VARORD),
               by = CAT) -> ae_pt_t 

nms <- names(ae_soc_t) 

put("Join in SOC")
datastep(ae_pt_t, merge = evnts, rename = c(CAT = "CAT2", AESOC = "CAT"), 
         merge_by = c(CAT = "AEDECOD"), {
           CAT <- toTitleCase(tolower(CAT))
         }) -> ae_pt_tj 

put("Stack SOC and PT counts")
datastep(ae_soc_t, set = ae_pt_tj, 
         keep = c("VAR", "CAT", "CAT2", "VARORD", 
                  find.names(ae_pt_tj, "ARM*")), {}) -> ae_soc_pt 


aefinal <- proc_sort(ae_soc_pt, by = v( CAT, VARORD, CAT2))



# All Adverse Events ------------------------------------------------------

put("Get frequencies for all events")
proc_freq(ae_sub, tables = "AESEV", by = v(ARM)) -> allfreq 

put("Combine all events.")
datastep(allfreq, format = fc,
         drop = v(N, CNT, PCT),
         {
           
           CNTPCT <- fapply2(CNT, PCT)
           CAT <- fapply(CAT, fc$CAT2)
           
           
         }) -> allfreqm 

put("Prepare data for reporting")
proc_transpose(allfreqm, id = v(BY, CAT), 
               var = CNTPCT, copy = VAR, name = CAT) -> allfreqt 


# Final Data --------------------------------------------------------------


sep("Create final data frame")
datastep(allfreqt, set = aefinal, 
         keep = names(aefinal),
         {
           if (VAR == "AESEV")
             CAT <- "All Adverse Events"
           
         }) -> allfinal 

# Print Report ----------------------------------------------------------

sep("Create and print report")

put("Create table object")
tbl <- create_table(allfinal, first_row_blank = TRUE, width = 9) |> 
  column_defaults(from = `ARM A.Mild`, to = `ARM D.Severe`, width = 1, align = "center") |> 
  spanning_header("ARM A.Mild", "ARM A.Severe", label = "ARM A", n = arm_pop["ARM A"]) |>
  spanning_header("ARM B.Mild", "ARM B.Severe", label = "ARM B", n = arm_pop["ARM B"]) |>
  spanning_header("ARM C.Mild", "ARM C.Severe", label = "ARM C", n = arm_pop["ARM C"]) |>
  spanning_header("ARM D.Mild", "ARM D.Severe", label = "ARM D", n = arm_pop["ARM D"]) |>
  stub(vars = c("CAT", "CAT2"), label = "System Organ Class\n   Preferred Term", width = 5) |> 
  define(CAT, blank_after = TRUE) |> 
  define(CAT2, indent = .25) |> 
  define(`ARM A.Mild`, label = "Mild") |> 
  define(`ARM A.Moderate`, label = "Moderate") |> 
  define(`ARM A.Severe`, label = "Severe") |> 
  define(`ARM B.Mild`,  label = "Mild", page_wrap = TRUE) |> 
  define(`ARM B.Moderate`, label = "Moderate") |> 
  define(`ARM B.Severe`, label = "Severe") |> 
  define(`ARM C.Mild`, label = "Mild", page_wrap = TRUE) |> 
  define(`ARM C.Moderate`, label = "Moderate") |> 
  define(`ARM C.Severe`, label = "Severe") |> 
  define(`ARM D.Mild`, label = "Mild", page_wrap = TRUE) |> 
  define(`ARM D.Moderate`,label = "Moderate") |> 
  define(`ARM D.Severe`, label = "Severe") |> 
  define(VAR, visible = FALSE) |> 
  define(VARORD, visible = FALSE)


put("Create report object")
rpt <- create_report(file.path(tmp, "example4.rtf"), output_type = "RTF", font = "Arial") |> 
  options_fixed(font_size = 10) |> 
  page_header("Sponsor: Company", "Study: ABC") |> 
  titles("Table 5.0", "Adverse Events by Maximum Severity", bold = TRUE) |> 
  add_content(tbl) |> 
  footnotes("Program: AE_Table.R",
            "Note: Adverse events were coded using MedDRA Version 9.1") |> 
  page_footer(Sys.time(), "Confidential", "Page [pg] of [tpg]") 

put("Print report")
res <- write_report(rpt) 


