lmls: Gaussian Location-Scale Regression
The Gaussian location-scale regression model is a multi-predictor
model with explanatory variables for the mean (= location) and the standard
deviation (= scale) of a response variable. This package implements maximum
likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms
from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x>
and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric
bootstrap algorithm, and diagnostic plots for the model class.
Version: |
0.1.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
generics (≥ 0.1.0) |
Suggests: |
bookdown, coda, covr, ggplot2, knitr, mgcv, mvtnorm, numDeriv, patchwork, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2022-01-18 |
DOI: |
10.32614/CRAN.package.lmls |
Author: |
Hannes Riebl [aut, cre] |
Maintainer: |
Hannes Riebl <hriebl at uni-goettingen.de> |
License: |
MIT + file LICENSE |
URL: |
https://hriebl.github.io/lmls/ |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
lmls results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lmls
to link to this page.