library(injurytools)
library(dplyr)
library(stringr)
library(tidyr)
library(lme4)
library(pscl)
# library(glmmTMB)
library(MASS)
library(ggplot2)
library(gridExtra)
library(knitr)
Example data: we continue exploring the cohort of Liverpool Football Club male’s first team players over two consecutive seasons, 2017-2018 and 2018-2019, scrapped from https://www.transfermarkt.com/ website1.
This article provides some modelling approaches when injuries are seen as count data.
First, the distribution of the count/rate variables is explored, e.g. number of injuries and number of days lost per exposure time. Afterwards, four different models are presented, that depending on the distribution of the data, will provide a better fit to them due to the distributional assumptions made by each of them.
We plot the histograms of the injury incidence and injury burden variables for each season.
## 17/18
df_exposures1718 <- prepare_exp(df_exposures0 =
raw_df_exposures |> filter(season == "17/18"),
player = "player_name",
date = "year",
time_expo = "minutes_played") |>
mutate(seasonb = date2season(date))
df_injuries1718 <- prepare_inj(df_injuries0 =
raw_df_injuries |> filter(season == "17/18"),
player = "player_name",
date_injured = "from",
date_recovered = "until")
injd1718 <- prepare_all(data_exposures = df_exposures1718,
data_injuries = df_injuries1718,
exp_unit = "matches_minutes")
## 18/19
df_exposures1819 <- prepare_exp(df_exposures0 =
raw_df_exposures |> filter(season == "18/19"),
player = "player_name",
date = "year",
time_expo = "minutes_played") |>
mutate(seasonb = date2season(date))
df_injuries1819 <- prepare_inj(df_injuries0 =
raw_df_injuries |> filter(season == "18/19"),
player = "player_name",
date_injured = "from",
date_recovered = "until")
injd1819 <- prepare_all(data_exposures = df_exposures1819,
data_injuries = df_injuries1819,
exp_unit = "matches_minutes")
## plot
p1 <- ggplot(data = injdsp) +
geom_histogram(aes(x = injincidence, fill = season)) +
facet_wrap(~season) +
scale_fill_manual(name = "", values = c("#E7B800", "#2E9FDF")) +
ylab("Number of players") +
xlab("Incidence (number of injuries per 100 player-match)") +
ggtitle("Histogram of injury incidence in each season") +
theme(legend.position = "none")
p2 <- ggplot(data = injdsp) +
geom_histogram(aes(x = injburden, fill = season)) +
facet_wrap(~season) +
scale_fill_manual(name = "", values = c("#E7B800", "#2E9FDF")) +
ylab("Number of players") +
xlab("Burden (number of days lost due to injury per 100 player-match)") +
ggtitle("Histogram of injury burden in each season") +
theme(legend.position = "none")
grid.arrange(p1, p2, ncol = 1)
theme_counts <- theme(axis.text = element_text(size = rel(1.2)),
axis.title = element_text(size = rel(1.3)),
strip.text = element_text(size = rel(1.4)),
plot.title = element_text(size = rel(1.4)),
legend.text = element_text(size = rel(1.3)),
legend.title = element_text(size = rel(1.3)))
p1 <- p1 + theme_counts
p2 <- p2 + theme_counts
In the following, we use injds1718p
data.
We merge into the injds1718p
data frame the
player-related information (i.e. positionb
,
age
, assists
, goals
,
yellows
etc.) available in the
raw_df_exposures
data frame.
## 17/18
df_exposures1718 <- prepare_exp(df_exposures0 =
raw_df_exposures |> filter(season == "17/18"),
player = "player_name",
date = "year",
time_expo = "minutes_played") |>
mutate(seasonb = date2season(date))
injds1718p <- injds1718p |>
mutate(seasonb = "2017/2018") |>
## join to have info, such as position, age, citizenship etc.
left_join(df_exposures1718, by = c("player" = "player",
"seasonb" = "seasonb")) |>
## create positionb column
## (so that the categories are: Attack, Defender, Goalkeeper and Midfield)
mutate(positionb = factor(str_split_i(position, "_", 1)))
## quit Goalkeepers
injds1718p <- dplyr::filter(injds1718p, positionb != "Goalkeeper") |>
droplevels()
To fit a Poisson regression model for injury incidence (considering
positionb
as a covariate), we do:
incidence_glm_pois <- glm(ninjuries ~ positionb, # + offset(log(totalexpo))
offset = log(totalexpo),
data = injds1718p,
family = poisson)
Or alternatively, we can use the glmmTMB::glmmTMB
function:
# incidence_glm_pois2 <- glmmTMB(formula = ninjuries ~ foot,
# offset = log(totalexpo),
# family = poisson(), data = injds1718p)
# summary(incidence_glm_pois2)
Besides, if we have repeated measurements as in injdsp
,
we can fit a Mixed Model via:
injdsp
data frame
df_exposures <- prepare_exp(df_exposures0 = raw_df_exposures,
player = "player_name",
date = "year",
time_expo = "minutes_played") |>
mutate(seasonb = date2season(date))