# Clean Up ----------------------------------------------------------------
sep("Clean Up")

put("Close log")
log_close()


# Uncomment to view report
# file.show(res$modified_path)

# Uncomment to view log
# file.show(lf)

Output

Here are the first three pages of the output report:

Log

Here is part of the log from the above example:

=========================================================================
Log Path: C:/Users/dbosa/AppData/Local/Temp/RtmpEBPgPu/log/example4.log
Program Path: C:/packages/Testing/procs/ProcsAE.R
Working Directory: C:/packages/Testing/procs
User Name: dbosa
R Version: 4.3.1 (2023-06-16 ucrt)
Machine: SOCRATES x86-64
Operating System: Windows 10 x64 build 22621
Base Packages: stats graphics grDevices utils datasets methods base Other
Packages: tidylog_1.0.2 stringr_1.5.0 procs_1.0.3 reporter_1.4.1 libr_1.2.8
fmtr_1.5.9 logr_1.3.4 common_1.0.8 sassy_1.1.0
Log Start Time: 2023-09-05 22:26:16.754728
=========================================================================

=========================================================================
Prepare Data
=========================================================================

# library 'sdtm': 7 items
- attributes: csv not loaded
- path: C:/Users/dbosa/AppData/Local/R/win-library/4.3/sassy/extdata
- items:
  Name Extension Rows Cols     Size
1   AE       csv  150   27  88.5 Kb
2   DM       csv   87   24  45.5 Kb
3   DS       csv  174    9  34.1 Kb
4   EX       csv   84   11  26.4 Kb
5   IE       csv    2   14  13.4 Kb
6   SV       csv  685   10  70.3 Kb
7   VS       csv 3358   17 467.4 Kb
         LastModified
1 2023-08-07 17:51:40
2 2023-08-07 17:51:40
3 2023-08-07 17:51:40
4 2023-08-07 17:51:40
5 2023-08-07 17:51:40
6 2023-08-07 17:51:40
7 2023-08-07 17:51:40

Filter DM data

datastep: columns decreased from 24 to 3

# A tibble: 85 × 3
   USUBJID    ARM   ARMCD
   <chr>      <chr> <chr>
 1 ABC-01-049 ARM D 4    
 2 ABC-01-050 ARM B 2    
 3 ABC-01-051 ARM A 1    
 4 ABC-01-052 ARM C 3    
 5 ABC-01-053 ARM B 2    
 6 ABC-01-054 ARM D 4    
 7 ABC-01-055 ARM C 3    
 8 ABC-01-056 ARM A 1    
 9 ABC-01-113 ARM D 4    
10 ABC-01-114 ARM B 2    
# ℹ 75 more rows
# ℹ Use `print(n = ...)` to see more rows

Get population counts

proc_freq: input data set 85 rows and 3 columns
           tables: ARM
           output: long
           view: TRUE
           output: 1 datasets

# A tibble: 1 × 6
  VAR   STAT  `ARM A` `ARM B` `ARM C` `ARM D`
  <chr> <chr>   <dbl>   <dbl>   <dbl>   <dbl>
1 ARM   CNT        20      21      21      23

Create lookup for AE severity

    MILD MODERATE   SEVERE 
       1        2        3 

Prepare table data

datastep: columns decreased from 27 to 6

# A tibble: 145 × 6
   USUBJID    ARM   AESEV    AESEVN AESOC   AEDECOD
   <chr>      <chr> <chr>     <dbl> <chr>   <chr>  
 1 ABC-01-049 ARM D MODERATE      2 Invest… BLOOD …
 2 ABC-01-049 ARM D MODERATE      2 Invest… BLOOD …
 3 ABC-01-049 ARM D MILD          1 Muscul… MUSCUL…
 4 ABC-01-049 ARM D MILD          1 Nervou… HEADAC…
 5 ABC-01-049 ARM D MODERATE      2 Invest… LABORA…
 6 ABC-01-050 ARM B MILD          1 Respir… UPPER …
 7 ABC-01-050 ARM B MILD          1 Skin a… RASH   
 8 ABC-01-051 ARM A MILD          1 Nervou… HEADAC…
 9 ABC-01-051 ARM A MILD          1 Nervou… HEADAC…
10 ABC-01-051 ARM A MILD          1 Genera… INFLUE…
# ℹ 135 more rows
# ℹ Use `print(n = ...)` to see more rows

