The Bayesian modelling of relative sea-level data using a comprehensive approach that incorporates various statistical models within a unifying framework. Details regarding each statistical models; linear regression (Ashe et al 2019) <doi:10.1016/j.quascirev.2018.10.032>, change point models (Cahill et al 2015) <doi:10.1088/1748-9326/10/8/084002>, integrated Gaussian process models (Cahill et al 2015) <doi:10.1214/15-AOAS824>, temporal splines (Upton et al 2023) <doi:10.48550/arXiv.2301.09556>, spatio-temporal splines (Upton et al 2023) <doi:10.48550/arXiv.2301.09556> and generalised additive models (Upton et al 2023) <doi:10.48550/arXiv.2301.09556>. This package facilitates data loading, model fitting and result summarisation. Notably, it accommodates the inherent measurement errors found in relative sea-level data across multiple dimensions, allowing for their inclusion in the statistical models.
Version: | 0.1.1 |
Depends: | R (≥ 2.10) |
Imports: | data.table, dplyr, fastDummies, fields, geosphere, ggplot2, magrittr, ncdf4, plyr, posterior, purrr, R2jags, stringr, tidybayes, tidyr |
Suggests: | knitr, rmarkdown, testthat, vdiffr |
Published: | 2023-06-15 |
DOI: | 10.32614/CRAN.package.reslr |
Author: | Maeve Upton [cph, aut, cre], Andrew Parnell [aut], Niamh Cahill [aut] |
Maintainer: | Maeve Upton <uptonmaeve010 at gmail.com> |
BugReports: | https://github.com/maeveupton/reslr/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/maeveupton/reslr, https://maeveupton.github.io/reslr/ |
NeedsCompilation: | no |
Language: | en-US |
Materials: | NEWS |
CRAN checks: | reslr results |
Reference manual: | reslr.pdf |
Vignettes: |
reslr: advanced reslr: quick start guide reslr: Statistical Models for examining Relative Sea Level Change in R |
Package source: | reslr_0.1.1.tar.gz |
Windows binaries: | r-devel: reslr_0.1.1.zip, r-release: reslr_0.1.1.zip, r-oldrel: reslr_0.1.1.zip |
macOS binaries: | r-release (arm64): reslr_0.1.1.tgz, r-oldrel (arm64): reslr_0.1.1.tgz, r-release (x86_64): reslr_0.1.1.tgz, r-oldrel (x86_64): reslr_0.1.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=reslr to link to this page.