rRUM_indept

library(hmcdm)

Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the rRUM model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  22  95 125  81  27
Smats <- matrix(runif(J*K,.1,.3),c(J,K))
Gmats <- matrix(runif(J*K,.1,.3),c(J,K))
# Simulate rRUM parameters
r_stars <- Gmats / (1-Smats)
pi_stars <- apply((1-Smats)^Q_matrix, 1, prod)

Y_sim <- sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,
                   r_stars=r_stars,pi_stars=pi_stars)

(2) Run the MCMC to sample parameters from the posterior distribution

output_rRUM_indept = hmcdm(Y_sim,Q_matrix,"rRUM_indept",Design_array,
                           100,30,R = R)
#> 0
output_rRUM_indept
#> 
#> Model: rRUM_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_rRUM_indept)
#> 
#> Model: rRUM_indept 
#> 
#> Item Parameters:
#>  r_stars1_EAP r_stars2_EAP r_stars3_EAP r_stars4_EAP pi_stars_EAP
#>        0.1993      0.51490       0.6957       0.6744       0.8504
#>        0.5519      0.43958       0.5587       0.6092       0.7719
#>        0.6596      0.51894       0.6409       0.3554       0.7504
#>        0.6738      0.68623       0.1715       0.6188       0.8434
#>        0.3924      0.09994       0.5141       0.6946       0.8155
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.3851
#> τ2   0.6149
#> τ3   0.5582
#> τ4   0.3437
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000 0.11906
#> 0001 0.03655
#> 0010 0.09150
#> 0011 0.05177
#> 0100 0.07980
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 22933.92 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.5064
#> M2:  0.49
#> total scores:  0.6145
a <- summary(output_rRUM_indept)
head(a$r_stars_EAP)
#>           [,1]       [,2]      [,3]      [,4]
#> [1,] 0.1993376 0.51490431 0.6956522 0.6743655
#> [2,] 0.5519450 0.43958144 0.5586875 0.6092017
#> [3,] 0.6595621 0.51893944 0.6409174 0.3554333
#> [4,] 0.6738479 0.68622934 0.1714936 0.6188168
#> [5,] 0.3923977 0.09993945 0.5140721 0.6946310
#> [6,] 0.6193002 0.24105679 0.3053849 0.5611629

(3) Check for parameter estimation accuracy

(cor_pistars <- cor(as.vector(pi_stars),as.vector(a$pi_stars_EAP)))
#> [1] 0.9637738
(cor_rstars <- cor(as.vector(r_stars*Q_matrix),as.vector(a$r_stars_EAP*Q_matrix)))
#> [1] 0.9231634

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8578571 0.8857143 0.9307143 0.9671429 0.9714286

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5285714 0.6314286 0.7628571 0.8800000 0.8942857

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2064.491            NA 18249.38 1861.215 22175.09
#> D(theta_bar)   1981.126            NA 17570.21 1864.915 21416.26
#> DIC            2147.855            NA 18928.55 1857.516 22933.92
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.02 0.38 0.12 0.82 0.62
#> [2,] 0.70 0.82 0.54 0.44 0.92
#> [3,] 0.78 0.26 0.68 0.54 0.96
#> [4,] 0.82 0.66 0.92 0.82 0.10
#> [5,] 0.78 0.58 0.92 0.02 0.80
#> [6,] 0.70 0.82 1.00 0.94 0.32
head(a$PPP_item_means)
#> [1] 0.44 0.52 0.50 0.58 0.40 0.50
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.58 0.72 0.90 0.80 0.88 0.70 0.76 0.52  0.50  0.30  0.40  0.08  0.32
#> [2,]   NA   NA 0.16 0.12 0.82 0.34 0.46 0.96 0.40  0.54  0.64  0.88  0.12  0.76
#> [3,]   NA   NA   NA 0.94 0.82 0.92 0.86 0.82 0.80  0.82  0.22  0.42  0.24  0.74
#> [4,]   NA   NA   NA   NA 0.64 0.96 0.76 0.82 0.40  0.74  0.10  0.86  0.22  0.52
#> [5,]   NA   NA   NA   NA   NA 0.56 0.80 0.80 0.70  0.64  0.78  0.86  0.10  0.60
#> [6,]   NA   NA   NA   NA   NA   NA 0.76 1.00 0.86  0.40  0.02  0.22  0.22  0.28
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.40  0.78  0.38  0.08  0.90  0.64  0.46  0.70  0.14  0.44  0.32  0.64
#> [2,]  0.30  0.70  0.22  0.18  0.14  0.56  0.70  0.28  0.56  0.44  0.64  0.42
#> [3,]  0.10  0.54  0.52  0.40  0.36  0.76  0.38  0.72  0.10  0.04  0.34  0.22
#> [4,]  0.88  0.96  0.82  0.08  0.84  0.50  0.48  0.58  0.58  0.22  0.06  0.54
#> [5,]  0.64  0.10  0.88  0.08  0.50  0.88  0.82  0.88  0.12  0.74  0.54  0.86
#> [6,]  0.92  0.32  0.86  0.06  0.34  0.42  0.58  0.88  0.68  0.04  0.58  0.28
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.96  0.86  0.68  0.62  0.44  0.94  0.56  0.78  0.30  0.04  0.56  0.80
#> [2,]  0.16  0.68  0.50  0.50  0.66  0.40  0.44  0.42  0.78  0.98  0.68  0.62
#> [3,]  0.74  0.70  0.40  0.24  0.18  0.18  0.66  0.74  0.50  0.56  0.32  0.28
#> [4,]  0.40  0.08  0.36  0.46  0.14  0.62  0.20  0.88  0.14  0.50  0.06  0.32
#> [5,]  0.50  0.84  0.88  0.36  0.34  0.92  0.20  0.84  0.92  0.26  0.24  0.78
#> [6,]  0.70  0.32  0.02  0.88  0.00  0.60  0.04  0.40  0.46  0.18  0.36  0.38
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.72  0.26  1.00  1.00  0.26  0.70  1.00  0.28  0.68  0.86  0.96  0.92
#> [2,]  0.12  0.86  0.74  0.58  0.50  0.34  0.84  0.96  0.44  0.94  0.30  0.88
#> [3,]  0.46  0.10  0.66  0.30  0.04  0.34  0.50  0.42  0.66  0.04  1.00  0.14
#> [4,]  0.62  0.06  0.62  0.88  0.46  0.98  0.60  0.58  0.56  0.86  0.12  0.64
#> [5,]  0.58  0.80  0.74  0.86  0.38  0.50  0.60  0.78  0.30  0.58  0.80  0.88
#> [6,]  0.06  0.72  0.50  0.90  0.14  0.30  0.16  0.66  0.48  0.64  0.32  0.10