=========================================================================
Prepare Formats
=========================================================================

# A format catalog: 3 formats
- $CNT: type S, "%3d"
- $PCT: type S, "(%5.1f)"
- $CAT2: type V, 3 elements

=========================================================================
Perform Calculations
=========================================================================

Get SOC Frequencies

proc_freq: input data set 145 rows and 6 columns
           tables: AESOC * AESEV
           by: ARM
           view: TRUE
           output: 1 datasets

# A tibble: 240 × 8
   BY    VAR1  VAR2  CAT1   CAT2      N   CNT   PCT
   <chr> <chr> <chr> <chr>  <chr> <dbl> <dbl> <dbl>
 1 ARM A AESOC AESEV Blood… MILD     37     0     0
 2 ARM A AESOC AESEV Blood… MODE…    37     0     0
 3 ARM A AESOC AESEV Blood… SEVE…    37     0     0
 4 ARM A AESOC AESEV Cardi… MILD     37     0     0
 5 ARM A AESOC AESEV Cardi… MODE…    37     0     0
 6 ARM A AESOC AESEV Cardi… SEVE…    37     0     0
 7 ARM A AESOC AESEV Conge… MILD     37     0     0
 8 ARM A AESOC AESEV Conge… MODE…    37     0     0
 9 ARM A AESOC AESEV Conge… SEVE…    37     0     0
10 ARM A AESOC AESEV Ear a… MILD     37     0     0
# ℹ 230 more rows
# ℹ Use `print(n = ...)` to see more rows

Combine columns for SOC

datastep: columns decreased from 8 to 7

# A tibble: 240 × 7
   BY    VAR   CAT        CAT2      N VARORD CNTPCT
   <chr> <chr> <chr>      <chr> <dbl>  <dbl> <chr> 
 1 ARM A AESOC Blood and… Mild     37      1 "  0 …
 2 ARM A AESOC Blood and… Mode…    37      1 "  0 …
 3 ARM A AESOC Blood and… Seve…    37      1 "  0 …
 4 ARM A AESOC Cardiac d… Mild     37      1 "  0 …
 5 ARM A AESOC Cardiac d… Mode…    37      1 "  0 …
 6 ARM A AESOC Cardiac d… Seve…    37      1 "  0 …
 7 ARM A AESOC Congenita… Mild     37      1 "  0 …
 8 ARM A AESOC Congenita… Mode…    37      1 "  0 …
 9 ARM A AESOC Congenita… Seve…    37      1 "  0 …
10 ARM A AESOC Ear and l… Mild     37      1 "  0 …
# ℹ 230 more rows
# ℹ Use `print(n = ...)` to see more rows

Pivot SOC frequencies

proc_transpose: input data set 240 rows and 7 columns
                by: CAT
                var: CNTPCT
                id: BY CAT2
                copy: VAR VARORD
                name: NAME
                output dataset 20 rows and 16 columns

# A tibble: 20 × 16
   VAR   CAT              VARORD NAME  `ARM A.Mild`
   <chr> <chr>             <dbl> <chr> <chr>       
 1 AESOC Blood and lymph…      1 CNTP… "  0 (  0.0…
 2 AESOC Cardiac disorde…      1 CNTP… "  0 (  0.0…
 3 AESOC Congenital, fam…      1 CNTP… "  0 (  0.0…
 4 AESOC Ear and labyrin…      1 CNTP… "  0 (  0.0…
 5 AESOC Endocrine disor…      1 CNTP… "  0 (  0.0…
 6 AESOC Gastrointestina…      1 CNTP… "  0 (  0.0…
 7 AESOC General disorde…      1 CNTP… "  2 (  5.4…
 8 AESOC Infections and …      1 CNTP… "  7 ( 18.9…
 9 AESOC Injury, poisoni…      1 CNTP… "  0 (  0.0…
10 AESOC Investigations        1 CNTP… "  4 ( 10.8…
11 AESOC Metabolism and …      1 CNTP… "  0 (  0.0…
12 AESOC Musculoskeletal…      1 CNTP… "  3 (  8.1…
13 AESOC Neoplasms benig…      1 CNTP… "  0 (  0.0…
14 AESOC Nervous system …      1 CNTP… "  7 ( 18.9…
15 AESOC Psychiatric dis…      1 CNTP… "  0 (  0.0…
16 AESOC Renal and urina…      1 CNTP… "  1 (  2.7…
17 AESOC Respiratory, th…      1 CNTP… "  2 (  5.4…
18 AESOC Skin and subcut…      1 CNTP… "  1 (  2.7…
19 AESOC Surgical and me…      1 CNTP… "  0 (  0.0…
20 AESOC Vascular disord…      1 CNTP… "  0 (  0.0…
# ℹ 11 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, `ARM D.Severe` <chr>

