Version Note: Up-to-date with v0.3.0
TLDR:
1) It is a beginner-friendly R package for statistical analysis in
social science.
2) Tired of manually writing all variables in a model? You can use dplyr::select()
syntax for all models
3) Fitting models, plotting, checking goodness of fit, and model
assumption violations all in one place.
4) Beautiful and easy-to-read output. Check out this example
now.
Support models:
1. Linear regression (i.e., support ANOVA, ANCOVA), generalized linear
regression.
2. Linear mixed effect model (or HLM to be more specific), generalized
linear mixed effect model.
3. Confirmatory and exploratory factor analysis.
4. Simple mediation analysis.
5. Reliability analysis.
6. Correlation, descriptive statistics (e.g., mean, SD).
At its core, this package allows people to analyze their data with one simple function call. For example, when you are running a linear regression, you need to fit the model, check the goodness of fit (e.g., R2), check the model assumption, and plot the interaction (if the interaction is included). Without this package, you need several packages to do the above steps. Additionally, if you are an R beginner, you probably don’t know where to find all these R packages. This package has done all that work for you, so you can just do everything with one simple function call.
Another good example is CFA. The most common (and probably the only)
option to fit a CFA in R is using lavaan. Lavaan has its own unique set
of syntax. It is very versatile and powerful, but you do need to spend
some time learning it. It may not worth the time for people who just
want to run a quick and simple CFA model. In my package, it’s very
intuitive with cfa_summary(data, x1:x3)
, and you get the
model summary, the fit measures, and a nice-looking path diagram. The
same logic also applies to HLM since lme4
/
nlme
also has its own set of syntax that you need to
learn.
Moreover, I also made fitting the model even simpler by using
the dplyr::select
syntax. In short, traditionally, if you
want to fit a linear regression model, the syntax looks like
this lm(y ~ x1 + x2 + x3 + x4 + ... + xn, data)
. Now, the
syntax is much shorter and more
intuitive: lm_model(y, x1:xn, data)
. You can even replace
x1:xn
with everything()
. I also wrote this
very short article
that teaches people how to use the dplyr::select()
syntax
(it is not comprehensive, and it is not intended to be).
Finally, I made the output in R much more beautiful and easy to read. The default output from R, to be frank, look ugly. I spent a lot of time making sure it looks good in this package (see below for examples). I am sure that you will see how big the improvement is.
integrated_model_summary
is the integrated function for
linear regression and generalized linear regression. It will first fit
the model using lm_model
or glm_model
, then it
will pass the fitted model object to model_summary
which
produces model estimates and assumption checks. If interaction terms are
included, they will be passed to the relevant interaction_plot function
for plotting (the package currently does not support generalized linear
regression interaction plotting).
Additionally, you can request assumption_plot
and
simple_slope
(default is FALSE
). By requesting
assumption_plot
, it produces a panel of graphs that allow
you to visually inspect the model assumption (in addition to testing it
statistically). simple_slope
is another powerful way to
probe further into the interaction. It shows you the slope estimate at
the mean and +1/-1 SD of the mean of the moderator. For example, you
hypothesized that social-economic status (SES) moderates the effect of
teacher experience on education quality. Then, simple_slope shows you
the slope estimate of teacher experience on education quality at +1/-1
SD and the mean level of SES. Additionally, it produces a Johnson-Newman
plot that shows you at what level of the moderator that the
slope_estimate is predicted to be insignificant.
