This package for R implements measurement error correction methods for measurement error in a continuous covariate or outcome in a linear model with a continuous outcome.
The package can be installed via
::install_github("LindaNab/mecor", build_vignettes = TRUE) devtools
library(mecor)
# load the internal covariate validation study
data("vat", package = "mecor")
head(vat)
# correct the biased exposure-outcome association
mecor(ir_ln ~ MeasError(substitute = wc, reference = vat) + age + sex + tbf, data = vat, method = "standard")
Browse the vignettes of the package for more information.
browseVignettes(package = "mecor")
Bartlett JW, Stavola DBL, Frost C. Linear mixed models for replication data to efficiently allow for covariate measurement error. Statistics in Medicine. 2009:28(25):3158–3178. doi:10.1002/sim.3713
Buonaccorsi JP. Measurement error: Models, methods, and applications. 2010. Chapman & Hall/CRC, Boca Raton.
Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement error in non-linear models: A modern perspective. 2006, 2nd edition. Chapman & Hall/CRC, Boca Raton.
Keogh RH, Carroll RJ, Tooze JA, Kirkpatrick SI, Freedman LS. Statistical issues related to dietary intake as the response variable in intervention trials. Statistics in Medicine. 2016:35(25):4493–4508. doi:10.1002/sim.7011
Keogh RH, White IR. A toolkit for measurement error correction, with a focus on nutritional epidemiology. Statistics in Medicine 2014:33(12):2137–2155. doi:10.1002/sim.6095
Nab L, Groenwold RHH, Welsing PMJ, van Smeden M. Measurement error in continuous endpoints in randomised trials: Problems and solutions. Statistics in Medicine. 2019:38(27):5182-5196. doi:10.1002/sim.8359
Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: The case of multiple covariates measured with error. 1990:132(4):734-745. doi:10.1093/oxfordjournals.aje.a115715
Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and confidence intervals for random within-person measurement error. American Journal of Epidemiology. 1992:136(11):1400-1413. doi:10.1093/oxfordjournals.aje.a116453
Spiegelman D, Carroll RJ, Kipnis V. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine. 2001:20(1):139-160. doi:10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K