The goal of the noctua
package is to provide a
DBI-compliant interface to Amazon’s Athena (https://aws.amazon.com/athena/) using paws
SDK. This
allows for an efficient, easy setup connection to Athena using the
paws
SDK as a driver.
NOTE: Before using noctua
you must
have an aws account or have access to aws account with permissions
allowing you to use Athena.
Athena/Minerva is
the Greek/Roman god of wisdom, handicraft, and warfare. One of the main
symbols for Athena is the Owl. Noctua
is the latin word for
Owl.
To install noctua
you can get it from CRAN with:
install.packages("noctua")
Or to get the development version from Github with:
::install_github("dyfanjones/noctua") remotes
The most basic way to connect to AWS Athena is to hard-code your access key and secret access key. However this method is not recommended as your credentials are hard-coded.
library(DBI)
<- dbConnect(noctua::athena(),
con aws_access_key_id='YOUR_ACCESS_KEY_ID',
aws_secret_access_key='YOUR_SECRET_ACCESS_KEY',
s3_staging_dir='s3://path/to/query/bucket/',
region_name='eu-west-1')
The next method is to use profile names set up by AWS CLI or created
manually in the ~/.aws
directory. To create the profile
names manually please refer to:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html.
noctua
is compatible with AWS CLI. This allows your aws
credentials to be stored and not be hard coded in your connection.
To install AWS CLI please refer to: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html, to configure AWS CLI please refer to: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
Once AWS CLI has been set up you will be able to connect to Athena by
only putting the s3_staging_dir
.
Using default profile name:
library(DBI)
<- dbConnect(noctua::athena(),
con s3_staging_dir = 's3://path/to/query/bucket/')
Connecting to Athena using profile name other than
default
.
library(DBI)
<- dbConnect(noctua::athena(),
con profile_name = "your_profile",
s3_staging_dir = 's3://path/to/query/bucket/')
Another method in connecting to Athena is to use Amazon Resource Name (ARN) role.
Setting credentials in environmental variables:
library(noctua)
assume_role(profile_name = "YOUR_PROFILE_NAME",
role_arn = "arn:aws:sts::123456789012:assumed-role/role_name/role_session_name",
set_env = TRUE)
# Connect to Athena using temporary credentials
<- dbConnect(athena(),
con s3_staging_dir = 's3://path/to/query/bucket/')
Connecting to Athena directly using ARN role:
library(DBI)
<- dbConnect(athena(),
con profile_name = "YOUR_PROFILE_NAME",
role_arn = "arn:aws:sts::123456789012:assumed-role/role_name/role_session_name",
s3_staging_dir = 's3://path/to/query/bucket/')
To change the duration of ARN role session please change the
parameter duration_seconds
. By default
duration_seconds
is set to 3600 seconds (1 hour).
Connect to athena, and send a query and return results back to R.
library(DBI)
# using default profile to connect
<- dbConnect(noctua::athena(),
con s3_staging_dir = 's3://path/to/query/bucket/')
<- dbExecute(con, "SELECT * FROM one_row")
res dbFetch(res)
dbClearResult(res)
To retrieve query in 1 step.
dbGetQuery(con, "SELECT * FROM one_row")
To create a tables in athena, dbExecute
will send the
query to athena and wait until query has been executed. This makes it
and idea method to create tables within athena.
<-
query "CREATE EXTERNAL TABLE impressions (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string,
number string,
processId string,
browserCookie string,
requestEndTime string,
timers struct<modelLookup:string, requestTime:string>,
threadId string,
hostname string,
sessionId string)
PARTITIONED BY (dt string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
with serdeproperties ( 'paths'='requestBeginTime, adId, impressionId, referrer, userAgent, userCookie, ip' )
LOCATION 's3://elasticmapreduce/samples/hive-ads/tables/impressions/' ;"
dbExecute(con, query)
noctua has 2 extra function to return extra information around Athena
tables: dbGetParitiions
and dbShow
dbGetPartitions
will return all the partitions (returns
data.frame):
::dbGetPartition(con, "impressions") noctua
dbShow
will return the table’s ddl, so you will able to
see how the table was constructed in Athena (returns SQL character):
::dbShow(con, "impressions") noctua
library(DBI)
<- dbConnect(noctua::athena(),
con s3_staging_dir = 's3://path/to/query/bucket/')
noctua has created a method to send data.frame from R to Athena.
# Check existing tables
dbListTables(con)
# Upload iris to Athena
dbWriteTable(con, "iris", iris,
partition=c("TIMESTAMP" = format(Sys.Date(), "%Y%m%d")))
# Read in iris from Athena
dbReadTable(con, "iris")
# Check new existing tables in Athena
dbListTables(con)
# Check if iris exists in Athena
dbExistsTable(con, "iris")
Please check out noctua
method for dbWriteTable
for more information in how to upload data to AWS Athena and AWS S3.
For more information around how to get the most out of AWS Athena when uploading data please check out: Top 10 Performance Tuning Tips for Amazon Athena
Creating a connection to Athena and query and already existing table
iris
that was created in previous example.
library(DBI)
library(dplyr)
<- dbConnect(noctua::athena(),
con aws_access_key_id='YOUR_ACCESS_KEY_ID',
aws_secret_access_key='YOUR_SECRET_ACCESS_KEY',
s3_staging_dir='s3://path/to/query/bucket/',
region_name='eu-west-1')
tbl(con, sql("SELECT * FROM iris"))
# Source: SQL [?? x 5]
# Database: Athena 0.1.4 [eu-west-1/default]
sepal_length sepal_width petal_length petal_width species
<dbl> <dbl> <dbl> <dbl> <chr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
# … with more rows
dplyr provides lazy querying with allows to short hand
tbl(con, sql("SELECT * FROM iris"))
to
tbl(con, "iris")
. For more information please look at https://solutions.posit.co/connections/db/r-packages/dplyr/
tbl(con, "iris")
# Source: table<iris> [?? x 5]
# Database: Athena 0.1.4 [eu-west-1/default]
sepal_length sepal_width petal_length petal_width species
<dbl> <dbl> <dbl> <dbl> <chr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
# … with more rows
Querying Athena with profile_name
instead of hard coding
aws_access_key_id
and aws_secret_access_key
.