injdsp <- injdsp |>
mutate(seasonb = if_else(season == "Season 17-18", "2017/2018", "2018/2019")) |>
## join to have info, such as position, age, citizenship etc.
left_join(df_exposures, by = c("player" = "player",
"seasonb" = "seasonb")) |>
## create positionb column
## (so that the categories are: Attack, Defender, Goalkeeper and Midfield)
mutate(positionb = factor(str_split_i(position, "_", 1))) |>
droplevels()
incidence_glmm_pois <- glmer(formula = ninjuries ~ positionb + (1 | player),
offset = log(totalexpo),
data = injdsp,
family = poisson)
# incidence_glmm_pois2 <- glmmTMB::glmmTMB(formula = ninjuries ~ positionb + (1 | player),
# offset = log(totalexpo),
# data = injdsp,
# family = poisson)
We can do the analogue for the burden, e.g.:
burden_glm_pois <- glm(ndayslost ~ positionb, offset = log(totalexpo), ## or ~ foot
data = injds1718p,
family = poisson)
As of now, lets stick with the model burden_glm_pois
and
lets interpret the model output.
summary(burden_glm_pois)
#>
#> Call:
#> glm(formula = ndayslost ~ positionb, family = poisson, data = injds1718p,
#> offset = log(totalexpo))
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.81936 0.06651 -57.422 <2e-16 ***
#> positionbDefender -0.03227 0.08893 -0.363 0.717
#> positionbMidfield 1.01561 0.07780 13.054 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for poisson family taken to be 1)
#>
#> Null deviance: 2622.1 on 20 degrees of freedom
#> Residual deviance: 2327.1 on 18 degrees of freedom
#> AIC: 2417.3
#>
#> Number of Fisher Scoring iterations: 6
The estimated coefficients are:
cbind(estimate = exp(coef(burden_glm_pois)) * c(90*100, 1, 1),
exp(confint(burden_glm_pois)) * c(90*100, 1, 1)) |> # (to report per 100 player-matches)
kable()
#> Waiting for profiling to be done...
estimate | 2.5 % | 97.5 % | |
---|---|---|---|
(Intercept) | 197.4757300 | 172.8356815 | 224.351527 |
positionbDefender | 0.9682499 | 0.8137691 | 1.153448 |
positionbMidfield | 2.7610445 | 2.3746045 | 3.221913 |
summary(burden_glm_nb)
#>
#> Call:
#> glm.nb(formula = ndayslost ~ positionb + offset(log(totalexpo)),
#> data = injds1718p, init.theta = 0.2625149285, link = log)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.9829 0.7404 -4.029 5.6e-05 ***
#> positionbDefender -0.8857 1.0139 -0.874 0.382
#> positionbMidfield 1.1416 1.0882 1.049 0.294
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Negative Binomial(0.2625) family taken to be 1)
#>
#> Null deviance: 27.799 on 20 degrees of freedom
#> Residual deviance: 24.105 on 18 degrees of freedom
#> AIC: 200.83
#>
#> Number of Fisher Scoring iterations: 1
#>
#>
#> Theta: 0.2625
#> Std. Err.: 0.0804
#>
#> 2 x log-likelihood: -192.8270
burden_zinfpois <- zeroinfl(ndayslost ~ positionb | positionb,
offset = log(totalexpo),
data = injds1718p,
link = "logit",
dist = "poisson",
trace = FALSE, EM = FALSE)
## Or:
# burden_zinfpois <- glmmTMB::glmmTMB(formula = ndayslost ~ 1 + positionb,
# offset = log(totalexpo),
# ziformula = ~ 1 + positionb,
# data = injds1718p,
# family = poisson)
summary(burden_zinfpois)
#>
#> Call:
#> zeroinfl(formula = ndayslost ~ positionb | positionb, data = injds1718p,
#> offset = log(totalexpo), dist = "poisson", link = "logit", trace = FALSE,
#> EM = FALSE)
#>
#> Pearson residuals:
#> Min 1Q Median 3Q Max
#> -2.186 -1.385 -1.028 1.840 19.448
#>
#> Count model coefficients (poisson with log link):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.38576 0.06652 -50.897 <2e-16 ***
#> positionbDefender -0.21247 0.08894 -2.389 0.0169 *
#> positionbMidfield 0.77310 0.07781 9.936 <2e-16 ***
#>
#> Zero-inflation model coefficients (binomial with logit link):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.2877 0.7638 -0.377 0.706
#> positionbDefender -0.8109 1.1181 -0.725 0.468
#> positionbMidfield -1.3218 1.3354 -0.990 0.322
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Number of iterations in BFGS optimization: 1
#> Log-likelihood: -929.5 on 6 Df
burden_zinfnb <- zeroinfl(ndayslost ~ positionb | positionb,
offset = log(totalexpo),
data = injds1718p,
link = "logit",
dist = "negbin",
trace = FALSE, EM = FALSE)
## Or:
# burden_zinfnb <- glmmTMB::glmmTMB(ndayslost ~ 1 + positionb, offset = log(totalexpo),
# ziformula = ~ 1 + positionb,
# data = injds1718p,
# family = nbinom2)
summary(burden_zinfnb)
#>
#> Call:
#> zeroinfl(formula = ndayslost ~ positionb | positionb, data = injds1718p,
#> offset = log(totalexpo), dist = "negbin", link = "logit", trace = FALSE,
#> EM = FALSE)
#>
#> Pearson residuals:
#> Min 1Q Median 3Q Max
#> -0.6477 -0.5554 -0.4596 0.2243 2.3967
#>
#> Count model coefficients (negbin with log link):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.5214 0.6870 -3.670 0.000243 ***
#> positionbDefender -1.1727 0.8795 -1.333 0.182437
#> positionbMidfield 0.8246 0.9205 0.896 0.370337
#> Log(theta) -0.6520 0.4735 -1.377 0.168550
#>
#> Zero-inflation model coefficients (binomial with logit link):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.5269 0.9143 -0.576 0.564
#> positionbDefender -1.1295 1.6186 -0.698 0.485
#> positionbMidfield -1.3187 1.6114 -0.818 0.413
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Theta = 0.521
#> Number of iterations in BFGS optimization: 12
#> Log-likelihood: -95.24 on 7 Df
Finally, lets compare the four models.
