gWQS: Generalized Weighted Quantile Sum Regression
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
Version: |
3.0.5 |
Depends: |
R (≥ 3.5.0) |
Imports: |
ggplot2, stats, broom, rlist, MASS, reshape2, plotROC, knitr, kableExtra, nnet, future, future.apply, pscl, ggrepel, cowplot, Matrix, car, utils, bookdown |
Suggests: |
markdown |
Published: |
2023-11-16 |
DOI: |
10.32614/CRAN.package.gWQS |
Author: |
Stefano Renzetti [aut, cre],
Paul Curtin [aut],
Allan C Just [ctb],
Ghalib Bello [ctb],
Chris Gennings [aut] |
Maintainer: |
Stefano Renzetti <stefano.renzetti88 at gmail.com> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
Materials: |
README |
CRAN checks: |
gWQS results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=gWQS
to link to this page.