lm_model_summary(
data = iris,
response_variable = Sepal.Length,
predictor_variable = tidyselect::everything(),
two_way_interaction_factor = c(Sepal.Width, Petal.Width),
model_summary = TRUE,
interaction_plot = TRUE,
assumption_plot = TRUE,
simple_slope = TRUE,
plot_color = TRUE
)
Model Summary
Model Type = Linear regression
Outcome = Sepal.Length
Predictors = Sepal.Width, Petal.Length, Petal.Width, Species
Model Estimates
───────────────────────────────────────────────────────────────────────────────────────
Parameter Coefficient SE t df p 95% CI
───────────────────────────────────────────────────────────────────────────────────────
(Intercept) 1.652 0.434 3.807 143 0.000 *** [ 0.794, 2.510]
Sepal.Width 0.645 0.128 5.023 143 0.000 *** [ 0.391, 0.899]
Petal.Length 0.837 0.068 12.240 143 0.000 *** [ 0.702, 0.972]
Petal.Width 0.220 0.375 0.588 143 0.558 [-0.520, 0.961]
Speciesversicolor -0.770 0.241 -3.196 143 0.002 ** [-1.246, -0.294]
Speciesvirginica -1.110 0.337 -3.296 143 0.001 *** [-1.775, -0.444]
Sepal.Width:Petal.Width -0.159 0.102 -1.560 143 0.121 [-0.360, 0.042]
───────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Goodness of Fit
───────────────────────────────────────────────────────────
AIC AICc BIC R² R²_adjusted RMSE σ
───────────────────────────────────────────────────────────
78.584 79.605 102.669 0.870 0.864 0.298 0.305
───────────────────────────────────────────────────────────
Model Assumption Check
OK: Residuals appear to be independent and not autocorrelated (p = 0.870).
OK: residuals appear as normally distributed (p = 0.813).
OK: No outliers detected.
- Based on the following method and threshold: cook (0.843).
- For variable: (Whole model)
OK: Error variance appears to be homoscedastic (p = 0.109).
Multicollinearity is not checked for models with interaction terms. You may check multicollinearity among predictors of a model without interaction terms
Slope Estimates at Each Level of Moderators
────────────────────────────────────────────────────────────────────
Petal.Width Level Est. S.E. t val. p 95% CI
────────────────────────────────────────────────────────────────────
Low 0.576 0.100 5.770 0.000 *** [0.379, 0.773]
Mean 0.455 0.090 5.075 0.000 *** [0.278, 0.632]
High 0.334 0.135 2.476 0.014 * [0.067, 0.600]
────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Note: For continuous variable, low and high represent -1 and +1 SD from the mean, respectively.
This is the multilevel-variation of
integrated_model_summary
. It works exactly the same way as
integrated_model_summary
except you need to specify the
non_random_effect_factors (i.e., level-2 factors) and the
random_effect_factors (i.e., the level-1 factors) instead of
predictor_variable
.
lme_multilevel_model_summary(
data = popular,
response_variable = popular,
random_effect_factors = extrav,
non_random_effect_factors = c(sex, texp),
three_way_interaction_factor = c(extrav, sex, texp),
graph_label_name = c("popular", "extraversion", "sex", "teacher experience"), # change interaction plot label
id = class,
model_summary = TRUE,
interaction_plot = TRUE,
assumption_plot = FALSE, # you can try set to TRUE
simple_slope = FALSE, # you can try set to TRUE
plot_color = TRUE
)
Model Summary
Model Type = Linear Mixed Effect Model (fitted using lme4 or lmerTest)
Outcome = popular
Predictors = extrav, sex, texp, extrav:sex, extrav:texp, sex:texp, extrav:sex:texp
Model Estimates
──────────────────────────────────────────────────────────────────────────────────────────────────────────────
Parameter Coefficient SE t df Effects Group p 95% CI
──────────────────────────────────────────────────────────────────────────────────────────────────────────────
(Intercept) -0.935 0.329 -2.839 180.938 fixed 0.005 ** [-1.585, -0.285]
extrav 0.753 0.052 14.345 166.756 fixed 0.000 *** [ 0.649, 0.857]
sex 0.654 0.379 1.726 1142.420 fixed 0.085 . [-0.089, 1.397]
texp 0.215 0.021 10.198 184.819 fixed 0.000 *** [ 0.174, 0.257]
extrav:sex 0.103 0.064 1.610 1050.473 fixed 0.108 [-0.023, 0.229]
extrav:texp -0.023 0.004 -6.451 192.392 fixed 0.000 *** [-0.030, -0.016]
sex:texp 0.024 0.024 1.017 977.961 fixed 0.309 [-0.022, 0.071]
extrav:sex:texp -0.004 0.004 -0.961 909.727 fixed 0.337 [-0.012, 0.004]
SD (Intercept) 0.721 NaN NaN NaN random class NaN [NaN, NaN]
SD (extrav) 0.079 NaN NaN NaN random class NaN [NaN, NaN]
Cor (Intercept~extrav) -0.679 NaN NaN NaN random class NaN [NaN, NaN]
SD (Observations) 0.743 NaN NaN NaN random Residual NaN [NaN, NaN]
──────────────────────────────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Goodness of Fit
────────────────────────────────────────────────────────────────────────────────
AIC AICc BIC R²_conditional R²_marginal ICC RMSE σ
────────────────────────────────────────────────────────────────────────────────
4823.684 4823.841 4890.894 0.709 0.554 0.349 0.721 0.743
────────────────────────────────────────────────────────────────────────────────
Model Assumption Check
OK: Model is converged
OK: No singularity is detected
Warning: Autocorrelated residuals detected (p < .001).
