replicateBE

License: GPL v3 repo active min R first on CRAN cran checks commits last commit CRAN RStudio mirror downloads CRAN RStudio mirror downloads code size repo size closed issues open issues

Version 1.1.3 built 2022-05-02 with R 4.2.0 (development version not on CRAN).

Comparative BA-calculation for the EMA’s Average Bioequivalence with Expanding Limits (ABEL)

Introduction

The package provides data sets (internal .rda and in CSV-format in /extdata/) supporting users in a black-box performance qualification (PQ) of their software installations. Users can analyze own data imported from CSV- and Excel-files (in xlsx or the legacy xls format). The methods given by the EMA for reference-scaling of HVD(P)s, i.e., Average Bioequivalence with Expanding Limits (ABEL)1,2 are implemented.
Potential influence of outliers on the variability of the reference can be assessed by box plots of studentized and standardized residuals as suggested at a joint EGA/EMA workshop.3
Health Canada’s approach4 requiring a mixed-effects model is approximated by intra-subject contrasts.
Direct widening of the acceptance range as recommended by the Gulf Cooperation Council5 (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates) is provided as well.
In full replicate designs the variability of test and reference treatments can be assessed by swT/swR and the upper confidence limit of σwT/σwR. This was required in a pilot phase by the WHO but lifted in 2021; reference-scaling of AUC is acceptable if the protocol is submitted to the PQT/MED.6

TOC ↩︎

Methods

Estimation of CVwR (and CVwT in full replicate designs)

Called internally by functions method.A() and method.B(). A linear model of log-transformed pharmacokinetic (PK) responses and effects
    sequence, subject(sequence), period
where all effects are fixed (i.e., by an ANOVA). Estimated by the function lm() of package stats.

modCVwR <- lm(log(PK) ~ sequence + subject%in%sequence + period,
                        data = data[data$treatment == "R", ])
modCVwT <- lm(log(PK) ~ sequence + subject%in%sequence + period,
                        data = data[data$treatment == "T", ])

TOC ↩︎

Method A

Called by function method.A(). A linear model of log-transformed PK responses and effects
    sequence, subject(sequence), period, treatment
where all effects are fixed (e.g., by an ANOVA). Estimated by the function lm() of package stats.

modA <- lm(log(PK) ~ sequence + subject%in%sequence + period + treatment,
                     data = data)

TOC ↩︎

Method B

Called by function method.B(). A linear model of log-transformed PK responses and effects
    sequence, subject(sequence), period, treatment
where subject(sequence) is a random effect and all others are fixed.
Three options are provided:

modB <- lmer(log(PK) ~ sequence + period + treatment + (1|subject),
                       data = data)
modB <- lme(log(PK) ~ sequence +  period + treatment, random = ~1|subject,
                      data = data)
modB <- lmer(log(PK) ~ sequence + period + treatment + (1|subject),
                       data = data)

TOC ↩︎

Average Bioequivalence

Called by function ABE(). The model is identical to Method A. Conventional BE limits (80.00 – 125.00%) are employed by default. Tighter limits (90.00 – 111.11%) for narrow therapeutic index drugs (EMA and others) or wider limits (75.00 – 133.33%) for Cmax according to the guideline of South Africa7 can be specified.

TOC ↩︎

Tested designs

Four period (full) replicates

TRTR | RTRT
TRRT | RTTR
TTRR | RRTT
TRTR | RTRT | TRRT | RTTR
TRRT | RTTR | TTRR | RRTT

Three period (full) replicates

TRT | RTR
TRR | RTT

Two period (full) replicate

TR | RT | TT | RR (Balaam’s design; not recommended due to poor power characteristics)

Three period (partial) replicates

TRR | RTR | RRT
TRR | RTR (Extra-reference design; biased in the presence of period effects, not recommended)

TOC ↩︎

Cross-validation

Details about the reference datasets:

help("data", package = "replicateBE")
?replicateBE::data

Results of the 30 reference datasets agree with ones obtained in SAS (v9.4), Phoenix WinNonlin (v6.4 – v8.3.4.295), STATISTICA (v13), SPSS (v22.0), Stata (v15.0), and JMP (v10.0.2).8

TOC ↩︎

Examples

library(replicateBE) # attach the package
res <- method.A(verbose = TRUE, details = TRUE,
                print = FALSE, data = rds01)
# 
# Data set DS01: Method A by lm() 
# ─────────────────────────────────── 
# Type III Analysis of Variance Table
# 
# Response: log(PK)
#                   Df   Sum Sq  Mean Sq  F value     Pr(>F)
# sequence           1   0.0077 0.007652  0.00268  0.9588496
# period             3   0.6984 0.232784  1.45494  0.2278285
# treatment          1   1.7681 1.768098 11.05095  0.0010405
# sequence:subject  75 214.1296 2.855061 17.84467 < 2.22e-16
# Residuals        217  34.7190 0.159995                    
# 
# treatment T – R:
#   Estimate Std. Error    t value   Pr(>|t|) 
# 0.14547400 0.04650870 3.12788000 0.00200215 
# 217 Degrees of Freedom
cols <- c(12, 17:21)           # extract relevant columns
# cosmetics: 2 decimal places acc. to the GL
tmp  <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp  <- cbind(tmp, res[22:24]) # pass|fail
print(tmp, row.names = FALSE)
#  CVwR(%)  L(%)   U(%) CL.lo(%) CL.hi(%)  PE(%)   CI  GMR   BE
#    46.96 71.23 140.40   107.11   124.89 115.66 pass pass pass

