
Package ‘pak’
August 26, 2024

Title Another Approach to Package Installation

Version 0.8.0

Description The goal of 'pak' is to make package installation faster and
more reliable. In particular, it performs all HTTP operations in
parallel, so metadata resolution and package downloads are fast.
Metadata and package files are cached on the local disk as well. 'pak'
has a dependency solver, so it finds version conflicts before
performing the installation. This version of 'pak' supports CRAN,
'Bioconductor' and 'GitHub' packages as well.

License GPL-3

URL https://pak.r-lib.org/, https://github.com/r-lib/pak

BugReports https://github.com/r-lib/pak/issues

Depends R (>= 3.5)

Imports tools, utils

Suggests callr (>= 3.7.0), cli (>= 3.2.0), covr, curl (>= 4.3.2), desc
(>= 1.4.1), filelock (>= 1.0.2), gitcreds, glue (>= 1.6.2),
jsonlite (>= 1.8.0), mockery, pingr, pkgbuild (>= 1.4.2),
pkgcache (>= 2.0.4), pkgdepends (>= 0.5.0.9001), pkgload,
pkgsearch (>= 3.1.0), processx (>= 3.8.1), ps (>= 1.6.0),
rstudioapi, testthat (>= 3.2.0), withr

ByteCompile true

Config/build/extra-sources configure*

Config/needs/dependencies callr, desc, cli, curl, filelock, jsonlite,
pkgbuild, r-lib/pkgcache, r-lib/pkgdepends, pkgsearch,
processx, ps,

Config/Needs/website r-lib/asciicast, rmarkdown, roxygen2,
tidyverse/tidytemplate

Config/Needs/deploy cli@3.6.2, curl, desc, gitcreds, glue@1.6.2,
jsonlite, processx

Config/testthat/edition 3

Encoding UTF-8

1

https://pak.r-lib.org/
https://github.com/r-lib/pak
https://github.com/r-lib/pak/issues

2 Contents

RoxygenNote 7.3.2

Biarch true

NeedsCompilation yes

Author Gábor Csárdi [aut, cre],
Jim Hester [aut],
Posit Software, PBC [cph, fnd],
Winston Chang [ctb] (R6, callr, processx),
Ascent Digital Services [cph, fnd] (callr, processx),
Hadley Wickham [ctb, cph] (cli, curl, pkgbuild),
Jeroen Ooms [ctb] (curl, jsonlite),
Maëlle Salmon [ctb] (desc, pkgsearch),
Duncan Temple Lang [ctb] (jsonlite),
Lloyd Hilaiel [cph] (jsonlite),
Michel Berkelaar and lpSolve authors [ctb] (lpSolve),
R Consortium [fnd] (pkgsearch),
Jay Loden [ctb] (ps),
Dave Daeschler [ctb] (ps),
Giampaolo Rodola [ctb] (ps),
Kuba Podgórski [ctb] (zip),
Rich Geldreich [ctb] (zip)

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2024-08-26 12:40:02 UTC

Contents
cache_summary . 3
FAQ . 5
Get started with pak . 6
Great pak features . 9
handle_package_not_found . 11
Installing pak . 12
lib_status . 13
local_deps . 14
local_deps_explain . 15
local_install . 15
local_install_deps . 17
local_install_dev_deps . 18
local_package_trees . 19
local_system_requirements . 20
lockfile_create . 22
lockfile_install . 23
meta_summary . 24
Package dependency types . 26
Package sources . 26
pak . 26

cache_summary 3

pak configuration . 27
pak_cleanup . 28
pak_install_extra . 29
pak_setup . 29
pak_sitrep . 30
pak_update . 30
pkg_deps . 31
pkg_deps_explain . 32
pkg_deps_tree . 33
pkg_download . 34
pkg_history . 35
pkg_install . 36
pkg_name_check . 37
pkg_remove . 38
pkg_search . 39
pkg_status . 40
pkg_sysreqs . 40
ppm_has_binaries . 42
ppm_platforms . 43
ppm_repo_url . 43
ppm_r_versions . 44
ppm_snapshots . 45
repo_add . 46
repo_get . 48
repo_status . 49
sysreqs_check_installed . 50
sysreqs_db_list . 51
sysreqs_db_match . 52
sysreqs_db_update . 53
sysreqs_is_supported . 54
sysreqs_list_system_packages . 54
sysreqs_platforms . 55
System requirements . 56
system_r_platform . 60
The dependency solver . 62

Index 63

cache_summary Package cache utilities

Description

Various utilities to inspect and clean the package cache. See the pkgcache package if you need for
control over the package cache.

4 cache_summary

Usage

cache_summary()

cache_list(...)

cache_delete(...)

cache_clean()

Arguments

... For cache_list() and cache_delete(), ... may contain filters, where the ar-
gument name is the column name. E.g. package, version, etc. Call cache_list()
without arguments to see the available column names. If you call cache_delete()
without arguments, it will delete all cached files.

Details

cache_summary() returns a summary of the package cache.

cache_list() lists all (by default), or a subset of packages in the package cache.

cache_delete() deletes files from the cache.

cache_clean() deletes all files from the cache.

Value

cache_summary() returns a list with elements:

• cachepath: absolute path to the package cache
• files: number of files (packages) in the cache
• size: total size of package cache in bytes

cache_list() returns a data frame with the data about the cache.

cache_delete() returns nothing.

cache_clean() returns nothing.

Examples

cache_summary()

cache_list()

cache_list(package = "recipes")

cache_list(platform = "source")

cache_delete(package = "knitr")
cache_delete(platform = "macos")

cache_clean()

FAQ 5

FAQ Frequently Asked Questions

Description

Please take a look at this list before asking questions.

Package installation

How do I reinstall a package?:
pak does not reinstall a package, if the same version is already installed. Sometimes you still want
a reinstall, e.g. to fix a broken installation. In this case you can delete the package and then install
it, or use the ?reinstall parameter:

pak::pkg_install("tibble")

pak::pkg_install("tibble?reinstall")

How do I install a dependency from a binary package:
Sometimes it is sufficient to install the binary package of an older version of a dependency, instead
of the newer source package that potentially needs compilers, system tools or libraries.
pkg_install() and lockfile_create() default to upgrade = FALSE, which always chooses
binaries over source packages, so if you use pkg_install() you don’t need to do anything extra.
The local_install_* functions default to upgrade = TRUE, as does pak() with pkg = NULL, so
for these you need to explicitly use upgrade = FALSE.

How do I install a package from source?:
To force the installation of a source package (instead of a binary package), use the ?source
parameter:

pak::pkg_install("tibble?source")

How do I install the latest version of a dependency?:
If you want to always install a dependency from source, because you want the latest version or
some other reason, you can use the source parameter with the <package>= form: <package>=?source.
For example to install tibble, with its cli dependency installed from source you could write:

pak::pkg_install(c("tibble", "cli=?source"))

How do I ignore an optional dependency?:

pak::pkg_install(
c("tibble", "DiagrammeR=?ignore", "formattable=?ignore"),
dependencies = TRUE

)

The syntax is

<packagename>=?ignore

Note that you can only ignore optional dependencies, i.e. packages in Suggests and Enhances.

6 Get started with pak

Others

How can I use pak with renv?:
Since version 1.0.0 renv has official support for using pak. This needs to be enabled with the
renv.config.pak.enabled option or the RENV_CONFIG_PAK_ENABLED environment variable set
to TRUE. For more information see the renv documentation.

Get started with pak Simplified manual. Start here!

Description

You don’t need to read long manual pages for a simple task. This manual page collects the most
common pak use cases.

Package installation

Install a package from CRAN or Bioconductor:

pak::pkg_install("tibble")

pak automatically sets a CRAN repository and the Bioconductor repositories that correspons to
the current R version.

Install a package from GitHub:

pak::pkg_install("tidyverse/tibble")

Use the user/repo form. You can specify a branch or tag: user/repo@branch or user/repo@tag.

Install a package from a URL:

pak::pkg_install(
"url::https://cran.r-project.org/src/contrib/Archive/tibble/tibble_3.1.7.tar.gz"

)

The URL may point to an R package file, made with R CMD build, or a .tar.gz or .zip archive
of a package tree.

Package updates

Update a package:

pak::pkg_install("tibble")

pak::pkg_install() automatically updates the package.

Update all dependencies of a package:

pak::pkg_install("tibble", upgrade = TRUE)

upgrade = TRUE updates the package itself and all of its dependencies, if necessary.

Reinstall a package:
Add ?reinstall to the package name or package reference in general:

pak::pkg_install("tibble?reinstall")

https://rstudio.github.io/renv/reference/config.html?q=pak#renv-config-pak-enabled

Get started with pak 7

Dependency lookup

Dependencies of a CRAN or Bioconductor package:

pak::pkg_deps("tibble")

The results are returned in a data frame.

Dependency tree of a CRAN / Bioconductor package:

pak::pkg_deps_tree("tibble")

The results are also silently returned in a data frame.

Dependency tree of a package on GitHub:

pak::pkg_deps_tree("tidyverse/tibble")

Use the user/repo form. As usual, you can also select a branch, tag, or sha, with the user/repo@branch,
user/repo@tag or user/repo@sha forms.

Dependency tree of the package in the current directory:

pak::local_deps_tree("tibble")

Assuming package is in directory tibble.