OK: residuals appear as normally distributed (p = 0.425).
OK: No outliers detected.
- Based on the following method and threshold: cook (0.9).
- For variable: (Whole model)
OK: Error variance appears to be homoscedastic (p = 0.758).
Multicollinearity is not checked for models with interaction terms. You may check multicollinearity among predictors of a model without interaction terms
This can be used to compared model. All type of model comparison
supported by performance::compare_performance()
are
supported since this is just a wrapper for that function.
fit1 <- lm_model(
data = popular,
response_variable = popular,
predictor_var = c(sex, extrav),
quite = TRUE
)
fit2 <- lm_model(
data = popular,
response_variable = popular,
predictor_var = c(sex, extrav),
two_way_interaction_factor = c(sex, extrav),
quite = TRUE
)
compare_fit(fit1, fit2)
Model Summary
Model Type = Model Comparison
────────────────────────────────────────────────────────────────────────────────────────────────
Model AIC AIC_wt AICc AICc_wt BIC BIC_wt R2 R2_adjusted RMSE Sigma
────────────────────────────────────────────────────────────────────────────────────────────────
lm 5977.415 0.727 5977.435 0.728 5999.819 0.978 0.394 0.393 1.076 1.077
lm 5979.369 0.273 5979.399 0.272 6007.374 0.022 0.394 0.393 1.076 1.077
────────────────────────────────────────────────────────────────────────────────────────────────
CFA model is fitted using lavaan::cfa()
. You can pass
multiple factor (in the below example, x1, x2, x3 represent one factor,
x4,x5,x6 represent another factor etc.). It will show you the fit
measure, factor loading, and goodness of fit based on cut-off criteria
(you should review literature for the cut-off criteria as the
recommendations are subjected to changes). Additionally, it will show
you a nice-looking path diagram.