Get PT Frequencies

proc_freq: input data set 145 rows and 6 columns
           tables: AEDECOD * AESEV
           by: ARM
           view: TRUE
           output: 1 datasets

# A tibble: 876 × 7
   BY    VAR1    VAR2  CAT1       CAT2    CNT   PCT
   <chr> <chr>   <chr> <chr>      <chr> <dbl> <dbl>
 1 ARM A AEDECOD AESEV ANXIETY    MILD      0  0   
 2 ARM A AEDECOD AESEV ANXIETY    MODE…     0  0   
 3 ARM A AEDECOD AESEV ANXIETY    SEVE…     0  0   
 4 ARM A AEDECOD AESEV APPLICATI… MILD      0  0   
 5 ARM A AEDECOD AESEV APPLICATI… MODE…     0  0   
 6 ARM A AEDECOD AESEV APPLICATI… SEVE…     0  0   
 7 ARM A AEDECOD AESEV APPLICATI… MILD      0  0   
 8 ARM A AEDECOD AESEV APPLICATI… MODE…     0  0   
 9 ARM A AEDECOD AESEV APPLICATI… SEVE…     0  0   
10 ARM A AEDECOD AESEV BACK PAIN  MILD      2  5.41
# ℹ 866 more rows
# ℹ Use `print(n = ...)` to see more rows

Get unique SOC and PT combinations

proc_sort: input data set 73 rows and 6 columns
           by: AESOC AEDECOD
           keep: AESOC AEDECOD
           order: a a
           options: nodupkey
           output data set 73 rows and 2 columns

# A tibble: 73 × 2
   AESOC                                    AEDECOD
   <chr>                                    <chr>  
 1 Blood and lymphatic system disorders     NEUTRO…
 2 Cardiac disorders                        PALPIT…
 3 Cardiac disorders                        SINUS …
 4 Congenital, familial and genetic disord… DERMOI…
 5 Ear and labyrinth disorders              VERTIGO
 6 Endocrine disorders                      PARATH…
 7 Gastrointestinal disorders               DIARRH…
 8 Gastrointestinal disorders               FOOD P…
 9 Gastrointestinal disorders               TOOTHA…
10 Gastrointestinal disorders               VOMITI…
# ℹ 63 more rows
# ℹ Use `print(n = ...)` to see more rows

Combine columns for PT

datastep: columns decreased from 7 to 6

# A tibble: 876 × 6
   BY    VAR     CAT            CAT2  VARORD CNTPCT
   <chr> <chr>   <chr>          <chr>  <dbl> <chr> 
 1 ARM A AEDECOD ANXIETY        Mild       2 "  0 …
 2 ARM A AEDECOD ANXIETY        Mode…      2 "  0 …
 3 ARM A AEDECOD ANXIETY        Seve…      2 "  0 …
 4 ARM A AEDECOD APPLICATION S… Mild       2 "  0 …
 5 ARM A AEDECOD APPLICATION S… Mode…      2 "  0 …
 6 ARM A AEDECOD APPLICATION S… Seve…      2 "  0 …
 7 ARM A AEDECOD APPLICATION S… Mild       2 "  0 …
 8 ARM A AEDECOD APPLICATION S… Mode…      2 "  0 …
 9 ARM A AEDECOD APPLICATION S… Seve…      2 "  0 …
10 ARM A AEDECOD BACK PAIN      Mild       2 "  2 …
# ℹ 866 more rows
# ℹ Use `print(n = ...)` to see more rows