TOC ↩︎

res  <- method.B(option = 1, verbose = TRUE, details = TRUE,
                 print = FALSE, data = rds01)
# 
# Data set DS01: Method B (option = 1) by lmer() 
# ────────────────────────────────────────────── 
# Response: log(PK)
# Type III Analysis of Variance Table with Satterthwaite's method
#             Sum Sq  Mean Sq NumDF    DenDF F value    Pr(>F)
# sequence  0.001917 0.001917     1  74.7208 0.01198 0.9131536
# period    0.398078 0.132693     3 217.1188 0.82881 0.4792840
# treatment 1.579332 1.579332     1 216.9386 9.86464 0.0019197
# 
# treatment T – R:
#   Estimate Std. Error    t value   Pr(>|t|) 
#  0.1460900  0.0465130  3.1408000  0.0019197 
# 216.939 Degrees of Freedom (equivalent to SAS’ DDFM=SATTERTHWAITE)
cols <- c(12, 17:21)
tmp  <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp  <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
#  CVwR(%)  L(%)   U(%) CL.lo(%) CL.hi(%)  PE(%)   CI  GMR   BE
#    46.96 71.23 140.40   107.17   124.97 115.73 pass pass pass

TOC ↩︎

res  <- method.B(option = 3, ola = TRUE, verbose = TRUE,
                 details = TRUE, print = FALSE, data = rds01)

# 
# Outlier analysis
#  (externally) studentized residuals
#  Limits (2×IQR whiskers): -1.717435, 1.877877
#  Outliers:
#  subject sequence  stud.res
#       45     RTRT -6.656940
#       52     RTRT  3.453122
# 
#  standarized (internally studentized) residuals
#  Limits (2×IQR whiskers): -1.69433, 1.845333
#  Outliers:
#  subject sequence stand.res
#       45     RTRT -5.246293
#       52     RTRT  3.214663
# 
# Data set DS01: Method B (option = 3) by lmer() 
# ────────────────────────────────────────────── 
# Response: log(PK)
# Type III Analysis of Variance Table with Kenward-Roger's method
#             Sum Sq  Mean Sq NumDF    DenDF F value    Pr(>F)
# sequence  0.001917 0.001917     1  74.9899 0.01198 0.9131528
# period    0.398065 0.132688     3 217.3875 0.82878 0.4792976
# treatment 1.579280 1.579280     1 217.2079 9.86432 0.0019197
# 
# treatment T – R:
#   Estimate Std. Error    t value   Pr(>|t|) 
#  0.1460900  0.0465140  3.1408000  0.0019197 
# 217.208 Degrees of Freedom (equivalent to Stata’s dfm=Kenward Roger EIM)
cols <- c(27, 31:32, 19:21)
tmp  <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp  <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
#  CVwR.rec(%) L.rec(%) U.rec(%) CL.lo(%) CL.hi(%)  PE(%)   CI  GMR   BE
#        32.16    78.79   126.93   107.17   124.97 115.73 pass pass pass

TOC ↩︎

res <- method.A(regulator = "GCC", details = TRUE,
                print = FALSE, data = rds01)
cols <- c(12, 17:21)
tmp  <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp  <- cbind(tmp, res[22:24])
print(tmp, row.names = FALSE)
#  CVwR(%)  L(%)   U(%) CL.lo(%) CL.hi(%)  PE(%)   CI  GMR   BE
#    46.96 75.00 133.33   107.11   124.89 115.66 pass pass pass

TOC ↩︎

res <- ABE(theta1 = 0.75, details = TRUE,
           print = FALSE, data = rds01)
tmp <- data.frame(as.list(sprintf("%.2f", res[12:17])))
names(tmp) <- names(res)[12:17]
tmp <- cbind(tmp, res[18])
print(tmp, row.names = FALSE)
#  CVwR(%) BE.lo(%) BE.hi(%) CL.lo(%) CL.hi(%)  PE(%)   BE
#    46.96    75.00   133.33   107.11   124.89 115.66 pass

TOC ↩︎

res <- ABE(theta1 = 0.90, details = TRUE,
           print = FALSE, data = rds05)
cols <- c(13:17)
tmp  <- data.frame(as.list(sprintf("%.2f", res[cols])))
names(tmp) <- names(res)[cols]
tmp  <- cbind(tmp, res[18])
print(tmp, row.names = FALSE)
#  BE.lo(%) BE.hi(%) CL.lo(%) CL.hi(%)  PE(%)   BE
#     90.00   111.11   103.82   112.04 107.85 fail