Model Summary
Model Type = Confirmatory Factor Analysis
Estimator: ML
Model Formula =
. DV1 =~ x1 + x2 + x3
DV2 =~ x4 + x5 + x6
DV3 =~ x7 + x8 + x9
Fit Measure
─────────────────────────────────────────────────────────────────────────────────────
Χ² DF P CFI RMSEA SRMR TLI AIC BIC BIC2
─────────────────────────────────────────────────────────────────────────────────────
85.306 24.000 0.000 *** 0.931 0.092 0.065 0.896 7517.490 7595.339 7528.739
─────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Factor Loadings
────────────────────────────────────────────────────────────────────────────────
Latent.Factor Observed.Var Std.Est SE Z P 95% CI
────────────────────────────────────────────────────────────────────────────────
DV1 x1 0.772 0.055 14.041 0.000 *** [0.664, 0.880]
x2 0.424 0.060 7.105 0.000 *** [0.307, 0.540]
x3 0.581 0.055 10.539 0.000 *** [0.473, 0.689]
DV2 x4 0.852 0.023 37.776 0.000 *** [0.807, 0.896]
x5 0.855 0.022 38.273 0.000 *** [0.811, 0.899]
x6 0.838 0.023 35.881 0.000 *** [0.792, 0.884]
DV3 x7 0.570 0.053 10.714 0.000 *** [0.465, 0.674]
x8 0.723 0.051 14.309 0.000 *** [0.624, 0.822]
x9 0.665 0.051 13.015 0.000 *** [0.565, 0.765]
────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Model Covariances
──────────────────────────────────────────────────────────────
Var.1 Var.2 Est SE Z P 95% CI
──────────────────────────────────────────────────────────────
DV1 DV2 0.459 0.064 7.189 0.000 *** [0.334, 0.584]
DV1 DV3 0.471 0.073 6.461 0.000 *** [0.328, 0.613]
DV2 DV3 0.283 0.069 4.117 0.000 *** [0.148, 0.418]
──────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Model Variance
──────────────────────────────────────────────────────
Var Est SE Z P 95% CI
──────────────────────────────────────────────────────
x1 0.404 0.085 4.763 0.000 *** [0.238, 0.571]
x2 0.821 0.051 16.246 0.000 *** [0.722, 0.920]
x3 0.662 0.064 10.334 0.000 *** [0.537, 0.788]
x4 0.275 0.038 7.157 0.000 *** [0.200, 0.350]
x5 0.269 0.038 7.037 0.000 *** [0.194, 0.344]
x6 0.298 0.039 7.606 0.000 *** [0.221, 0.374]
x7 0.676 0.061 11.160 0.000 *** [0.557, 0.794]
x8 0.477 0.073 6.531 0.000 *** [0.334, 0.620]
x9 0.558 0.068 8.208 0.000 *** [0.425, 0.691]
DV1 1.000 0.000 NaN NaN [1.000, 1.000]
DV2 1.000 0.000 NaN NaN [1.000, 1.000]
DV3 1.000 0.000 NaN NaN [1.000, 1.000]
──────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Goodness of Fit:
Warning. Poor χ² fit (p < 0.05). It is common to get p < 0.05. Check other fit measure.
OK. Acceptable CFI fit (CFI > 0.90)
Warning. Poor RMSEA fit (RMSEA > 0.08)
OK. Good SRMR fit (SRMR < 0.08)
Warning. Poor TLI fit (TLI < 0.90)
OK. Barely acceptable factor loadings (0.4 < some loadings < 0.7)
EFA model is fitted using psych::fa()
. It first find the
optimal number of factor. Then, it will show you the factor loading,
uniqueness, complexity of the latent factor (loading < 0.4 are hided
for better viewing experience). You can additionally request running a
post-hoc CFA model based on the EFA model.
efa_summary(lavaan::HolzingerSwineford1939,
starts_with("x"), # x1, x2, x3 ... x9
post_hoc_cfa = TRUE) # run a post-hoc CFA
Model Summary
Model Type = Exploratory Factor Analysis
Optimal Factors = 3
Factor Loadings
────────────────────────────────────────────────────────────────
Variable Factor 1 Factor 3 Factor 2 Complexity Uniqueness
────────────────────────────────────────────────────────────────
x1 0.613 1.539 0.523
x2 0.494 1.093 0.745
x3 0.660 1.084 0.547
x4 0.832 1.104 0.272
x5 0.859 1.043 0.246
x6 0.799 1.167 0.309
x7 0.709 1.062 0.481
x8 0.699 1.131 0.480
x9 0.415 0.521 2.046 0.540
────────────────────────────────────────────────────────────────
Explained Variance
