Methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.
Version: | 2.0.0 |
Depends: | glmnet (≥ 1.9-8) |
Imports: | foreach (≥ 1.4.4) |
Suggests: | testthat (≥ 3.0.0), mice (≥ 3.16.0), missForest (≥ 1.5) |
Published: | 2024-08-29 |
DOI: | 10.32614/CRAN.package.mvs |
Author: | Wouter van Loon [aut, cre], Marjolein Fokkema [ctb] |
Maintainer: | Wouter van Loon <w.s.van.loon at fsw.leidenuniv.nl> |
License: | GPL-2 |
NeedsCompilation: | no |
Citation: | mvs citation info |
Materials: | README NEWS |
CRAN checks: | mvs results |
Reference manual: | mvs.pdf |
Package source: | mvs_2.0.0.tar.gz |
Windows binaries: | r-devel: mvs_2.0.0.zip, r-release: mvs_2.0.0.zip, r-oldrel: mvs_2.0.0.zip |
macOS binaries: | r-release (arm64): mvs_2.0.0.tgz, r-oldrel (arm64): mvs_2.0.0.tgz, r-release (x86_64): mvs_2.0.0.tgz, r-oldrel (x86_64): mvs_2.0.0.tgz |
Old sources: | mvs archive |
Please use the canonical form https://CRAN.R-project.org/package=mvs to link to this page.