We compute the conditional predicted mean probabilities of each model:
## pois
## predprob: for each subj, prob of observing each value
phat_pois <- predprob(burden_glm_pois)
phat_pois_mn <- apply(phat_pois, 2, mean)
## nb
phat_nb <- predprob(burden_glm_nb)
phat_nb_mn <- apply(phat_nb, 2, mean)
## zinfpois
phat_zinfpois <- predprob(burden_zinfpois)
phat_zinfpois_mn <- apply(phat_zinfpois, 2, mean)
## zinfnb
phat_zinfnb <- predprob(burden_zinfnb)
phat_zinfnb_mn <- apply(phat_zinfnb, 2, mean)
## put in a data frame
idx <- seq(1, 62, length.out = 30)
df_probs <- data.frame(phat_pois_mn = phat_pois_mn[idx],
phat_nb_mn = phat_nb_mn[idx],
phat_zinfpois_mn = phat_zinfpois_mn[idx],
phat_zinfnb_mn = phat_zinfnb_mn[idx],
x= idx) |>
tidyr::gather(key = "prob_type", value = "value", -x) |>
mutate(prob_type = factor(prob_type))
And we display them over the histogram of the data to examine the fits:
ggplot(data = injds1718p) +
geom_histogram(aes(x = injburden/100, after_stat(density)),
breaks = seq(-0.5, 62, length.out = 30),
col = "black", alpha = 0.5) +
geom_point(data = df_probs, aes(x = x, y = value,
group = prob_type, col = prob_type)) +
geom_line(data = df_probs, aes(x = x, y = value,
group = prob_type, col = prob_type)) +
ylim(c(0, 0.3)) + xlab("Injury burden") + ylab("Density") +
scale_color_manual(name = "Model:",
labels = c("Negative Binomial", "Poisson",
"Zero-Inflated Negative Binomial",
"Zero-Inflated Poisson"),
values = c("darkblue", "chocolate", "purple", "red")) +
ggtitle("Histogram of injury burden in 2017/2018\nwith conditional Poisson, NB, ZIP and ZINB Densities") +
theme_counts +
theme(legend.position = c(0.7, 0.7))
Besides, we compute goodness of fit measures such as AIC, BIC and deviance explained:
models <- list("Poisson model" = burden_glm_pois,
"Negative binomial model" = burden_glm_nb,
"Zero-inflated Poisson model" = burden_zinfpois,
"Zero-inflated Negative Binomial model" = burden_zinfnb)
res_gof <- lapply(models, function(model) {
aic <- AIC(model)
bic <- BIC(model)
if (class(model)[[1]] == "zeroinfl") {
deviance <- -2*logLik(model)[[1]]
null_model <- update(model, .~ -positionb)
null_deviance <- -2*logLik(null_model)[[1]]
} else {
deviance <- model$deviance
null_deviance <- model$null.deviance
}
dev_expl <- (null_deviance - deviance)/null_deviance * 100
return(res = data.frame(aic = aic, bic = bic, dev_expl = dev_expl))
})
res_gof |>
bind_rows(.id = "model") |>
## arrange them according to dev_expl.
arrange(desc(dev_expl)) |>
knitr::kable(digits = 2,
col.names = c("Model", "AIC", "BIC", "Deviance Explained"))
Model | AIC | BIC | Deviance Explained |
---|---|---|---|
Negative binomial model | 200.83 | 205.00 | 13.29 |
Poisson model | 2417.26 | 2420.40 | 11.25 |
Zero-inflated Poisson model | 1871.10 | 1877.36 | 11.03 |
Zero-inflated Negative Binomial model | 204.48 | 211.79 | 2.77 |
According to these measures, the Negative Binomial model
(burden_glm_nb
) fits these data best.
These data sets are provided for illustrative purposes. We warn that they might not be accurate and could potentially include discrepancies or incomplete information compared to what actually occurred.↩︎