Explain a recursive dependency:
How does tibble depend on rlang?

pak::pkg_deps_explain("tibble", "rlang")

Use can also use the user/repo form for packages from GitHub, url::... for packages at URLs,
etc.

Package development

Install dependencies of local package:

pak::local_install_deps()

Install local package:

pak::local_install()

Install all dependencies of local package:

pak::local_install_dev_deps()

Installs development and optional dependencies as well.

8 Get started with pak

Repositories

List current repositories:

pak::repo_get()

If you haven’t set a CRAN or Bioconductor repository, pak does that automatically.

Add custom repository:

pak::repo_add(rhub = 'https://r-hub.r-universe.dev')
pak::repo_get()

Remove custom repositories:

options(repos = getOption("repos")["CRAN"])
pak::repo_get()

If you set the repos option to a CRAN repo only, or unset it completely, then pak keeps only
CRAN and (by default) Bioconductor.

Time travel using RSPM:

pak::repo_add(CRAN = "RSPM@2022-06-30")
pak::repo_get()

Sets a repository that is equivalent to CRAN’s state closest to the specified date. Name this
repository CRAN, otherwise pak will also add a default CRAN repository.

Time travel using MRAN:

pak::repo_add(CRAN = "MRAN@2022-06-30")
pak::repo_get()

Sets a repository that is equivalent to CRAN’s state at the specified date. Name this repository
CRAN, otherwise pak will also add a default CRAN repository.

Caches

By default pak caches both metadata and downloaded packages.

Inspect metadata cache:

pak::meta_list()

Update metadata cache:
By default pkg_install() and similar functions automatically update the metadata for the cur-
rently set repositories if it is older than 24 hours. You can also force an update manually:

pak::meta_update()

Clean metadata cache:

pak::meta_clean(force = TRUE)
pak::meta_summary()

Great pak features 9

Inspect package cache:
Downloaded packages are also cached.

pak::cache_list()

View a package cache summary:

pak::cache_summary()

Clean package cache:

pak::cache_clean()

Libraries

List packages in a library:

pak::lib_status(Sys.getenv("R_LIBS_USER"))

Pass the directory of the library as the argument.

Great pak features A list of the most important pak features

Description

A list of the most important pak features.

pak is fast

Parallel HTTP:
pak performs HTTP queries concurrently. This is true when

• it downloads package metadata from package repositories,
• it resolves packages from CRAN, GitHub, URLs, etc,
• it downloads the actual package files,
• etc.

Parallel installation:
pak installs packages concurrently, as much as their dependency graph allows this.

Caching:
pak caches metadata and package files, so you don’t need to re-download the same files over and
over.

10 Great pak features

pak is safe

Plan installation up front:
pak creates an installation plan before downloading any packages. If the plan is unsuccessful,
then it fails without downloading any packages.

Auto-install missing dependencies:
When requesting the installation of a package, pak makes sure that all of its dependencies are also
installed.

Keeping binary packages up-to-date:
pak automatically discards binary packages from the cache, if a new build of the same version is
available on CRAN.

Correct CRAN metadata errors:
pak can correct some of CRAN’s metadata issues, e.g.:

• New version of the package was released since we obtained the metadata.
• macOS binary package is only available at https://mac.r-project.org/ because of a synchro-

nization issue.

Graceful handling of locked package DLLs on Windows:
pak handles the situation of locked package DLLs, as well as possible. It detects which process
locked them, and offers the choice of terminating these processes. It also unloads packages from
the current R session as needed.

pak keeps its own dependencies isolated:
pak keeps its own dependencies in a private package library and never loads any packages. (Only
in background processes).

pak is convenient

pak comes as a self-contained binary package:
On the most common platforms. No dependencies, no system dependencies, no compiler needed.
(See also the installation manual.)

Install packages from multiple sources:

• CRAN, Bioconductor
• GitHub
• URLs
• Local files or directories.

Ignore certain optional dependencies:
pak can ignore certain optional dependencies if requested.

CRAN package file sizes:
pak knows the sizes of CRAN package files, so it can estimate how much data you need to down-
load, before the installation.

handle_package_not_found 11

Bioconductor version detection:
pak automatically selects the Bioconductor version that is appropriate for your R version. No
need to set any repositories.

Time travel with PPM:
pak can use PPM (Posit Public Package Manager) to install from snapshots or CRAN.

pak can install dependencies of local packages:
Very handy for package development!

handle_package_not_found

Install missing packages on the fly

Description

Use this function to set up a global error handler, that is called if R fails to load a package. This
handler will offer you the choice of installing the missing package (and all its dependencies), and
in some cases it can also remedy the error and restart the code.

Usage

handle_package_not_found(err)

Arguments

err The error object, of class packageNotFoundError.

Details

You are not supposed to call this function directly. Instead, set it up as a global error handler,
possibly in your .Rprofile file:

if (interactive() && getRversion() >= "4.0.0") {
globalCallingHandlers(
packageNotFoundError = function(err) {
try(pak::handle_package_not_found(err))

}
)

}

Global error handlers are only supported in R 4.0.0 and later.

Currently handle_package_not_found() does not do anything in non-interactive mode (including
in knitr, testthat and RStudio notebooks), this might change in the future.

In some cases it is possible to remedy the original computation that tried to load the missing pack-
age, and pak will offer you to do so after a successful installation. Currently, in R 4.0.4, it is not
possible to continue a failed library() call.

https://packagemanager.posit.co/

12 Installing pak

Value

Nothing.

Installing pak All about installing pak.

Description

Read this if the default installation methods do not work for you or if you want the release candidate
or development version.

Pre-built binaries:
Our pre-built binaries have the advantage that they are completely self-containted and dependency
free. No additional R packages, system libraries or tools (e.g. compilers) are needed for them.
Install a pre-built binary build of pak from our repository on GitHub:

install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/stable/%s/%s/%s",
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

This is supported for the following systems:

OS CPU R version
Linux x86_64 R 3.4.0 - R-devel
Linux aarch64 R 3.4.0 - R-devel
macOS High Sierra+ x86_64 R 3.4.0 - R-devel
macOS Big Sur+ aarch64 R 4.1.0 - R-devel
Windows x86_64 R 3.4.0 - R-devel

Notes:
• For macOS we only support the official CRAN R build. Other builds, e.g. Homebrew R,

are not supported.
• We only support R builds that have an R shared library. CRAN’s Windows and macOS

installers are such, so the the R builds in the common Linux distributions. But this might be
an issue if you build R yourself without the --enable-R-shlib option.

Install from CRAN:
Install the released version of the package from CRAN as usual:

install.packages("pak")

This potentially needs a C compiler on platforms CRAN does not have binaries packages for.

lib_status 13

Nightly builds:
We have nightly binary builds, for the same systems as the table above:

install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/devel/%s/%s/%s",
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

stable, rc and devel streams:
We have three types of binaries available:

• stable corresponds to the latest CRAN release of CRAN.
• rc is a release candidate build, and it is available about 1-2 weeks before a release. Other-

wise it is the same as the stable build.
• devel has builds from the development tree. Before release it might be the same as the rc

build.
The streams are available under different repository URLs:
stream <- "rc"
install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/%s/%s/%s/%s",
stream,
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

lib_status Status of packages in a library

Description

Status of packages in a library

Usage

lib_status(lib = .libPaths()[1])

pkg_list(lib = .libPaths()[1])

Arguments

lib Path to library.

Value

Data frame the contains data about the packages installed in the library. include_docs("pkgdepends",
"docs/lib-status-return.rds")

14 local_deps

Examples

lib_status(.Library)

See Also

Other package functions: pak(), pkg_deps_tree(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status(), pkg_sysreqs()

local_deps Dependencies of a package tree

Description

Dependencies of a package tree

Usage

local_deps(root = ".", upgrade = TRUE, dependencies = NA)

local_deps_tree(root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps(root = ".", upgrade = TRUE, dependencies = TRUE)

local_dev_deps_tree(root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

root Path to the package tree.
upgrade Whether to use the most recent available package versions.
dependencies What kinds of dependencies to install. Most commonly one of the following

values:
• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

All of these functions return the dependencies in a data frame. local_deps_tree() and local_dev_deps_tree()
also print the dependency tree.

See Also

Other local package trees: local_deps_explain(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_deps_explain 15

local_deps_explain Explain dependencies of a package tree

Description

These functions are similar to pkg_deps_explain(), but work on a local package tree. local_dev_deps_explain()
also includes development dependencies.

Usage

local_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

deps Package names of the dependencies to explain.

root Path to the package tree.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

See Also

Other local package trees: local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install Install a package tree

Description

Installs a package tree (or source package file), together with its dependencies.

16 local_install

Usage

local_install(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.

When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,

• TRUE: required dependencies plus optional and development dependencies,

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

local_install() is equivalent to pkg_install("local::.").

Value

Data frame, with information about the installed package(s).

local_install_deps 17

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_package_trees, pak()

local_install_deps Install the dependencies of a package tree

Description

Installs the hard dependencies of a package tree (or source package file), without installing the
package tree itself.

Usage

local_install_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,

18 local_install_dev_deps

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

Note that development (and optional) dependencies, under Suggests in DESCRIPTION, are not in-
stalled. If you want to install them as well, use local_install_dev_deps().