Pivot PT frequencies

proc_transpose: input data set 876 rows and 6 columns
                by: CAT
                var: CNTPCT
                id: BY CAT2
                copy: VAR VARORD
                name: NAME
                output dataset 73 rows and 16 columns

# A tibble: 73 × 16
   VAR     CAT            VARORD NAME  `ARM A.Mild`
   <chr>   <chr>           <dbl> <chr> <chr>       
 1 AEDECOD ANXIETY             2 CNTP… "  0 (  0.0…
 2 AEDECOD APPLICATION S…      2 CNTP… "  0 (  0.0…
 3 AEDECOD APPLICATION S…      2 CNTP… "  0 (  0.0…
 4 AEDECOD BACK PAIN           2 CNTP… "  2 (  5.4…
 5 AEDECOD BASAL CELL CA…      2 CNTP… "  0 (  0.0…
 6 AEDECOD BLOOD GLUCOSE…      2 CNTP… "  0 (  0.0…
 7 AEDECOD BLOOD PARATHY…      2 CNTP… "  0 (  0.0…
 8 AEDECOD BLOOD PARATHY…      2 CNTP… "  0 (  0.0…
 9 AEDECOD BLOOD PRESSUR…      2 CNTP… "  1 (  2.7…
10 AEDECOD BLOOD TRIGLYC…      2 CNTP… "  0 (  0.0…
# ℹ 63 more rows
# ℹ 11 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, `ARM D.Severe` <chr>
# ℹ Use `print(n = ...)` to see more rows

Join in SOC

datastep: columns increased from 16 to 17

# A tibble: 73 × 17
   VAR     CAT2           VARORD NAME  `ARM A.Mild`
   <chr>   <chr>           <dbl> <chr> <chr>       
 1 AEDECOD Anxiety             2 CNTP… "  0 (  0.0…
 2 AEDECOD Application S…      2 CNTP… "  0 (  0.0…
 3 AEDECOD Application S…      2 CNTP… "  0 (  0.0…
 4 AEDECOD Back Pain           2 CNTP… "  2 (  5.4…
 5 AEDECOD Basal Cell Ca…      2 CNTP… "  0 (  0.0…
 6 AEDECOD Blood Glucose…      2 CNTP… "  0 (  0.0…
 7 AEDECOD Blood Parathy…      2 CNTP… "  0 (  0.0…
 8 AEDECOD Blood Parathy…      2 CNTP… "  0 (  0.0…
 9 AEDECOD Blood Pressur…      2 CNTP… "  1 (  2.7…
10 AEDECOD Blood Triglyc…      2 CNTP… "  0 (  0.0…
# ℹ 63 more rows
# ℹ 12 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, …
# ℹ Use `print(n = ...)` to see more rows

Stack SOC and PT counts

datastep: columns started with 16 and ended with 16

# A tibble: 93 × 16
   VAR   CAT              CAT2  VARORD `ARM A.Mild`
   <chr> <chr>            <chr>  <dbl> <chr>       
 1 AESOC Blood and lymph… <NA>       1 "  0 (  0.0…
 2 AESOC Cardiac disorde… <NA>       1 "  0 (  0.0…
 3 AESOC Congenital, fam… <NA>       1 "  0 (  0.0…
 4 AESOC Ear and labyrin… <NA>       1 "  0 (  0.0…
 5 AESOC Endocrine disor… <NA>       1 "  0 (  0.0…
 6 AESOC Gastrointestina… <NA>       1 "  0 (  0.0…
 7 AESOC General disorde… <NA>       1 "  2 (  5.4…
 8 AESOC Infections and … <NA>       1 "  7 ( 18.9…
 9 AESOC Injury, poisoni… <NA>       1 "  0 (  0.0…
10 AESOC Investigations   <NA>       1 "  4 ( 10.8…
# ℹ 83 more rows
# ℹ 11 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, `ARM D.Severe` <chr>
# ℹ Use `print(n = ...)` to see more rows

proc_sort: input data set 93 rows and 16 columns
           by: CAT VARORD CAT2
           keep: VAR CAT CAT2 VARORD ARM A.Mild ARM A.Moderate ARM A.Severe ARM B.Mild ARM B.Moderate ARM B.Severe ARM C.Mild ARM C.Moderate ARM C.Severe ARM D.Mild ARM D.Moderate ARM D.Severe
           order: a a a
           output data set 93 rows and 16 columns