─────────────────────────────────────────────────────
Var Factor 1 Factor 3 Factor 2
─────────────────────────────────────────────────────
SS loadings 2.187 1.342 1.329
Proportion Var 0.243 0.149 0.148
Cumulative Var 0.243 0.392 0.540
Proportion Explained 0.450 0.276 0.274
Cumulative Proportion 0.450 0.726 1.000
─────────────────────────────────────────────────────
EFA Model Assumption Test:
OK. Bartlett's test of sphericity suggest the data is appropriate for factor analysis. χ²(36) = 904.097, p < 0.001
OK. KMO measure of sampling adequacy suggests the data is appropriate for factor analysis. KMO = 0.752
KMO Measure of Sampling Adequacy
────────────────────
Var KMO Value
────────────────────
Overall 0.752
x1 0.805
x2 0.778
x3 0.734
x4 0.763
x5 0.739
x6 0.808
x7 0.593
x8 0.683
x9 0.788
────────────────────
Post-hoc CFA Model Summary
Fit Measure
─────────────────────────────────────────────────────────────────────────────────────
Χ² DF P CFI RMSEA SRMR TLI AIC BIC BIC2
─────────────────────────────────────────────────────────────────────────────────────
85.306 24.000 0.000 *** 0.931 0.092 0.065 0.896 7517.490 7595.339 7528.739
─────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Factor Loadings
────────────────────────────────────────────────────────────────────────────────
Latent.Factor Observed.Var Std.Est SE Z P 95% CI
────────────────────────────────────────────────────────────────────────────────
Factor.1 x4 0.852 0.023 37.776 0.000 *** [0.807, 0.896]
x5 0.855 0.022 38.273 0.000 *** [0.811, 0.899]
x6 0.838 0.023 35.881 0.000 *** [0.792, 0.884]
Factor.3 x1 0.772 0.055 14.041 0.000 *** [0.664, 0.880]
x2 0.424 0.060 7.105 0.000 *** [0.307, 0.540]
x3 0.581 0.055 10.539 0.000 *** [0.473, 0.689]
Factor.2 x7 0.570 0.053 10.714 0.000 *** [0.465, 0.674]
x8 0.723 0.051 14.309 0.000 *** [0.624, 0.822]
x9 0.665 0.051 13.015 0.000 *** [0.565, 0.765]
────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Goodness of Fit:
Warning. Poor χ² fit (p < 0.05). It is common to get p < 0.05. Check other fit measure.
OK. Acceptable CFI fit (CFI > 0.90)
Warning. Poor RMSEA fit (RMSEA > 0.08)
OK. Good SRMR fit (SRMR < 0.08)
Warning. Poor TLI fit (TLI < 0.90)
OK. Barely acceptable factor loadings (0.4 < some loadings < 0.7)
Measurement invariance is fitted using lavaan::cfa()
. It
uses the multi-group confirmatory factor analysis approach. You can
request metric or scalar invariance by specifying the
invariance_level
(mainly to save time. If you have a large
model, it doesn’t make sense to fit a unnecessary scalar invariance
model if you are only interested in metric invariance)
measurement_invariance(
x1:x3,
x4:x6,
x7:x9,
data = lavaan::HolzingerSwineford1939,
group = "school",
invariance_level = "scalar" # you can change this to metric
)
Computing CFA using:
DV1 =~ x1 + x2 + x3
DV2 =~ x4 + x5 + x6
DV3 =~ x7 + x8 + x9
[1] "Computing for configural model"
[1] "Computing for metric model"
[1] "Computing for scalar model"
Model Summary
Model Type = Measurement Invariance
Comparsion Type = Configural-Metric-Scalar Comparsion
Group = school
Model Formula =
. DV1 =~ x1 + x2 + x3
DV2 =~ x4 + x5 + x6
DV3 =~ x7 + x8 + x9
Fit Measure Summary
──────────────────────────────────────────────────────────────────────────────────────────────────────────
Analysis Type Χ² DF P CFI RMSEA SRMR TLI AIC BIC BIC2
──────────────────────────────────────────────────────────────────────────────────────────────────────────
configural 115.851 48.000 0.000 *** 0.923 0.097 0.068 0.885 7484.395 7706.822 7516.536
metric 124.044 54.000 0.000 *** 0.921 0.093 0.072 0.895 7480.587 7680.771 7509.514
scalar 164.103 60.000 0.000 *** 0.882 0.107 0.082 0.859 7508.647 7686.588 7534.359
.