Value

Data frame, with information about the installed package(s).

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install_dev_deps

Install all (development) dependencies of a package tree

Description

Installs all dependencies of a package tree (or source package file), without installing the package
tree itself. It installs the development dependencies as well, specified in the Suggests field of
DESCRIPTION.

Usage

local_install_dev_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = TRUE

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

local_package_trees 19

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install(),
local_package_trees, pak()

local_package_trees About local package trees

Description

pak can install packages from local package trees. This is convenient for package development. See
the following functions:

• local_install() installs a package from a package tree and all of its dependencies.
• local_install_deps() installs all hard dependencies of a package.
• local_install_dev_deps() installs all hard and soft dependencies of a package. This func-

tion is intended for package development.

Details

Note that the last two functions do not install the package in the specified package tree itself, only
its dependencies. This is convenient if the package itself is loaded via some other means, e.g.
devtools::load_all(), for development.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), pak()

20 local_system_requirements

local_system_requirements

Query system requirements

Description

[Deprecated]
Note that these functions are now deprecated, in favor of pkg_sysreqs() and the sysreqs_* func-
tions, which are more powerful, as they work for all package sources (packages at Github, GitLab,
URLs, etc.) and they have more detailed output.

Instead of

pak::pkg_system_requirement("curl")

call

pak::pkg_sysreqs("curl")$install_scripts

and the equivalent of

pak::local_system_requirements()

is

pak::pkg_sysreqs("local::.", dependencies = TRUE)$install_script

Usage

local_system_requirements(
os = NULL,
os_release = NULL,
root = ".",
execute = FALSE,
sudo = execute,
echo = FALSE

)

pkg_system_requirements(
package,
os = NULL,
os_release = NULL,
execute = FALSE,
sudo = execute,
echo = FALSE

)

local_system_requirements 21

Arguments

os, os_release The operating system and operating system release version, e.g. "ubuntu", "de-
bian", "centos", "redhat". See https://github.com/rstudio/r-system-requirements#
operating-systems for all full list of supported operating systems.

If NULL, the default, these will be looked up.

root Path to the package tree.

execute, sudo If execute is TRUE, pak will execute the system commands (if any). If sudo is
TRUE, pak will prepend the commands with sudo.

echo If echo is TRUE and execute is TRUE, echo the command output.

package Package names to lookup system requirements for.

Details

Returns a character vector of commands to run that will install system requirements for the queried
operating system.

local_system_requirements() queries system requirements for a dev package (and its depen-
dencies) given its root path.

pkg_system_requirements() queries system requirements for existing packages (and their de-
pendencies).

Value

A character vector of commands needed to install the system requirements for the package.

Examples

local_system_requirements("ubuntu", "20.04")

pkg_system_requirements("pak", "ubuntu", "20.04")
pkg_system_requirements("pak", "redhat", "7")
pkg_system_requirements("config", "ubuntu", "20.04") # no sys reqs
pkg_system_requirements("curl", "ubuntu", "20.04")
pkg_system_requirements("git2r", "ubuntu", "20.04")
pkg_system_requirements(c("config", "git2r", "curl"), "ubuntu", "20.04")
queried packages must exist
pkg_system_requirements("iDontExist", "ubuntu", "20.04")
pkg_system_requirements(c("curl", "iDontExist"), "ubuntu", "20.04")

https://github.com/rstudio/r-system-requirements#operating-systems
https://github.com/rstudio/r-system-requirements#operating-systems
https://en.wikipedia.org/wiki/Sudo

22 lockfile_create

lockfile_create Create a lock file

Description

The lock file can be used later, possibly in a new R session, to carry out the installation of the
dependencies, with lockfile_install().

Usage

lockfile_create(
pkg = "deps::.",
lockfile = "pkg.lock",
lib = NULL,
upgrade = FALSE,
dependencies = NA

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

lockfile Path to the lock file.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,

lockfile_install 23

• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

Note, since the URLs of CRAN and most CRAN-like repositories change over time, in practice you
cannot use the lock file much later. For example, binary packages of older package version might
be deleted from the repository, breaking the URLs in the lock file.

Currently the intended use case of lock files in on CI systems, to facilitate caching. The (hash of
the) lock file provides a good key for caching systems.

See Also

Other lock files: lockfile_install()

lockfile_install Install packages based on a lock file

Description

Install a lock file that was created with lockfile_create().

Usage

lockfile_install(lockfile = "pkg.lock", lib = .libPaths()[1], update = TRUE)

Arguments

lockfile Path to the lock file.

lib Library to carry out the installation on.

update Whether to online install the packages that either not installed in lib, or a dif-
ferent version is installed for them.

See Also

Other lock files: lockfile_create()

24 meta_summary

meta_summary Metadata cache utilities

Description

Various utilities to inspect, update and clean the metadata cache. See the pkgcache package if you
need for control over the metadata cache.

Usage

meta_summary()

meta_list(pkg = NULL)

meta_update()

meta_clean(force = FALSE)

Arguments

pkg Package names, if specified then only entries for pkg are returned.

force If FALSE, then pak will ask for confirmation.

Details

meta_summary() returns a summary of the metadata cache.

meta_list() lists all (or some) packages in the metadata database.

meta_update() updates the metadata database. You don’t normally need to call this function man-
ually, because all pak functions (e.g. pkg_install(), pkg_download(), etc.) call it automatically,
to make sure that they use the latest available metadata.

meta_clean() deletes the whole metadata DB.

Value

meta_summary() returns a list with entries:

• cachepath: absolute path of the metadata cache.

• current_db: the file that contains the current metadata database. It is currently an RDS file,
but this might change in the future.

• raw_files: the files that are the downloaded PACKAGES* files.

• db_files: all metadata database files.

• size: total size of the metadata cache.

meta_list() returns a data frame of all available packages in the configured repositories.

meta_update() returns nothing.

meta_clean() returns nothing

meta_summary 25

Examples

Metadata cache summary:

meta_summary()
#> $cachepath
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata"
#>
#> $current_db
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-34444e3072.rds"
#>
#> $raw_files
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCann-59693086a0/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [2] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCann-59693086a0/src/contrib/PACKAGES.gz"
#> [3] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCexp-90d4a3978b/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [4] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCexp-90d4a3978b/src/contrib/PACKAGES.gz"
#> [5] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCsoft-2a43920999/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [6] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCsoft-2a43920999/src/contrib/PACKAGES.gz"
#> [7] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCworkflows-26330ba3ca/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [8] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCworkflows-26330ba3ca/src/contrib/PACKAGES.gz"
#> [9] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/CRAN-075c426938/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [10] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/CRAN-075c426938/src/contrib/PACKAGES.gz"
#>
#> $db_files
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-34444e3072.rds"
#> [2] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-ccacf1b389.rds"
#>
#> $size
#> [1] 174848200

The current metadata DB:

meta_list()

Selected packages only:

meta_list(pkg = c("shiny", "htmlwidgets"))

Update the metadata DB

meta_update()

Delete the metadata DB

meta_clean()

26 pak

Package dependency types

Various types of R package dependencies

Description

Various types of R package dependencies

Details

include_docs("pkgdepends", "docs/deps.rds")

Package sources Install packages from CRAN, Bioconductor, GitHub, URLs, etc.

Description

Install packages from CRAN, Bioconductor, GitHub, URLs, etc. Learn how to tell pak which
packages to install, and where those packages can be found.

If you want a quick overview of package sources, see "Get started with pak".

Details

include_docs("pkgdepends", "docs/pkg-refs.rds", top = FALSE)

pak Install specified required packages

Description

Install the specified packages, or the ones required by the package or project in the current working
directory.

Usage

pak(pkg = NULL, ...)

Arguments

pkg Package names or remote package specifications to install. See pak package
sources for details. If NULL, will install all development dependencies for the
current package.

... Extra arguments are passed to pkg_install() or local_install_dev_deps().

pak configuration 27

Details

This is a convenience function:

• If you want to install some packages, it is easier to type than pkg_install().

• If you want to install all the packages that are needed for the development of a package or
project, then it is easier to type than local_install_dev_deps().

• You don’t need to remember two functions to install packages, just one.

See Also

Other package functions: lib_status(), pkg_deps_tree(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status(), pkg_sysreqs()

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees

pak configuration Environment variables and options that modify the default behavior

Description

pak behavior can be finetuned with environment variables and options (as in base::options()).

R options affecting pak’s behavior

Ncpus:
Set to the desired number of worker processes for package installation. If not set, then pak will
use the number of logical processors in the machine.

repos:
The CRAN-like repositories to use. See base::options() for details.

pak configuration

Configuration entries (unless noted otherwise on this manual page) have a corresponding environ-
ment variable, and a corresponding option.

The environment variable is always uppercase and uses underscores as the word separator. It always
has the PKG_ prefix.

The option is typically lowercase, use it uses underscores as the word separator, but it always has
the pkg. prefix (notice the dot!).

