# nolint start
library(mlexperiments)
library(mllrnrs)
# nolint start
library(mlexperiments)
library(mllrnrs)
See https://github.com/kapsner/mllrnrs/blob/main/R/learner_glmnet.R for implementation details.
library(mlbench)
data("BostonHousing")
<- BostonHousing |>
dataset ::as.data.table() |>
data.tablena.omit()
<- colnames(dataset)[1:13]
feature_cols <- "medv" target_col
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
<- splitTools::partition(
data_split y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
$train, .SD, .SDcols = feature_cols]
dataset[data_split
)<- log(dataset[data_split$train, get(target_col)])
train_y
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = feature_cols]
dataset[data_split
)<- log(dataset[data_split$test, get(target_col)]) test_y
<- splitTools::create_folds(
fold_list y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(
learner_args family = "gaussian",
type.measure = "mse",
standardize = TRUE
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- list(type = "response")
predict_args <- metric("rmsle")
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid alpha = seq(0, 1, 0.05)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds alpha = c(0., 1.)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean lambda alpha family type.measure standardize
#> 1: 1 0.03927487 0.0004916239 0.70 gaussian mse TRUE
#> 2: 2 0.03926677 0.0003174538 0.90 gaussian mse TRUE
#> 3: 3 0.03926382 0.0004005028 0.65 gaussian mse TRUE
#> 4: 4 0.03924418 0.0021612791 0.10 gaussian mse TRUE
#> 5: 5 0.03926592 0.0006968102 0.45 gaussian mse TRUE
#> 6: 6 0.03923310 0.0029793717 0.05 gaussian mse TRUE
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id alpha gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean lambda errorMessage family
#> 1: 0 1 0.70 NA FALSE TRUE 0.991 -0.03927487 0.03927487 0.0004916239 NA gaussian
#> 2: 0 2 0.90 NA FALSE TRUE 0.962 -0.03926677 0.03926677 0.0003174538 NA gaussian
#> 3: 0 3 0.65 NA FALSE TRUE 0.976 -0.03926382 0.03926382 0.0004005028 NA gaussian
#> 4: 0 4 0.10 NA FALSE TRUE 0.962 -0.03924418 0.03924418 0.0021612791 NA gaussian
#> 5: 0 5 0.45 NA FALSE TRUE 0.023 -0.03926592 0.03926592 0.0006968102 NA gaussian
#> 6: 0 6 0.05 NA FALSE TRUE 0.025 -0.03923310 0.03923310 0.0029793717 NA gaussian
#> type.measure standardize
#> 1: mse TRUE
#> 2: mse TRUE
#> 3: mse TRUE
#> 4: mse TRUE
#> 5: mse TRUE
#> 6: mse TRUE
<- mlexperiments::MLCrossValidation$new(
validator learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance alpha lambda family type.measure standardize
#> 1: Fold1 0.05530167 0.01159355 0.004207556 gaussian mse TRUE
#> 2: Fold2 0.05239743 0.01159355 0.004207556 gaussian mse TRUE
#> 3: Fold3 0.05055533 0.01159355 0.004207556 gaussian mse TRUE
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance lambda alpha family type.measure standardize
#> 1: Fold1 0.05526202 0.008388831 0.05 gaussian mse TRUE
#> 2: Fold2 0.05418003 0.018892213 0.25 gaussian mse TRUE
#> 3: Fold3 0.05059097 0.012894705 0.05 gaussian mse TRUE
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance alpha lambda family type.measure standardize
#> 1: Fold1 0.05541775 0.001528976 0.022251620 gaussian mse TRUE
#> 2: Fold2 0.05293442 0.001528976 0.022305296 gaussian mse TRUE
#> 3: Fold3 0.05056405 0.036876500 0.002985073 gaussian mse TRUE
<- mlexperiments::predictions(
preds_glmnet object = validator,
newdata = test_x
)
<- mlexperiments::performance(
perf_glmnet object = validator,
prediction_results = preds_glmnet,
y_ground_truth = test_y,
type = "regression"
)
perf_glmnet#> model performance mse msle mae mape rmse rmsle rsq sse
#> 1: Fold1 0.05117877 0.03938447 0.002619267 0.1365514 0.04579938 0.1984552 0.05117877 0.7438377 6.104593
#> 2: Fold2 0.05218917 0.03992086 0.002723709 0.1407370 0.04763746 0.1998021 0.05218917 0.7403489 6.187734
#> 3: Fold3 0.04952504 0.03651949 0.002452730 0.1373768 0.04651953 0.1911007 0.04952504 0.7624719 5.660522