# A tibble: 93 × 16
   VAR     CAT            CAT2  VARORD `ARM A.Mild`
   <chr>   <chr>          <chr>  <dbl> <chr>       
 1 AESOC   Blood and lym… <NA>       1 "  0 (  0.0…
 2 AEDECOD Blood and lym… Neut…      2 "  0 (  0.0…
 3 AESOC   Cardiac disor… <NA>       1 "  0 (  0.0…
 4 AEDECOD Cardiac disor… Palp…      2 "  0 (  0.0…
 5 AEDECOD Cardiac disor… Sinu…      2 "  0 (  0.0…
 6 AESOC   Congenital, f… <NA>       1 "  0 (  0.0…
 7 AEDECOD Congenital, f… Derm…      2 "  0 (  0.0…
 8 AESOC   Ear and labyr… <NA>       1 "  0 (  0.0…
 9 AEDECOD Ear and labyr… Vert…      2 "  0 (  0.0…
10 AESOC   Endocrine dis… <NA>       1 "  0 (  0.0…
# ℹ 83 more rows
# ℹ 11 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, `ARM D.Severe` <chr>
# ℹ Use `print(n = ...)` to see more rows

Get frequencies for all events

proc_freq: input data set 145 rows and 6 columns
           tables: AESEV
           by: ARM
           view: TRUE
           output: 1 datasets

# A tibble: 12 × 6
   BY    VAR   CAT          N   CNT   PCT
   <chr> <chr> <chr>    <dbl> <dbl> <dbl>
 1 ARM A AESEV MILD        37    27 73.0 
 2 ARM A AESEV MODERATE    37    10 27.0 
 3 ARM A AESEV SEVERE      37     0  0   
 4 ARM B AESEV MILD        32    24 75   
 5 ARM B AESEV MODERATE    32     6 18.8 
 6 ARM B AESEV SEVERE      32     2  6.25
 7 ARM C AESEV MILD        36    29 80.6 
 8 ARM C AESEV MODERATE    36     7 19.4 
 9 ARM C AESEV SEVERE      36     0  0   
10 ARM D AESEV MILD        40    31 77.5 
11 ARM D AESEV MODERATE    40     9 22.5 
12 ARM D AESEV SEVERE      40     0  0   

Combine all events.

datastep: columns decreased from 6 to 4

# A tibble: 12 × 4
   BY    VAR   CAT      CNTPCT       
   <chr> <chr> <chr>    <chr>        
 1 ARM A AESEV Mild     " 27 ( 73.0)"
 2 ARM A AESEV Moderate " 10 ( 27.0)"
 3 ARM A AESEV Severe   "  0 (  0.0)"
 4 ARM B AESEV Mild     " 24 ( 75.0)"
 5 ARM B AESEV Moderate "  6 ( 18.8)"
 6 ARM B AESEV Severe   "  2 (  6.2)"
 7 ARM C AESEV Mild     " 29 ( 80.6)"
 8 ARM C AESEV Moderate "  7 ( 19.4)"
 9 ARM C AESEV Severe   "  0 (  0.0)"
10 ARM D AESEV Mild     " 31 ( 77.5)"
11 ARM D AESEV Moderate "  9 ( 22.5)"
12 ARM D AESEV Severe   "  0 (  0.0)"

Prepare data for reporting

proc_transpose: input data set 12 rows and 4 columns
                var: CNTPCT
                id: BY CAT
                copy: VAR
                name: CAT
                output dataset 1 rows and 14 columns

# A tibble: 1 × 14
  VAR   CAT    `ARM A.Mild`  `ARM A.Moderate`
  <chr> <chr>  <chr>         <chr>           
1 AESEV CNTPCT " 27 ( 73.0)" " 10 ( 27.0)"   
# ℹ 10 more variables: `ARM A.Severe` <chr>,
#   `ARM B.Mild` <chr>, `ARM B.Moderate` <chr>,
#   `ARM B.Severe` <chr>, `ARM C.Mild` <chr>,
#   `ARM C.Moderate` <chr>, `ARM C.Severe` <chr>,
#   `ARM D.Mild` <chr>, `ARM D.Moderate` <chr>,
#   `ARM D.Severe` <chr>