Some examples:

Config entry name Env var name Option name
platforms PKG_PLATFORMS pkg.platforms
cran_mirror PKG_CRAN_MIRROR pkg.cran_mirror

28 pak_cleanup

pak configuration entries:
doc_config()

Notes:
From version 0.4.0 pak copies the PKG_* environment variables and the pkg.* options to the pak
subprocess, where they are actually used, so you don’t need to restart R or reaload pak after a
configuration change.

pak_cleanup Clean up pak caches

Description

Clean up pak caches

Usage

pak_cleanup(
package_cache = TRUE,
metadata_cache = TRUE,
pak_lib = TRUE,
force = FALSE

)

Arguments

package_cache Whether to clean up the cache of package files.

metadata_cache Whether to clean up the cache of package meta data.

pak_lib This argument is now deprecated and does nothing.

force Do not ask for confirmation. Note that to use this function in non-interactive
mode, you have to specify force = TRUE.

See Also

Other pak housekeeping: pak_sitrep()

pak_install_extra 29

pak_install_extra Install all optional dependencies of pak

Description

These packages are not required for any pak functionality. They are recommended for some func-
tions that return values that are best used with these packages. E.g. many functions return data
frames, which print nicer when the pillar package is available.

Usage

pak_install_extra(upgrade = FALSE)

Arguments

upgrade Whether to install or upgrade to the latest versions of the optional packages.

Details

Currently only one package is optional: pillar.

pak_setup Set up private pak library (deprecated)

Description

This function is deprecated and does nothing. Recent versions of pak do not need a pak_setup()
call.

Usage

pak_setup(mode = c("auto", "download", "copy"), quiet = FALSE)

Arguments

mode Where to get the packages from. "download" will try to download them from
CRAN. "copy" will try to copy them from your current "regular" package li-
brary. "auto" will try to copy first, and if that fails, then it tries to download.

quiet Whether to omit messages.

Value

The path to the private library, invisibly.

30 pak_update

pak_sitrep pak SITuation REPort

Description

It prints

• pak version,
• platform the package was built on, and the current platform,
• the current library path,
• versions of dependencies,
• whether dependencies can be loaded.

Usage

pak_sitrep()

Examples

pak_sitrep()

See Also

Other pak housekeeping: pak_cleanup()

pak_update Update pak itself

Description

Use this function to update the released or development version of pak.

Usage

pak_update(force = FALSE, stream = c("auto", "stable", "rc", "devel"))

Arguments

force Whether to force an update, even if no newer version is available.
stream Whether to update to the

• "stable",
• "rc" (release candidate) or
• "devel" (development) version.
• "auto" updates to the same stream as the current one.

Often there is no release candidate version, then "rc" also installs the stable
version.

pkg_deps 31

Value

Nothing.

pkg_deps Look up the dependencies of a package

Description

Look up the dependencies of a package

Usage

pkg_deps(pkg, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

A data frame with the dependency data, it includes pkg as well. It has the following columns.
include_docs("pkgdepends", "docs/resolution-result.rds")

Examples

pkg_deps("dplyr")

For a package on GitHub:

pkg_deps("r-lib/callr")

32 pkg_deps_explain

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status(), pkg_sysreqs()

pkg_deps_explain Explain how a package depends on other packages

Description

Extract dependency chains from pkg to deps.

Usage

pkg_deps_explain(pkg, deps, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package names or package references. E.g.
• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository

in general,
• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.
deps Package names of the dependencies to explain.
upgrade Whether to use the most recent available package versions.
dependencies What kinds of dependencies to install. Most commonly one of the following

values:
• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

This function is similar to pkg_deps_tree(), but its output is easier to read if you are only inter-
ested is certain packages (deps).

Value

A named list with a print method. First entries are the function arguments: pkg, deps, dependencies,
the last one is paths and it contains the results in a named list, the names are the package names in
deps.

pkg_deps_tree 33

Examples

How does dplyr depend on rlang?

pkg_deps_explain("dplyr", "rlang")

How does the GH version of usethis depend on cli and ps?

pkg_deps_explain("r-lib/usethis", c("cli", "ps"))

pkg_deps_tree Draw the dependency tree of a package

Description

Draw the dependency tree of a package

Usage

pkg_deps_tree(pkg, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

The same data frame as pkg_deps(), invisibly.

34 pkg_download

Examples

pkg_deps_tree("dplyr")

pkg_deps_tree("r-lib/usethis")

See Also

Other package functions: lib_status(), pak(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status(), pkg_sysreqs()

pkg_download Download a package and its dependencies

Description

TODO: explain result

Usage

pkg_download(
pkg,
dest_dir = ".",
dependencies = FALSE,
platforms = NULL,
r_versions = NULL

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

dest_dir Destination directory for the packages. If it does not exist, then it will be created.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,

pkg_history 35

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

platforms Types of binary or source packages to download. The default is the value of
pkgdepends::default_platforms().

r_versions R version(s) to download packages for. (This does not matter for source pack-
ages, but it does for binaries.) It defaults to the current R version.

Value

Data frame with information about the downloaded packages, invisibly. Columns: include_docs("pkgdepends",
"docs/download-result.rds")

Examples

dl <- pkg_download("forcats")

dl

dl$fulltarget

pkg_download("r-lib/pak", platforms = "source")

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_install(),
pkg_remove(), pkg_status(), pkg_sysreqs()

pkg_history Query the history of a CRAN package

Description

Query the history of a CRAN package

Usage

pkg_history(pkg)

Arguments

pkg Package name.

Value

A data frame, with one row per package version. The columns are the entries of the DESCRIPTION
files in the released package versions.

36 pkg_install

Examples

pkg_history("ggplot2")

pkg_install Install packages

Description

Install one or more packages and their dependencies into a single package library.

Usage

pkg_install(
pkg,
lib = .libPaths()[[1L]],
upgrade = FALSE,
ask = interactive(),
dependencies = NA

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

pkg_name_check 37

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

(Invisibly) A data frame with information about the installed package(s).

Examples

pkg_install("dplyr")

Upgrade dplyr and all its dependencies:

pkg_install("dplyr", upgrade = TRUE)

Install the development version of dplyr:

pkg_install("tidyverse/dplyr")

Switch back to the CRAN version. This will be fast because pak will have cached the prior install.

pkg_install("dplyr")

See Also

Get started with pak, Package sources, FAQ, The dependency solver.

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_remove(), pkg_status(), pkg_sysreqs()

pkg_name_check Check if an R package name is available

Description

Additionally, look up the candidate name in a number of dictionaries, to make sure that it does not
have a negative meaning.

Usage

pkg_name_check(name, dictionaries = NULL)

38 pkg_remove

Arguments

name Package name candidate.

dictionaries Character vector, the dictionaries to query. Available dictionaries: * wikipedia
* wiktionary, * sentiment (https://github.com/fnielsen/afinn), * urban
(Urban Dictionary). If NULL (by default), the Urban Dictionary is omitted, as it
is often offensive.

Details

Valid package name check:
Check the validity of name as a package name. See ’Writing R Extensions’ for the allowed pack-
age names. Also checked against a list of names that are known to cause problems.

CRAN checks:
Check name against the names of all past and current packages on CRAN, including base and
recommended packages.

Bioconductor checks:
Check name against all past and current Bioconductor packages.

Profanity check:
Check name with https://www.purgomalum.com/service/containsprofanity to make sure
it is not a profanity.

Dictionaries:
See the dictionaries argument.

Value

pkg_name_check object with a custom print method.

Examples

pkg_name_check("sicily")

pkg_remove Remove installed packages

Description

Remove installed packages

Usage

pkg_remove(pkg, lib = .libPaths()[[1L]])

https://github.com/fnielsen/afinn
https://www.purgomalum.com/service/containsprofanity

pkg_search 39

Arguments

pkg A character vector of packages to remove.
lib library to remove packages from.

Value

Nothing.

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_status(), pkg_sysreqs()

pkg_search Search CRAN packages

Description

Search the indexed database of current CRAN packages. It uses the pkgsearch package. See
that package for more details and also pkgsearch::pkg_search() for pagination, more advanced
searching, etc.

Usage

pkg_search(query, ...)

Arguments

query Search query string.
... Arguments passed on to pkgsearch::pkg_search

from Where to start listing the results, for pagination.
size The number of results to list.

Value

A data frame, that is also a pak_search_result object with a custom print method. To see the
underlying table, you can use [] to drop the extra classes. See examples below.

Examples

Simple search

pkg_search("survival")

See the underlying data frame

psro <- pkg_search("ropensci")
psro[]

40 pkg_sysreqs

pkg_status Display installed locations of a package

Description

Display installed locations of a package

Usage

pkg_status(pkg, lib = .libPaths())

Arguments

pkg Name of one or more installed packages to display status for.

lib One or more library paths to lookup packages status in. By default all libraries
are used.

Value

Data frame with data about installations of pkg. include_docs("pkgdepends", "docs/lib-status-return.rds")

Examples

pkg_status("MASS")

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_remove(), pkg_sysreqs()

pkg_sysreqs Calculate system requirements of one of more packages

Description

Calculate system requirements of one of more packages

Usage

pkg_sysreqs(pkg, upgrade = TRUE, dependencies = NA, sysreqs_platform = NULL)

pkg_sysreqs 41

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

sysreqs_platform

System requirements platform.
If NULL, then the sysreqs_platform man_config_link("configuration option")
is used, which defaults to the current platform.
Set this option if to one of platforms() if .packageName fails to correctly
detect your platform or if you want to see the system requirements for a different
platform.

Value

List with entries:

• os: character string. Operating system.

