miesmuschel
provides evolutionary black box optimization
algorithms, building on the bbotk
package.
miesmuschel
offers both ready-to-use optimization
algorithms, as well as their fundamental building blocks that can be
used to manually construct specialized optimization loops.
(also giving a hint on how to pronounce
“miesmuschel
”)
The R software package miesmuschel
Offers opt-algorithms, so crucial
bbotk
is its base,
it’s a powerful tool
For optimization, it’s truly no fool
Ready-made or D-I-Y, the choice is yours
With miesmuschel
, your options are wide open doors
So when you do optimize, just give it a try
With miesmuschel
, surely, success is nigh!
Although miesmuschel
is currently still evolving, it can
already be used for optimization. All exported functions are thoroughly
documented.
Install the github version, using remotes
:
::install_github("mlr-org/miesmuschel") remotes
library("bbotk")
library("paradox")
::threshold("warn")
lgr
<- ObjectiveRFun$new(
objective fun = function(xs) {
<- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
z list(Obj = z)
},domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))
)
bbotk::Optimizer
ObjectThis is the recommended way of using miesmuschel
.
# Get a new OptimInstance
<- OptimInstanceSingleCrit$new(objective,
oi terminator = trm("evals", n_evals = 100)
)
library("miesmuschel")
# Get operators
<- mut("gauss", sdev = 0.1)
op.m <- rec("xounif", p = .3)
op.r <- sel("random")
op.parent <- sel("best")
op.survival
# Create OptimizerMies object
<- opt("mies", mutator = op.m, recombinator = op.r,
mies parent_selector = op.parent, survival_selector = op.survival,
mu = 3, lambda = 2)
# mies$optimize performs MIES optimization and returns the optimum
$optimize(oi)
mies#> x y x_domain Obj
#> 1: 1.935055 1.973867 <list[2]> 1.990703
mies_*
Functions DirectlyThis gives more flexibility when designing ES algorithms, but it is also more verbose and error-prone.
# Get a new OptimInstance
<- OptimInstanceSingleCrit$new(objective,
oi terminator = trm("evals", n_evals = 100)
)
library("miesmuschel")
# Get operators
<- mut("gauss", sdev = 0.1)
op.m <- rec("xounif", p = .3)
op.r <- sel("random")
op.parent <- sel("best")
op.survival
# Prime operators
mies_prime_operators(list(op.m), list(op.r), list(op.parent, op.survival),
search_space = oi$search_space)
# Sample first generation
mies_init_population(oi, 3)
# This is the first generation
$archive$data[, .(x, y, Obj, dob, eol)]
oi#> x y Obj dob eol
#> 1: 3.8516312 1.2386550 0.03633278 1 NA
#> 2: -1.6478480 -0.9080712 0.02901343 1 NA
#> 3: -0.4215587 0.8250017 0.42529339 1 NA
# Select parents, recombine, mutate
<- mies_generate_offspring(oi, 2, op.parent, op.m, op.r)
offspring
# This is the first offspring population
offspring#> x y
#> 1: 2.762783 -0.24885684
#> 2: -1.439780 -0.05699817
# Evaluate offspring (and append to oi archive)
mies_evaluate_offspring(oi, offspring)
# State of the archive now: Second generation has `dob` == 2
$archive$data[, .(x, y, Obj, dob, eol)]
oi#> x y Obj dob eol
#> 1: 3.8516312 1.23865501 0.036332776 1 NA
#> 2: -1.6478480 -0.90807120 0.029013430 1 NA
#> 3: -0.4215587 0.82500173 0.425293387 1 NA
#> 4: 2.7627829 -0.24885684 0.007566604 2 NA
#> 5: -1.4397798 -0.05699817 0.125404228 2 NA
# Selecto for survival
mies_survival_plus(oi, 3, op.survival)
# Survivors have `eol` NA, two individuals 'died' in generation 2
$archive$data[, .(x, y, Obj, dob, eol)]
oi#> x y Obj dob eol
#> 1: 3.8516312 1.23865501 0.036332776 1 NA
#> 2: -1.6478480 -0.90807120 0.029013430 1 2
#> 3: -0.4215587 0.82500173 0.425293387 1 NA
#> 4: 2.7627829 -0.24885684 0.007566604 2 2
#> 5: -1.4397798 -0.05699817 0.125404228 2 NA
# Perform MIES loop until terminated. This gives an expected `terminated` error
repeat {
<- mies_generate_offspring(oi, 2, op.parent, op.m, op.r)
offspring mies_evaluate_offspring(oi, offspring)
mies_survival_plus(oi, 3, op.survival)
}
# Best result:
$archive$data[which.max(Obj)]
oi#> x y dob eol Obj x_domain timestamp batch_nr
#> 1: 2.021887 2.164051 46 NA 1.946115 <list[2]> 2021-02-15 01:56:23 46