=========================================================================
Create final data frame
=========================================================================

datastep: columns increased from 14 to 16

# A tibble: 94 × 16
   VAR     CAT            CAT2  VARORD `ARM A.Mild`
   <chr>   <chr>          <chr>  <dbl> <chr>       
 1 AESEV   All Adverse E… <NA>      NA " 27 ( 73.0…
 2 AESOC   Blood and lym… <NA>       1 "  0 (  0.0…
 3 AEDECOD Blood and lym… Neut…      2 "  0 (  0.0…
 4 AESOC   Cardiac disor… <NA>       1 "  0 (  0.0…
 5 AEDECOD Cardiac disor… Palp…      2 "  0 (  0.0…
 6 AEDECOD Cardiac disor… Sinu…      2 "  0 (  0.0…
 7 AESOC   Congenital, f… <NA>       1 "  0 (  0.0…
 8 AEDECOD Congenital, f… Derm…      2 "  0 (  0.0…
 9 AESOC   Ear and labyr… <NA>       1 "  0 (  0.0…
10 AEDECOD Ear and labyr… Vert…      2 "  0 (  0.0…
# ℹ 84 more rows
# ℹ 11 more variables: `ARM A.Moderate` <chr>,
#   `ARM A.Severe` <chr>, `ARM B.Mild` <chr>,
#   `ARM B.Moderate` <chr>, `ARM B.Severe` <chr>,
#   `ARM C.Mild` <chr>, `ARM C.Moderate` <chr>,
#   `ARM C.Severe` <chr>, `ARM D.Mild` <chr>,
#   `ARM D.Moderate` <chr>, `ARM D.Severe` <chr>
# ℹ Use `print(n = ...)` to see more rows

=========================================================================
Create and print report
=========================================================================

Create table object

Create report object

Print report

# A report specification: 16 pages
- file_path: 'C:\Users\dbosa\AppData\Local\Temp\RtmpEBPgPu/example4.rtf'
- output_type: RTF
- units: inches
- orientation: landscape
- margins: top 0.5 bottom 0.5 left 1 right 1
- line size/count: 9/42
- page_header: left=Sponsor: Company right=Study: ABC
- title 1: 'Table 5.0'
- title 2: 'Adverse Events by Maximum Severity'
- footnote 1: 'Program: AE_Table.R'
- footnote 2: 'Note: Adverse events were coded using MedDRA Version 9.1'
- page_footer: left=2023-09-05 22:26:19.941609 center=Confidential right=Page [pg] of [tpg]
- content: 
# A table specification:
- data: tibble 'allfinal' 94 rows 16 cols
- show_cols: all
- use_attributes: all
- width: 9
- spanning_header: from='ARM A.Mild' to='ARM A.Severe' 'ARM A' level=1 
- spanning_header: from='ARM B.Mild' to='ARM B.Severe' 'ARM B' level=1 
- spanning_header: from='ARM C.Mild' to='ARM C.Severe' 'ARM C' level=1 
- spanning_header: from='ARM D.Mild' to='ARM D.Severe' 'ARM D' level=1 
- stub: CAT CAT2 'System Organ Class
   Preferred Term' width=5 align='left' 
- define: CAT 
- define: CAT2 
- define: ARM A.Mild 'Mild' 
- define: ARM A.Moderate 'Moderate' 
- define: ARM A.Severe 'Severe' 
- define: ARM B.Mild 'Mild' page_wrap='TRUE' 
- define: ARM B.Moderate 'Moderate' 
- define: ARM B.Severe 'Severe' 
- define: ARM C.Mild 'Mild' page_wrap='TRUE' 
- define: ARM C.Moderate 'Moderate' 
- define: ARM C.Severe 'Severe' 
- define: ARM D.Mild 'Mild' page_wrap='TRUE' 
- define: ARM D.Moderate 'Moderate' 
- define: ARM D.Severe 'Severe' 
- define: VAR visible='FALSE' 
- define: VARORD visible='FALSE' 

=========================================================================
Clean Up
=========================================================================

Remove library from workspace

lib_sync: synchronized data in library 'sdtm'

Close log

=========================================================================
Log End Time: 2023-09-05 22:26:20.855023
Log Elapsed Time: 0 00:00:04
=========================================================================

Next: Example 5: Vital Signs Table