• distribution: character string. Linux distribution, NA if the OS is not Linux.

• version: character string. Distribution version, NA is the OS is not Linux.

• pre_install: character vector. Commands to run before the installation of system packages.

• install_scripts: character vector. Commands to run to install the system packages.

• post_install: character vector. Commands to run after the installation of system packages.

• packages: data frame. Information about the system packages that are needed. It has
columns:

42 ppm_has_binaries

– sysreq: string, cross-platform name of the system requirement.
– packages: list column of character vectors. The names of the R packages that have this

system requirement.
– pre_install: list column of character vectors. Commands run before the package in-

stallation for this system requirement.
– system_packages: list column of character vectors. Names of system packages to install.
– post_install: list column of character vectors. Commands run after the package instal-

lation for this system requirement.

See Also

Other package functions: lib_status(), pak(), pkg_deps(), pkg_deps_tree(), pkg_download(),
pkg_install(), pkg_remove(), pkg_status()

Other system requirements functions: sysreqs_check_installed(), sysreqs_db_list(), sysreqs_db_match(),
sysreqs_db_update(), sysreqs_is_supported(), sysreqs_list_system_packages(), sysreqs_platforms()

ppm_has_binaries Does PPM build binary packages for the current platform?

Description

Does PPM build binary packages for the current platform?

Usage

ppm_has_binaries()

Value

TRUE or FALSE.

See Also

The ’pkgcache and Posit Package Manager on Linux’ article at https://r-lib.github.io/pkgcache/.

Other PPM functions: ppm_platforms(), ppm_r_versions(), ppm_repo_url(), ppm_snapshots()

Examples

system_r_platform()
ppm_has_binaries()

https://r-lib.github.io/pkgcache/

ppm_platforms 43

ppm_platforms List all platforms supported by Posit Package Manager (PPM)

Description

List all platforms supported by Posit Package Manager (PPM)

Usage

ppm_platforms()

Value

Data frame with columns:

• name: platform name, this is essentially an identifier,

• os: operating system, linux, windows or macOS currently,

• binary_url: the URL segment of the binary repository URL of this platform, see ppm_snapshots().

• distribution: for Linux platforms the name of the distribution,

• release: for Linux platforms, the name of the release,

• binaries: whether PPM builds binaries for this platform.

See Also

The ’pkgcache and Posit Package Manager on Linux’ article at https://r-lib.github.io/pkgcache/.

Other PPM functions: ppm_has_binaries(), ppm_r_versions(), ppm_repo_url(), ppm_snapshots()

Examples

ppm_platforms()

ppm_repo_url Returns the current Posit Package Manager (PPM) repository URL

Description

Returns the current Posit Package Manager (PPM) repository URL

Usage

ppm_repo_url()

https://r-lib.github.io/pkgcache/

44 ppm_r_versions

Details

This URL has the form {base}/{repo}, e.g. https://packagemanager.posit.co/all.

To configure a hosted PPM instance, set the PKGCACHE_PPM_URL environment variable to the base
URL (e.g. https://packagemanager.posit.co).

To use repo_add() with PPM snapshots, you may also set the PKGCACHE_PPM_REPO environment
variable to the name of the default repository.

On Linux, instead of setting these environment variables, you can also add a PPM repository to the
repos option, see base::options(). In the environment variables are not set, then ppm_repo_url()
will try extract the PPM base URL and repository name from this option.

If the PKGCACHE_PPM_URL environment variable is not set, and the repos option does not contain a
PPM URL (on Linux), then pak uses the public PPM instance at https://packagemanager.posit.co,
with the cran repository.

Value

String scalar, the repository URL of the configured PPM instance. If no PPM instance is configured,
then the URL of the Posit Public Package Manager instance. It includes the repository name, e.g.
https://packagemanager.posit.co/all.

See Also

The ’pkgcache and Posit Package Manager on Linux’ article at https://r-lib.github.io/pkgcache/.

repo_resolve() and repo_add() to find and configure PPM snapshots.

Other PPM functions: ppm_has_binaries(), ppm_platforms(), ppm_r_versions(), ppm_snapshots()

Examples

ppm_repo_url()

ppm_r_versions List all R versions supported by Posit Package Manager (PPM)

Description

List all R versions supported by Posit Package Manager (PPM)

Usage

ppm_r_versions()

Value

Data frame with columns:

• r_version: minor R versions, i.e. version numbers containing the first two components of R
versions supported by this PPM instance.

https://r-lib.github.io/pkgcache/

ppm_snapshots 45

See Also

The ’pkgcache and Posit Package Manager on Linux’ article at https://r-lib.github.io/pkgcache/.

Other PPM functions: ppm_has_binaries(), ppm_platforms(), ppm_repo_url(), ppm_snapshots()

Examples

ppm_r_versions()

ppm_snapshots List all available Posit Package Manager (PPM) snapshots

Description

List all available Posit Package Manager (PPM) snapshots

Usage

ppm_snapshots()

Details

The repository URL of a snapshot has the following form on Windows:

{base}/{repo}/{id}

where {base} is the base URL for PPM (see ppm_repo_url()) and {id} is either the date or id of
the snapshot, or latest for the latest snapshot. E.g. these are equivalent:

https://packagemanager.posit.co/cran/5
https://packagemanager.posit.co/cran/2017-10-10

On a Linux distribution that has PPM support, the repository URL that contains the binary packages
looks like this:

{base}/{repo}/__linux__/{binary_url}/{id}

where {id} is as before, and {binary_url} is a code name for a release of a supported Linux
distribution. See the binary_url column of the result of ppm_platforms() for these code names.

Value

Data frame with two columns:

• date: the time the snapshot was taken, a POSIXct vector,

• id: integer id of the snapshot, this can be used in the repository URL.

https://r-lib.github.io/pkgcache/

46 repo_add

See Also

The ’pkgcache and Posit Package Manager on Linux’ article at https://r-lib.github.io/pkgcache/.

Other PPM functions: ppm_has_binaries(), ppm_platforms(), ppm_r_versions(), ppm_repo_url()

Examples

ppm_snapshots()

repo_add Add a new CRAN-like repository

Description

Add a new repository to the list of repositories that pak uses to look for packages.

Usage

repo_add(..., .list = NULL)

repo_resolve(spec)

Arguments

... Repository specifications, possibly named character vectors. See details below.

.list List or character vector of repository specifications. This argument is easier to
use programmatically than See details below.

spec Repository specification, a possibly named character scalar.

Details

repo_add() adds new repositories. It resolves the specified repositories using repo_resolve()
and then modifies the repos global option.

repo_add() only has an effect in the current R session. If you want to keep your configuration
between R sessions, then set the repos option to the desired value in your user or project .Rprofile
file.

Value

repo_resolve() returns a named character scalar, the URL of the repository.

https://r-lib.github.io/pkgcache/

repo_add 47

Repository specifications

The format of a repository specification is a named or unnamed character scalar. If the name is
missing, pak adds a name automatically. The repository named CRAN is the main CRAN repository,
but otherwise names are informational.

Currently supported repository specifications:

• URL pointing to the root of the CRAN-like repository. Example:

https://cloud.r-project.org

• PPM@latest, PPM (Posit Package Manager, formerly RStudio Package Manager), the latest
snapshot.

• PPM@<date>, PPM (Posit Package Manager, formerly RStudio Package Manager) snapshot,
at the specified date.

• PPM@<package>-<version> PPM snapshot, for the day after the release of <version> of
<package>.

• PPM@R-<version> PPM snapshot, for the day after R <version> was released.

Still works for dates starting from 2017-10-10, but now deprecated, because MRAN is discontinued:

• MRAN@<date>, MRAN (Microsoft R Application Network) snapshot, at the specified date.
• MRAN@<package>-<version> MRAN snapshot, for the day after the release of <version> of
<package>.

• MRAN@R-<version> MRAN snapshot, for the day after R <version> was released.

Notes:

• See more about PPM at https://packagemanager.posit.co/client/#/.

• The RSPM@ prefix is still supported and treated the same way as PPM@.

• The MRAN service is now retired, see https://techcommunity.microsoft.com/t5/azure-sql-blog/
microsoft-r-application-network-retirement/ba-p/3707161 for details.

• MRAN@... repository specifications now resolve to PPM, but note that PPM snapshots are only
available from 2017-10-10. See more about this at https://posit.co/blog/migrating-from-mran-to-posit-package-manager/.

• All dates (or times) can be specified in the ISO 8601 format.

• If PPM does not have a snapshot available for a date, the next available date is used.

• Dates that are before the first, or after the last PPM snapshot will trigger an error.

• Unknown R or package versions will trigger an error.

Examples

repo_add(PPMdplyr100 = "PPM@dplyr-1.0.0")
repo_get()

repo_resolve("PPM@2020-01-21")

repo_resolve("PPM@dplyr-1.0.0")

repo_resolve("PPM@R-4.0.0")

https://packagemanager.posit.co/client/#/
https://techcommunity.microsoft.com/t5/azure-sql-blog/microsoft-r-application-network-retirement/ba-p/3707161
https://techcommunity.microsoft.com/t5/azure-sql-blog/microsoft-r-application-network-retirement/ba-p/3707161
https://posit.co/blog/migrating-from-mran-to-posit-package-manager/

48 repo_get

See Also

Other repository functions: repo_get(), repo_status()

repo_get Query the currently configured CRAN-like repositories

Description

pak uses the repos option, see options(). It also automatically adds a CRAN mirror if none is
set up, and the correct version of the Bioconductor repositories. See the cran_mirror and bioc
arguments.