metric - config 8.192 6.000 0.000 *** -0.002 -0.004 0.004 0.009 -3.808 -26.050 -7.022
scalar - metric 40.059 6.000 0.000 *** -0.038 0.015 0.011 -0.036 28.059 5.817 24.845
──────────────────────────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Goodness of Fit:
OK. Excellent measurement metric-invariance based on |ΔCFI| < 0.005
OK. Excellent measurement metric-invariance based on |ΔRMSEA| < 0.01
OK. Good measurement metric-invariance based on ΔSRMR < 0.03
Warning. Unacceptable measurement scalar-invariance based on |ΔCFI| > 0.01
Warning. Unacceptable measurement scalar-invariance based on |ΔRMSEA| > 0.015.
OK. Good measurement scalar-invariance based on ΔSRMR < 0.015
Currently, the package only support simple mediation with covariate.
You can try to fit a multi-group mediation by specifying the group
argument. But, honestly, I don’t know that’s the correct approach to
implement it. If you want more complicated mediation, I highly recommend
using the mediation
package. Eventually, I probably will
switch to using that for this package.
mediation_summary(
data = lmerTest::carrots,
response_variable = Preference,
mediator = Sweetness,
predictor_variable = Crisp,
control_variable = Age:Income
)
Model Summary
Model Type = Mediation Analysis (fitted using lavaan)
Effect Summary
────────────────────────────────────────────────────────────────
Effect Type Est.Std SE z p 95% CI
────────────────────────────────────────────────────────────────
direct 0.238 0.028 8.400 0.000 *** [0.182, 0.293]
indirect 0.222 0.017 12.987 0.000 *** [0.188, 0.255]
total 0.459 0.022 20.583 0.000 *** [0.416, 0.503]
────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Regression Summary
──────────────────────────────────────────────────────────────────────────────────────
Response Operator Predict Est.Std SE z p 95% CI
──────────────────────────────────────────────────────────────────────────────────────
Sweetness ~ Crisp 0.550 0.019 29.119 0.000 *** [ 0.513, 0.587]
Preference ~ Sweetness 0.403 0.027 14.862 0.000 *** [ 0.350, 0.456]
Preference ~ Crisp 0.238 0.028 8.400 0.000 *** [ 0.182, 0.293]
Preference ~ Age 0.130 0.027 4.776 0.000 *** [ 0.077, 0.184]
Preference ~ Homesize -0.133 0.026 -5.061 0.000 *** [-0.184, -0.081]
Preference ~ Work -0.048 0.027 -1.756 0.079 . [-0.101, 0.006]
Preference ~ Income 0.015 0.026 0.577 0.564 [-0.035, 0.065]
──────────────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
It will first determine whether your item is uni- or multidimensionality. If it is unidimensional, then it will compute the alpha and the single-factor CFA model. If it is multidimensional, then it will compute the alpha and the omega. It also provide descriptive statistics. Here is an example for unidimensional items:
Model Summary
Model Type = Reliability Analysis
Dimensionality = uni-dimensionality
Composite Reliability Measures
────────────────────────────
Alpha Alpha.Std G6 (smc)
────────────────────────────
0.626 0.627 0.535
────────────────────────────
Item Reliability (item dropped)
─────────────────────────────────
Var Alpha Alpha.Std G6 (smc)
─────────────────────────────────
x1 0.507 0.507 0.340
x2 0.612 0.612 0.441
x3 0.458 0.458 0.297
─────────────────────────────────
CFA Model:
Factor Loadings
───────────────────────────────────────────────────────────────────────────────
Latent.Factor Observed.Var Std.Est SE Z P 95% CI
───────────────────────────────────────────────────────────────────────────────
DV1 x1 0.621 0.067 9.223 0.000 *** [0.489, 0.753]
x2 0.479 0.063 7.645 0.000 *** [0.356, 0.602]
x3 0.710 0.071 9.936 0.000 *** [0.570, 0.850]
───────────────────────────────────────────────────────────────────────────────