By using profile_name
extra Meta Data is returned in the
query to give users extra information.
<- dbConnect(noctua::athena(),
con profile_name = "your_profile",
s3_staging_dir='s3://path/to/query/bucket/')
tbl(con, "iris")) %>%
filter(petal_length < 1.3)
# Source: lazy query [?? x 5]
# Database: Athena 0.1.4 [your_profile@eu-west-1/default]
sepal_length sepal_width petal_length petal_width species
<dbl> <dbl> <dbl> <dbl> <chr>
1 4.7 3.2 1.3 0.2 setosa
2 4.3 3 1.1 0.1 setosa
3 5.8 4 1.2 0.2 setosa
4 5.4 3.9 1.3 0.4 setosa
5 4.6 3.6 1 0.2 setosa
6 5 3.2 1.2 0.2 setosa
7 5.5 3.5 1.3 0.2 setosa
8 4.4 3 1.3 0.2 setosa
9 5 3.5 1.3 0.3 setosa
10 4.5 2.3 1.3 0.3 setosa
# … with more rows
tbl(con, "iris") %>%
select(contains("sepal"), contains("petal"))
# Source: lazy query [?? x 4]
# Database: Athena 0.1.4 [your_profile@eu-west-1/default]
sepal_length sepal_width petal_length petal_width
<dbl> <dbl> <dbl> <dbl>
1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2
10 4.9 3.1 1.5 0.1
# … with more rows
Upload data using dplyr
function copy_to
and compute
.
library(DBI)
library(dplyr)
<- dbConnect(noctua::athena(),
con profile_name = "your_profile",
s3_staging_dir='s3://path/to/query/bucket/')
Write data.frame to Athena table
copy_to(con, mtcars,
s3_location = "s3://mybucket/data/")
Write Athena table from tbl_sql
<- tbl(con, "mtcars")
athena_mtcars <- athena_mtcars %>% filter(gear >=4) mtcars_filter
Create athena with unique table name
%>% compute() mtcars_filer
Create athena with specified name and s3 location
%>%
mtcars_filer compute("mtcars_filer",
s3_location = "s3://mybucket/mtcars_filer/")
# Disconnect from Athena
dbDisconnect(con)
Creating work group:
library(noctua)
library(DBI)
<- dbConnect(noctua::athena(),
con profile_name = "your_profile",
encryption_option = "SSE_S3",
s3_staging_dir='s3://path/to/query/bucket/')
create_work_group(con, "demo_work_group", description = "This is a demo work group",
tags = tag_options(key= "demo_work_group", value = "demo_01"))
List work groups:
list_work_groups(con)
[[1]]
[[1]]$Name
[1] "demo_work_group"
[[1]]$State
[1] "ENABLED"
[[1]]$Description
[1] "This is a demo work group"
[[1]]$CreationTime
2019-09-06 18:51:28.902000+01:00
[[2]]
[[2]]$Name
[1] "primary"
[[2]]$State
[1] "ENABLED"
[[2]]$Description
[1] ""
[[2]]$CreationTime
2019-08-22 16:14:47.902000+01:00
Update work group:
update_work_group(con, "demo_work_group", description = "This is a demo work group update")
Return work group meta data:
get_work_group(con, "demo_work_group")
$Name
[1] "demo_work_group"
$State
[1] "ENABLED"
$Configuration
$Configuration$ResultConfiguration
$Configuration$ResultConfiguration$OutputLocation
[1] "s3://path/to/query/bucket/"
$Configuration$ResultConfiguration$EncryptionConfiguration
$Configuration$ResultConfiguration$EncryptionConfiguration$EncryptionOption
[1] "SSE_S3"
$Configuration$EnforceWorkGroupConfiguration
[1] FALSE
$Configuration$PublishCloudWatchMetricsEnabled
[1] FALSE
$Configuration$BytesScannedCutoffPerQuery
[1] 10000000
$Configuration$RequesterPaysEnabled
[1] FALSE
$Description
[1] "This is a demo work group update"
$CreationTime
2019-09-06 18:51:28.902000+01:00
Connect to Athena using work group:
<- dbConnect(noctua::athena(),
con work_group = "demo_work_group")
Delete work group:
delete_work_group(con, "demo_work_group")
pyAthena
- A python wrapper of the python package
Boto3
using the sqlAlchemy framework: https://github.com/laughingman7743/PyAthenaAWR.Athena
- A R wrapper of RJDBC for the AWS Athena’s
JDBC drivers: https://github.com/nfultz/AWR.AthenaRAthena
- A R wrapper of the python package
Boto3
using DBI as the framework: https://github.com/DyfanJones/RAthenaawsathena
- rJava Interface to AWS Athena SDK https://github.com/hrbrmstr/awsathenametis
- Helpers for Accessing and Querying Amazon
Athena using R, Including a lightweight RJDBC shim https://github.com/hrbrmstr/metismetisjars
- JARs for metis
https://github.com/hrbrmstr/metis-jarsmetis.tidy
- Access and Query Amazon Athena via the
Tidyverse https://github.com/hrbrmstr/metis-tidynoctua
is basically the same as RAthena
however it utilises the R AWS SDK paws
to achieve the same
goal.