Usage

repo_get(r_version = getRversion(), bioc = TRUE, cran_mirror = NULL)

Arguments

r_version R version to use to determine the correct Bioconductor version, if bioc = TRUE.

bioc Whether to automatically add the Bioconductor repositories to the result.

cran_mirror CRAN mirror to use. Leave it at NULL to use the mirror in getOption("repos")
or an automatically selected one.

Details

repo_get() returns the table of the currently configured repositories.

Examples

repo_get()

See Also

Other repository functions: repo_add(), repo_status()

repo_status 49

repo_status Show the status of CRAN-like repositories

Description

It checks the status of the configured or supplied repositories.

Usage

repo_status(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

repo_ping(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

Arguments

platforms Platforms to use, default is the current platform, plus source packages.

r_version R version(s) to use, the default is the current R version, via getRversion().

bioc Whether to add the Bioconductor repositories. If you already configured them
via options(repos), then you can set this to FALSE.

cran_mirror The CRAN mirror to use.

Details

repo_ping() is similar to repo_status() but also prints a short summary of the data, and it returns
its result invisibly.

Value

A data frame that has a row for every repository, on every queried platform and R version. It has
these columns:

• name: the name of the repository. This comes from the names of the configured repositories
in options("repos"), or added by pak. It is typically CRAN for CRAN, and the current
Bioconductor repositories are BioCsoft, BioCann, BioCexp, BioCworkflows.

• url: base URL of the repository.

• bioc_version: Bioconductor version, or NA for non-Bioconductor repositories.

50 sysreqs_check_installed

• platform: platform, possible values are source, macos and windows currently.

• path: the path to the packages within the base URL, for a given platform and R version.

• r_version: R version, one of the specified R versions.

• ok: Logical flag, whether the repository contains a metadata file for the given platform and R
version.

• ping: HTTP response time of the repository in seconds. If the ok column is FALSE, then this
columns in NA.

• error: the error object if the HTTP query failed for this repository, platform and R version.

Examples

repo_status()

repo_status(
platforms = c("windows", "macos"),
r_version = c("4.0", "4.1")

)

repo_ping()

See Also

Other repository functions: repo_add(), repo_get()

sysreqs_check_installed

Check if installed packages have all their system requirements

Description

sysreqs_check_installed() checks if the system requirements of all packages (or a subset of
packages) are installed.

sysreqs_fix_installed() installs the missing system packages.

Usage

sysreqs_check_installed(packages = NULL, library = .libPaths()[1])
sysreqs_fix_installed(packages = NULL, library = .libPaths()[1])

Arguments

packages If not NULL, then only these packages are checked. If a package in packages is
not installed, then pak throws a warning.

library Library or libraries to check.

sysreqs_db_list 51

Details

These functions use the sysreqs_platform configuration option, see man_config_link("Configuration").
Set this if pak does not detect your platform correctly.

Value

Data frame with a custom print and format method, and a pkg_sysreqs_check_result class. Its
columns are:

• system_package: string, name of the required system package.

• installed: logical, whether the system package is correctly installed.

• packages: list column of character vectors. The names of the installed R packages that need
this system package.

• pre_install: list column of character vectors. Commands to run before the installation of
the the system package.

• post_install: list column of character vectors. Commands to run after the installation of
the system package.

The data frame also have two attributes with additional data:

• sysreqs_records: the raw system requirements records, and

• system_packages: the list of the installed system packages.

sysreqs_fix_packages() returns the same value, but invisibly.

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_db_list(), sysreqs_db_match(),
sysreqs_db_update(), sysreqs_is_supported(), sysreqs_list_system_packages(), sysreqs_platforms()

Examples

This only works on supported platforms
sysreqs_check_installed()

sysreqs_db_list List contents of the system requirements DB, for a platform

Description

It also tries to update the system dependency database, if it is outdated. (I.e. older than allowed in
the metadata_update_after man_config_link("configuration option").

Usage

sysreqs_db_list(sysreqs_platform = NULL)

52 sysreqs_db_match

Arguments

sysreqs_platform

System requirements platform. If NULL, then the sysreqs_platform man_config_link("configuration
option") is used, which defaults to the current platform. Set this option if
.packageName does not detect your platform correctly.

Value

Data frame with columns:

• name: cross platform system dependency name in the database.

• patterns: one or more regular expressions to match to SystemRequirements fields.

• packages: one or more system package names to install.

• pre_install: command(s) to run before installing the packages.

• post_install:: command(s) to run after installing the packages.

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_match(),
sysreqs_db_update(), sysreqs_is_supported(), sysreqs_list_system_packages(), sysreqs_platforms()

Examples

sysreqs_db_list(sysreqs_platform = "ubuntu-22.04")

sysreqs_db_match Match system requirement descriptions to the database

Description

In the usual workflow pak matches the SystemRequirements fields of the DESCRIPTION files to the
database.

Usage

sysreqs_db_match(specs, sysreqs_platform = NULL)

Arguments

specs Character vector of system requirements descriptions.
sysreqs_platform

System requirements platform. If NULL, then the sysreqs_platform man_config_link("configuration
option") is used, which defaults to the current platform. Set this option if
.packageName does not detect your platform correctly.

sysreqs_db_update 53

Details

The sysreqs_db_match() function lets you match any string, and it is mainly useful for debugging.

Value

Data frame with columns:

• spec: the input specs.

• sysreq: name of the system library or tool.

• packages: system packages, list column of character vectors. Rarely it can be an empty string,
e.g. if a pre_install script performs the installation.

• pre_install: list column of character vectors. Shell script(s) to run before the installation.

• post_install: list column of character vectors. Shell script(s) to run after the installation.

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_list(),
sysreqs_db_update(), sysreqs_is_supported(), sysreqs_list_system_packages(), sysreqs_platforms()

Examples

sysreqs_db_match(
c("Needs libcurl", "Java, libssl"),
sysreqs_platform = "ubuntu-22.04"

)

sysreqs_db_update Update the cached copy of the system requirements database

Description

Update the cached copy of the system requirements database

Usage

sysreqs_db_update()

Details

If the the cached copy is recent, then no update is attempted. See the metadata_update_after
man_config_link("configuration option").

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_list(),
sysreqs_db_match(), sysreqs_is_supported(), sysreqs_list_system_packages(), sysreqs_platforms()

54 sysreqs_list_system_packages

sysreqs_is_supported Check if a platform has system requirements support

Description

Check if a platform has system requirements support

Usage

sysreqs_is_supported(sysreqs_platform = NULL)

Arguments

sysreqs_platform

System requirements platform. If NULL, then the sysreqs_platform man_config_link("configuration
option") is used, which defaults to the current platform. Set this option if
.packageName does not detect your platform correctly.

Value

Logical scalar.

See Also

The sysreqs_platform man_config_link("configuration option").

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_list(),
sysreqs_db_match(), sysreqs_db_update(), sysreqs_list_system_packages(), sysreqs_platforms()

Examples

sysreqs_is_supported()

sysreqs_list_system_packages

List installed system packages

Description

List installed system packages

Usage

sysreqs_list_system_packages()

sysreqs_platforms 55

Details

This function uses the sysreqs_platform configuration option, see man_config_link("Configuration").
Set this if pak does not detect your platform correctly.

Value

Data frame with columns:

• status. two or three characters, the notation of dpkg on Debian based systems. "ii" means
the package is correctly installed. On RPM based systems it is always "ii" currently.

• package: name of the system package.
• version: installed version of the system package.
• capabilities: list column of character vectors, the capabilities provided by the package.

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_list(),
sysreqs_db_match(), sysreqs_db_update(), sysreqs_is_supported(), sysreqs_platforms()

Examples

sysreqs_list_system_packages()[1:10,]

sysreqs_platforms List platforms with system requirements support

Description

List platforms with system requirements support

Usage

sysreqs_platforms()

Value

Data frame with columns:

• name: human readable OS name.
• os: OS name, e.g. linux.
• distribution: OS id, e.g. ubuntu or redhat.
• version: distribution version. A star means that all versions are supported, that are also

supported by the vendor.
• update_command: command to run to update the system package metadata.
• install_command: command to run to install packages.
• query_command: name of the tool to use to query system package information.

56 System requirements

See Also

Other system requirements functions: pkg_sysreqs(), sysreqs_check_installed(), sysreqs_db_list(),
sysreqs_db_match(), sysreqs_db_update(), sysreqs_is_supported(), sysreqs_list_system_packages()

Examples

sysreqs_platforms()

System requirements System requirements

Description

pak takes care of your system requirements.

Introduction

Many R packages need external software to be present on the machine, otherwise they do not work,
or not even load. For example the RPostgres R package uses the PostgreSQL client library, and
by default dynamically links to it on Linux systems. This means that you (or the administrators
of your system) need to install this library, typically in the form of a system package: libpq-dev
on Ubuntu and Debian systems, or postgresql-server-devel or postgresql-devel on RedHat,
Fedora, etc. systems.

