Analysis and measurement of promotion effectiveness on a given target variable (e.g. daily sales). After converting promotion schedule into dummy or smoothed predictor variables, the package estimates the effects of these variables controlled for trend/periodicity/structural change using prophet by Taylor and Letham (2017) <doi:10.7287/peerj.preprints.3190v2> and some prespecified variables (e.g. start of a month).
Version: |
0.1.5 |
Depends: |
R (≥ 3.5.0), Rcpp (≥ 0.12.17), dplyr (≥ 0.7.6), ggplot2 (≥
3.0.0), scales (≥ 1.0.0) |
Imports: |
KernSmooth (≥ 2.23.15), ggpubr (≥ 0.1.8), reshape2 (≥
1.4.3), stringr (≥ 1.3.1), strucchange (≥ 1.5.1), lmtest (≥
0.9), crayon (≥ 1.3.4), prophet (≥ 0.6.1) |
Published: |
2021-04-13 |
DOI: |
10.32614/CRAN.package.promotionImpact |
Author: |
Nahyun Kim [cre, aut],
Hyemin Um [aut],
Eunjo Lee [aut],
NCSOFT Corporation [cph] |
Maintainer: |
Nahyun Kim <nhkim1302 at ncsoft.com> |
License: |
BSD_3_clause + file LICENSE |
URL: |
https://github.com/ncsoft/promotionImpact |
NeedsCompilation: |
no |
CRAN checks: |
promotionImpact results |