if (requireNamespace("neojags", quietly = TRUE)){
neojags::load.neojagsmodule()
}
#> module neojags loaded
if (requireNamespace("neojags", quietly = TRUE)){
library(rjags)
}
#> Loading required package: coda
#> Linked to JAGS 4.3.2
#> Loaded modules: basemod,bugs,neojags
modelv <- jags.model(textConnection(mod), n.chains=1, inits = list(".RNG.name" = "base::Wichmann-Hill",".RNG.seed" = 314159))
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 0
#> Unobserved stochastic nodes: 100
#> Total graph size: 103
#>
#> Initializing model
model <- jags.model(textConnection(model_string), data = list(x=c(x)),n.chains=2)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 100
#> Unobserved stochastic nodes: 4
#> Total graph size: 107
#>
#> Initializing model
summary(samples)
#>
#> Iterations = 1001:3000
#> Thinning interval = 1
#> Number of chains = 2
#> Sample size per chain = 2000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> mu 1.9982 0.01001 0.0001583 0.0001971
#> nu1 0.7418 0.06269 0.0009913 0.0021317
#> nu2 1.1564 0.15378 0.0024315 0.0047601
#> tau 0.9625 0.25215 0.0039868 0.0093037
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> mu 1.9784 1.9914 1.9980 2.0049 2.0175
#> nu1 0.6323 0.6977 0.7371 0.7812 0.8789
#> nu2 0.8929 1.0504 1.1404 1.2488 1.4964
#> tau 0.5475 0.7865 0.9370 1.1077 1.5220
model_string1 <- "
model {
d <- djskew.ep(0.5,2,2,2,2)
p <- pjskew.ep(0.5,2,2,2,2)
q <- qjskew.ep(0.5,2,2,2,2)
}
"
summary(samples1)
#>
#> Iterations = 1:2
#> Thinning interval = 1
#> Number of chains = 2
#> Sample size per chain = 2
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> d 0.008864 0 0 0
#> p 0.001350 0 0 0
#> q 2.000000 0 0 0
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> d 0.008864 0.008864 0.008864 0.008864 0.008864
#> p 0.001350 0.001350 0.001350 0.001350 0.001350
#> q 2.000000 2.000000 2.000000 2.000000 2.000000