The good news is that pak helps you with this: - it looks up the required system packages when
installing R packages, - it checks if the required system packages are installed, and - it installs them
automatically, if you are a superuser, or you can use password-less sudo to start a superuser shell.

In addition, pak also has some functions to query system requirements and system packages.

Requirements, supported platforms

Call pak::sysreqs_platforms() to list all platforms that support system requirements:

pak::sysreqs_platforms()

Call pak::sysreqs_is_supported() to see if your system is supported:

pak::sysreqs_is_supported()

This vignette was built on Ubuntu 22.04.2 LTS, which is a platform pak does support. So in the
following you will see the output of the code.

System requirements 57

R package installation

If you are using pak as a superuser, on a supported platform, then pak will look up system require-
ments, and install the missing ones. Here is an example:

pak::pkg_install("RPostgres")

Running R as a regular user:
If you don’t want to use R as the superuser, but you can set up sudo without a password, that
works as well. pak will automatically detect the password-less sudo capability, and use it to
install system packages, as needed.
If you run R as a regular (not root) user, and password-less sudo is not available, then pak will
print the system requirements, but it will not try to install or update them. If you are installing
source packages that need to link to system libraries, then their installation will probably fail, until
you install these system packages. If you are installing binary R packages, then the installation
typically succeeds, but you won’t be able to load these packages into R, until you install the
required system packages. Here is an example, on a system that does not have the required system
package installed for RPostgres. If you are installing a source R package, the installation already
fails:

pak::pkg_install("RPostgres?source")

On the other hand, if you are installing binary packages, e.g. from the Posit Package Manager,
then the installation typically succeeds, but then loading the package fails:

pak::pkg_install("RPostgres")
library(RPostgres)

Query system requirements without installation

If you only want to query system requirements, without installing any packages, use the pkg_sysreqs()
function. This is similar to pkg_deps() but in addition to looking up package dependencies, it also
looks up system dependencies, and only reports the latter:

pak::pkg_sysreqs(c("curl", "xml2", "devtools", "CHRONOS"))

See the manual of pkg_sysreqs() to see how to programmatically extract information from its
return value.

Other queries

In addition to the automatic system package lookup and installation, pak also has some other func-
tions to help you with system dependencies. The sysreqs_db_list() function lists all system
requirements pak knows about.

pak::sysreqs_db_list()

sysreqs_db_match() manually matches SystemREquirements fields againts these system require-
ments:

58 System requirements

sq <- pak::sysreqs_db_match("Needs libcurl and also Java.")
sq

sq[[1]]$packages

You can also use it to query system requirements for other platfosm:

sqrhel9 <- pak::sysreqs_db_match("Needs libcurl and also Java.", "redhat-9")
sqrhel9

sqrhel9[[1]]$packages

sysreqs_list_system_packages() is a cross-platform way of listing all installed system pack-
ages and capabilities:

pak::sysreqs_list_system_packages()

sysreqs_check_installed() is a handy function that checks if all system requirements are in-
stalled for some or all R packages that are installed in your library:

pak::sysreqs_check_installed()

sysreqs_fix_installed() goes one step further and also tries to install the missing system re-
quirements.

Build-time and run-time dependencies

The system requirements database that pak uses does not currently differentiate between build-time
and run-time dependencies. A build-time dependency is a system package that you need when
installing an R package from source. A run-time dependency is a system package that you need
when using an R package. Most Linux distribution create (at least) two packages for each software
library: a runtime package and a development package. For an R package that uses such a software
library, the runtime package is a run-time dependency and the development package is a build-time
dependency. However, pak does not currently know the difference between build-time and run-time
dependencies, and it will install both types of dependencies, always. This means that pak usually
installs system packages that are not strictly necessary. These are typically development packages
of libraries, i.e. header files, and typically do not cause any issues. If you are short on disk space,
then you can try removing them.

How it works

pak uses the database of system requirements at https://github.com/rstudio/r-system-requirements.
It has its own copy of the database embedded into the package, and it also tries to download updated
versions of the database from GitHub, if its current copy is older than one day. You can explicitly
update the database from GitHub using the sysreqs_db_update() function.

For CRAN packages, it downloads the SystemRequirements fields from https://cran.r-pkg.org/metadata,
which is a database updated daily. For Bioconductor packages, it downloads then from GitHub. (We
are planning on moving CRAN database to GitHub as well.)

https://github.com/rstudio/r-system-requirements

System requirements 59

For packages sources that require pak to obtain a package DESCRIPTION file (e.g. github::, git::,
etc.), pak obtains SystemRequirements directly from the DESCRIPTION file.

Once having the SystemRequirements fields, pak matches them to the database, to obtain the
cacnonized list of system requirements.

Then pak queries the local platform, to see the exact system packages needed. It also queries the
installed system packages, to avoid trying to install system packages that are already installed.

Configuration

There are several pak configuration options you can use to adjust how system requirements are
handled. We will list some of them here, please see the options with a sysreqs prefix in the
?pak-config manual page for a complete and current list.

• sysreqs: whether to install system requirements. The default is TRUE if the platform is sup-
ported and the user can install system packages, either because it is the superuser, or via sudo.
If it is FALSE (or the user cannot install system packages), but the platform is supported, system
requirements are printed, but not installed.

• sysreqs_db_update: whether to try to update the system requirements database from GitHub.

• sysreqs_db_update_timeout: timeout for the system requirements update from GitHub.

• sysreqs_dry_run: if TRUE then pak only prints the install commands, but does not actually
run them.

• sysreqs_platform: the platform name to use for determining system requirements. Defaults
to the current platform. If you are using a Linux distribution that is compatible with some
distribution that pak supports, then you can set this option manually. E.g. Ubuntu-based
distros can set it to ubuntu-22.04, or the appropriate Ubuntu version.

• sysreqs_sudo: whether to use sudo to install system packages. If this is not set, then pak
tries to auto-detect if sudo is needed or not.

• sysreqs_update: whether to try to update system packages that are already installed. pak
does not know which version of a system package is required, and it does not try to update
system packages by default. If you think that you need newer system packages, then you can
set this option to TRUE.

• sysreqs_verbose: whether to print the output of the system package installation commands.
Useful for debugging, and it is TRUE by default in a CI environment.

About other OSes

Windows:
While the system requirements database has some information about system dependencies on
Windows, pak does not use this information and it does not try to install system software on Win-
dows. CRAN, PPM and Bioconductor have Windows binary packages available for the majority
of R packages they serve, and these packages practically always link to system libraries statically,
so they don’t need any external software.
If you wish to compile Windows packages from source, then you need to install the appropriate
version of Rtools, and possibly extra packages using the pacman tool of Rtools4x.
Rtools42 and newer Rtools versions bundle lots of libraries, so most likely no extra pacman
packages are needed. Rtools40 has a leaner default installation, and you’ll probably need to

60 system_r_platform

install packages manually: https://github.com/r-windows/docs/blob/master/rtools40.
md#readme

We are planning on adding better Windows system software support to pak in the future.

macOS:
pak does not currently have system requirement information for macOS. macOS is similar to
Windows, in that most repositories will serve statically linked macOS binary packages that do not
need system software.
If you do need to compile packages from source, then you possibly need to install some sytem
libraries, either via Homebrew, or by downloading CRAN’s static library builds from https:
//mac.r-project.org/bin/

We are planning on adding better macOS system software support to pak in the future.

system_r_platform R platforms

Description

R platforms

Usage

system_r_platform()

system_r_platform_data()

Details

system_r_platform() detects the platform of the current R version. system_r_platform_data()
is similar, but returns the raw data instead of a character scalar.

By default pak works with source packages and binary packages for the current platform. You can
change this, by providing different platform names in the pkg.platforms option or the PKG_PLATFORMS
environment variable.

This option may contain the following platform names:

• "source" for source packages,

• "macos" for macOS binaries that are appropriate for the R versions pak is working with.
Packages for incompatible CPU architectures are dropped (defaulting to the CPU of the cur-
rent macOS machine and x86_64 on non-macOS systems). The macOS Darwin version is
selected based on the CRAN macOS binaries. E.g. on R 3.5.0 macOS binaries are built for
macOS El Capitan.

• "windows" for Windows binaries for the default CRAN architecture. This is currently Win-
dows Vista for all supported R versions, but it might change in the future. The actual bi-
nary packages in the repository might support both 32 bit and 64 builds, or only one of
them. In practice 32-bit only packages are very rare. CRAN builds before and including
R 4.1 have both architectures, from R 4.2 they are 64 bit only. "windows" is an alias to
i386+x86_64-w64-mingw32 currently.

https://github.com/r-windows/docs/blob/master/rtools40.md#readme
https://github.com/r-windows/docs/blob/master/rtools40.md#readme
https://mac.r-project.org/bin/
https://mac.r-project.org/bin/

system_r_platform 61

• A platform string like R.version$platform, but on Linux the name and version of the distri-
bution are also included. Examples:

– x86_64-apple-darwin17.0: macOS High Sierra.

– aarch64-apple-darwin20: macOS Big Sur on arm64.

– x86_64-w64-mingw32: 64 bit Windows.

– i386-w64-mingw32: 32 bit Windows.

– i386+x86_64-w64-mingw32: 64 bit + 32 bit Windows.