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
Descriptive Statistics Table:
─────────────────────────────────────────
Var mean sd x1 x2
─────────────────────────────────────────
x1 4.936 1.167
x2 6.088 1.177 0.297 ***
x3 2.250 1.131 0.441 *** 0.340 ***
─────────────────────────────────────────
Here is an example for multidimensional items:
Model Summary
Model Type = Reliability Analysis
Dimensionality = multi-dimensionality
Composite Reliability Measures
──────────────────────────────────────────────────────────
Alpha Alpha.Std G.6 Omega.Hierarchical Omega.Total
──────────────────────────────────────────────────────────
0.76 0.76 0.808 0.449 0.851
──────────────────────────────────────────────────────────
Item Reliability (item dropped)
─────────────────────────────────
Var Alpha Alpha.Std G6 (smc)
─────────────────────────────────
x1 0.725 0.725 0.780
x2 0.764 0.763 0.811
x3 0.749 0.748 0.796
x4 0.715 0.719 0.761
x5 0.724 0.726 0.764
x6 0.714 0.717 0.764
x7 0.766 0.765 0.800
x8 0.748 0.747 0.789
x9 0.731 0.728 0.782
─────────────────────────────────
Descriptive Statistics Table:
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Var mean sd x1 x2 x3 x4 x5 x6 x7 x8
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
x1 4.936 1.167
x2 6.088 1.177 0.297 ***
x3 2.250 1.131 0.441 *** 0.340 ***
x4 3.061 1.164 0.373 *** 0.153 ** 0.159 **
x5 4.341 1.290 0.293 *** 0.139 * 0.077 0.733 ***
x6 2.186 1.096 0.357 *** 0.193 *** 0.198 *** 0.704 *** 0.720 ***
x7 4.186 1.090 0.067 -0.076 0.072 0.174 ** 0.102 0.121 *
x8 5.527 1.013 0.224 *** 0.092 0.186 ** 0.107 0.139 * 0.150 ** 0.487 ***
x9 5.374 1.009 0.390 *** 0.206 *** 0.329 *** 0.208 *** 0.227 *** 0.214 *** 0.341 *** 0.449 ***
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
There isn’t much to say about correlation except that you can request
different type of correlation based on the data structure. In the
backend, I use the correlation
package for this.
Model Summary
Model Type = Correlation
Model Method = pearson
Adjustment Method = none
───────────────────────────────────────────────────────
Var Sepal.Length Sepal.Width Petal.Length
───────────────────────────────────────────────────────
Sepal.Length
Sepal.Width -0.118
Petal.Length 0.872 *** -0.428 ***
Petal.Width 0.818 *** -0.366 *** 0.963 ***
───────────────────────────────────────────────────────
It put together a nice table of some descriptive statistics and the correlation. Nothing fancy.
Model Summary
Model Type = Descriptive Statistics
─────────────────────────────────────────────────────────────────────
Var mean sd Sepal.Length Sepal.Width Petal.Length
─────────────────────────────────────────────────────────────────────
Sepal.Length 5.843 0.828
Sepal.Width 3.057 0.436 -0.118
Petal.Length 3.758 1.765 0.872 *** -0.428 ***
Petal.Width 1.199 0.762 0.818 *** -0.366 *** 0.963 ***
─────────────────────────────────────────────────────────────────────
if you want to produce these beautiful output in R Markdown. Calls this function and see the most up-to-date advice.
OK. Required package "fansi" is installed
Note: To knit Rmd to HTML, add the following line to the setup chunk of your Rmd file:
"old.hooks <- fansi::set_knit_hooks(knitr::knit_hooks)"
Note: Use html_to_pdf to convert it to PDF. See ?html_to_pdf for more info
This conclude my briefed discussion of this package. There are some
more additionally functions (like cfa_groupwise
) that
probably have fewer use cases. You can check out what they do by enter
?cfa_groupwise
. Anyway, that’s it. I hope you enjoy the
package, and please let me know if you have any feedback. If you like
it, please considering giving a star on GitHub. Thank
you.