TOC ↩︎

Installation

The package requires R ≥3.5.0. However, for the Kenward-Roger approximation method.B(..., option = 3) R ≥3.6.0 is required.

install.packages("replicateBE", repos = "https://cloud.r-project.org/")
install.packages("devtools", repos = "https://cloud.r-project.org/")
devtools::install_github("Helmut01/replicateBE")

TOC ↩︎

Session Information

Inspect this information for reproducibility. Of particular importance are the versions of R and the packages used to create this workflow. It is considered good practice to record this information with every analysis.

options(width = 66)
print(sessionInfo(), locale = FALSE)
# R version 4.2.0 (2022-04-22 ucrt)
# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 10 x64 (build 22000)
# 
# Matrix products: default
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods  
# [7] base     
# 
# other attached packages:
# [1] replicateBE_1.1.3
# 
# loaded via a namespace (and not attached):
#  [1] tidyselect_1.1.2    xfun_0.30           purrr_0.3.4        
#  [4] splines_4.2.0       lmerTest_3.1-3      lattice_0.20-45    
#  [7] colorspace_2.0-3    vctrs_0.4.1         generics_0.1.2     
# [10] htmltools_0.5.2     yaml_2.3.5          utf8_1.2.2         
# [13] rlang_1.0.2         pillar_1.7.0        nloptr_2.0.0       
# [16] glue_1.6.2          PowerTOST_1.5-4     readxl_1.4.0       
# [19] lifecycle_1.0.1     stringr_1.4.0       munsell_0.5.0      
# [22] gtable_0.3.0        cellranger_1.1.0    mvtnorm_1.1-3      
# [25] evaluate_0.15       knitr_1.39          fastmap_1.1.0      
# [28] parallel_4.2.0      pbkrtest_0.5.1      fansi_1.0.3        
# [31] highr_0.9           broom_0.8.0         Rcpp_1.0.8.3       
# [34] backports_1.4.1     scales_1.2.0        lme4_1.1-29        
# [37] TeachingDemos_2.12  ggplot2_3.3.5       digest_0.6.29      
# [40] stringi_1.7.6       dplyr_1.0.8         numDeriv_2016.8-1.1
# [43] grid_4.2.0          cli_3.3.0           tools_4.2.0        
# [46] magrittr_2.0.3      tibble_3.1.6        tidyr_1.2.0        
# [49] crayon_1.5.1        pkgconfig_2.0.3     MASS_7.3-57        
# [52] ellipsis_0.3.2      Matrix_1.4-1        minqa_1.2.4        
# [55] rmarkdown_2.14      rstudioapi_0.13     cubature_2.0.4.4   
# [58] R6_2.5.1            boot_1.3-28         nlme_3.1-157       
# [61] compiler_4.2.0

TOC ↩︎

Contributors

Helmut Schütz (author) ORCID iD
Michael Tomashevskiy (contributor)
Detlew Labes (contributor) ORCID iD

TOC ↩︎

Disclaimer

Package offered for Use without any Guarantees and Absolutely No Warranty. No Liability is accepted for any Loss and Risk to Public Health Resulting from Use of this R-Code.

TOC ↩︎


  1. EMA. EMA/582648/2016. Annex I. London. 21 September 2016. Online ↩︎
  2. EMA, CHMP. CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **. London. 20 January 2010. Online. ↩︎
  3. EGA. Revised EMA Bioequivalence Guideline. Questions & Answers. London. June 2010. Online ↩︎
  4. Health Canada. Guidance Document. Conduct and Analysis of Comparative Bioavailability Studies. Ottawa. 2018/06/08. Online. ↩︎
  5. Executive Board of the Health Ministers’ Council for GCC States. The GCC Guidelines for Bioequivalence. Version 3.0. May 2021. Online. ↩︎
  6. WHO. Application of reference-scaled criteria for AUC in bioequivalence studies conducted for submission to PQT/MED. Geneva. 02 July 2021. Online. ↩︎
  7. MCC. Registration of Medicines. Biostudies. Pretoria. June 2015. Online. ↩︎
  8. Schütz H, Tomashevskiy M, Labes D, Shitova A, González-de la Parra M, Fuglsang A. Reference Datasets for Studies in a Replicate Design Intended for Average Bioequivalence with Expanding Limits. AAPS J. 2020; 22(2): Article 44. doi:10.1208/s12248-020-0427-6. ↩︎
  9. EMA. EMA/582648/2016. Annex II. London. 21  September 2016. Online. ↩︎
10. Shumaker RC, Metzler CM. The Phenytoin Trial is a Case Study of ‘Individual’ Bioequivalence. Drug Inf J. 1998; 32(4): 1063–72. doi:10.1177/009286159803200426. ↩︎