– i386-pc-solaris2.10: 32 bit Solaris. (Some broken 64 Solaris builds might have the
same platform string, unfortunately.)

– x86_64-pc-linux-gnu-debian-10: Debian Linux 10 on x86_64.

– x86_64-pc-linux-musl-alpine-3.14.1: Alpine Linux.

– x86_64-pc-linux-gnu-unknown: Unknown Linux Distribution on x86_64.

– s390x-ibm-linux-gnu-ubuntu-20.04: Ubuntu Linux 20.04 on S390x.

– amd64-portbld-freebsd12.1: FreeBSD 12.1 on x86_64.

Value

system_r_platform() returns a character scalar.

system_r_platform_data() returns a data frame with character scalar columns:

• cpu,

• vendor,

• os,

• distribution (only on Linux),

• release (only on Linux),

• platform: the concatenation of the other columns, separated by a dash.

See Also

These function call pkgcache::current_r_platform() and pkgcache::current_r_platform_data().

Examples

system_r_platform()
system_r_platform_data()

62 The dependency solver

The dependency solver Find the ideal set of packages and versions to install

Description

pak contains a package dependency solver, that makes sure that the package source and version
requirements of all packages are satisfied, before starting an installation. For CRAN and BioC
packages this is usually automatic, because these repositories are generally in a consistent state. If
packages depend on other other package sources, however, this is not the case.

Details

Here is an example of a conflict detected:

> pak::pkg_install(c("r-lib/pkgcache@conflict", "r-lib/cli@message"))
Error: Cannot install packages:

* Cannot install `r-lib/pkgcache@conflict`.
- Cannot install dependency r-lib/cli@main

* Cannot install `r-lib/cli@main`.
- Conflicts r-lib/cli@message

r-lib/pkgcache@conflict depends on the main branch of r-lib/cli, whereas, we explicitly
requested the message branch. Since it cannot install both versions into a single library, pak quits.

When pak considers a package for installation, and the package is given with its name only, (e.g.
as a dependency of another package), then the package may have any package source. This is
necessary, because one R package library may contain only at most one version of a package with
a given name.

pak’s behavior is best explained via an example. Assume that you are installing a local package (see
below), e.g. local::., and the local package depends on pkgA and user/pkgB, the latter being a
package from GitHub (see below), and that pkgA also depends on pkgB. Now pak must install pkgB
and user/pkgB. In this case pak interprets pkgB as a package from any package source, instead of
a standard package, so installing user/pkgB satisfies both requirements.

Note that that cran::pkgB and user/pkgB requirements result a conflict that pak cannot resolve.
This is because the first one must be a CRAN package, and the second one must be a GitHub
package, and two different packages with the same cannot be installed into an R package library.

Index

∗ PPM functions
ppm_has_binaries, 42
ppm_platforms, 43
ppm_r_versions, 44
ppm_repo_url, 43
ppm_snapshots, 45

∗ library functions
lib_status, 13

∗ local package trees
local_deps, 14
local_deps_explain, 15
local_install, 15
local_install_deps, 17
local_install_dev_deps, 18
local_package_trees, 19
pak, 26

∗ lock files
lockfile_create, 22
lockfile_install, 23

∗ package functions
lib_status, 13
pak, 26
pkg_deps, 31
pkg_deps_tree, 33
pkg_download, 34
pkg_install, 36
pkg_remove, 38
pkg_status, 40
pkg_sysreqs, 40

∗ pak housekeeping
pak_cleanup, 28
pak_sitrep, 30

∗ repository functions
repo_add, 46
repo_get, 48
repo_status, 49

∗ system requirements functions
pkg_sysreqs, 40
sysreqs_check_installed, 50

sysreqs_db_list, 51
sysreqs_db_match, 52
sysreqs_db_update, 53
sysreqs_is_supported, 54
sysreqs_list_system_packages, 54
sysreqs_platforms, 55

base::options(), 27, 44

cache_clean (cache_summary), 3
cache_delete (cache_summary), 3
cache_list (cache_summary), 3
cache_summary, 3

FAQ, 5, 37

Get started with pak, 6, 26, 37
getRversion(), 49
Great pak features, 9

handle_package_not_found, 11

installation, 10
Installing pak, 12

lib_status, 13, 27, 32, 34, 35, 37, 39, 40, 42
local_deps, 14, 15, 17–19, 27
local_deps_explain, 14, 15, 17–19, 27
local_deps_tree (local_deps), 14
local_dev_deps (local_deps), 14
local_dev_deps_explain

(local_deps_explain), 15
local_dev_deps_tree (local_deps), 14
local_install, 14, 15, 15, 18, 19, 27
local_install(), 19
local_install_deps, 14, 15, 17, 17, 19, 27
local_install_deps(), 19
local_install_dev_deps, 14, 15, 17, 18, 18,

19, 27
local_install_dev_deps(), 18, 19, 26, 27
local_package_trees, 14, 15, 17–19, 19, 27

63

64 INDEX

local_system_requirements, 20
lockfile_create, 22, 23
lockfile_create(), 23
lockfile_install, 23, 23
lockfile_install(), 22

meta_clean (meta_summary), 24
meta_list (meta_summary), 24
meta_summary, 24
meta_update (meta_summary), 24

options(), 48

Package dependency types, 14–16, 18, 19,
23, 26, 31–33, 35, 37, 41

Package sources, 22, 26, 31–34, 36, 37, 41
pak, 14, 15, 17–19, 26, 32, 34, 35, 37, 39, 40,

42
pak configuration, 27
pak package sources, 26
pak-config (pak configuration), 27
pak_cleanup, 28, 30
pak_install_extra, 29
pak_setup, 29
pak_sitrep, 28, 30
pak_update, 30
pkg.platforms, 60
pkg_deps, 14, 27, 31, 34, 35, 37, 39, 40, 42
pkg_deps(), 33
pkg_deps_explain, 32
pkg_deps_explain(), 15
pkg_deps_tree, 14, 27, 32, 33, 35, 37, 39, 40,

42
pkg_deps_tree(), 32
pkg_download, 14, 27, 32, 34, 34, 37, 39, 40,

42
pkg_download(), 24
pkg_history, 35
pkg_install, 14, 27, 32, 34, 35, 36, 39, 40, 42
pkg_install(), 24, 26, 27
pkg_list (lib_status), 13
pkg_name_check, 37
PKG_PLATFORMS, 60
pkg_remove, 14, 27, 32, 34, 35, 37, 38, 40, 42
pkg_search, 39
pkg_status, 14, 27, 32, 34, 35, 37, 39, 40, 42
pkg_sysreqs, 14, 27, 32, 34, 35, 37, 39, 40,

40, 51–56
pkg_sysreqs(), 20

pkg_system_requirements
(local_system_requirements), 20

pkgcache::current_r_platform(), 61
pkgcache::current_r_platform_data(),

61
pkgdepends::default_platforms(), 35
pkgsearch::pkg_search, 39
pkgsearch::pkg_search(), 39
ppm_has_binaries, 42, 43–46
ppm_platforms, 42, 43, 44–46
ppm_platforms(), 45
ppm_r_versions, 42–44, 44, 46
ppm_repo_url, 42, 43, 43, 45, 46
ppm_repo_url(), 45
ppm_snapshots, 42–45, 45
ppm_snapshots(), 43

repo_add, 46, 48, 50
repo_add(), 44
repo_get, 48, 48, 50
repo_ping (repo_status), 49
repo_resolve (repo_add), 46
repo_resolve(), 44
repo_status, 48, 49

sysreqs (System requirements), 56
sysreqs_check_installed, 42, 50, 52–56
sysreqs_db_list, 42, 51, 51, 53–56
sysreqs_db_match, 42, 51, 52, 52, 53–56
sysreqs_db_update, 42, 51–53, 53, 54–56
sysreqs_fix_installed

(sysreqs_check_installed), 50
sysreqs_is_supported, 42, 51–53, 54, 55,

56
sysreqs_list_system_packages, 42, 51–54,

54, 56
sysreqs_platforms, 42, 51–55, 55
System requirements, 56
system_r_platform, 60
system_r_platform_data

(system_r_platform), 60

The dependency solver, 37, 62

	cache_summary
	FAQ
	Get started with pak
	Great pak features
	handle_package_not_found
	Installing pak
	lib_status
	local_deps
	local_deps_explain
	local_install
	local_install_deps
	local_install_dev_deps
	local_package_trees
	local_system_requirements
	lockfile_create
	lockfile_install
	meta_summary
	Package dependency types
	Package sources
	pak
	pak configuration
	pak_cleanup
	pak_install_extra
	pak_setup
	pak_sitrep
	pak_update
	pkg_deps
	pkg_deps_explain
	pkg_deps_tree
	pkg_download
	pkg_history
	pkg_install
	pkg_name_check
	pkg_remove
	pkg_search
	pkg_status
	pkg_sysreqs
	ppm_has_binaries
	ppm_platforms
	ppm_repo_url
	ppm_r_versions
	ppm_snapshots
	repo_add
	repo_get
	repo_status
	sysreqs_check_installed
	sysreqs_db_list
	sysreqs_db_match
	sysreqs_db_update
	sysreqs_is_supported
	sysreqs_list_system_packages
	sysreqs_platforms
	System requirements
	system_r_platform
	The dependency solver
	Index

