fda.usc 2.1.0 is a major release with several new feature and fixed bugs.
fdata2basis() always return centred fdataobj and mean. The mean is computed using the basis.
New funtions: fEqMoments.test(), fmean.test.fdata(), cov.test.fdata() for checking the equality of means and/or covariance between two populations under gaussianity.
New funtions: fEqDistrib.test(), XYRP.test(), MMD.test(), MMDA.test(), fEqDistrib.test() for checking the equality of distributions between two functional populations.
Bug corrected in internal function pred2glm2boost(), it is used for predictions of classiff.DD outputs
New functions: Ops.ldata, Math.ldata, Summary.ldata, mean.ldata and mean.fdata (deprecated ldata.mean, mfdata.mean)
Modifications in ldata.cen
A bug in S.LPR() has been fixed.
A bug in internal function wmestadis() used in fanova.onefactor() has been fixed.
Version 2.0.0 is a major release with several new features, including:
inprod.fdata and metric.lp funcitons addapted to parallel backend.
zzz.R file includes .onAttach() function (welcome package message)
ops.fda.usc.R file includes ops.fda.usc() function that control general parameters of packages such as ncores argument.
par.fda.usc.R file is deleted: par.fda.usc is now an internal object created and modified by ops.fda.usc()
New function metric.DTW computes distances between functional data using dynamic time warping (DTW) metric.WDTW and metric.TWED are extended version. (not parallelized yet, pending to completed the Rd document)
New functions S.LPR and S.LCR for computing smoothing matrix S by nonparametric method.
The functions anova.hetero, anova.onefactor, anova.RPm, influence.fdata, influence.quan, min.basis, min.np and unlist.fdata are renamed fanova.hetero, fanova.onefactor, fanova.RPm, influence.fregre.fd, influence_quan, optim.basis, optim.np and unlist_fdata
optim.np (deprecated min.np) allows Local polynomial regression with correlated errors using the new parameter (correl=TRUE)
Kernel.correlated new functions
New class: “ldata”:
ldata() class definition.
Redefined metric.ldata, it computes distance for ldata object: list with m functional data “mfdata” and univariate data included in a data frame called “df”
New function metric.mfdata: compute distance for mfdata class object: list with m functional data
plot.ldata: plots for ldata object, it allows drawing using a color bar.
plot.mfdata: plot for mfdata object (internal function, pending to completed the Rd document)
depth.modep, depth.mode call metric.lp and metric.ldata propperly
New functions: subset.ldata, is.lfdata “[.lfdata” “[.ldata” is.ldata names.ldata c.ldata
classic.tree() is replaced by the classic.rpart() (which requires the rpart library to be installed). The internal function classif.tree2boost() and the dependency of the rpart package are also removed
New functions and utilities in accuracy.r file.
New functions related with Machine Learning procedures (rdepend on packages not included in “fda.usc”):
Minor changes in classif.gkam and fregre.gkam
Settings in fregre.np, fregre.np.cv with type.S = S.KNN
New script file: FDA_REviewClasif_V2 classification example
Bug corrected in h.default (specially using k-nearest neighbors smoothing, type.S=“S.KNN”)
“type.CV” and “par.CV” arguments are removed in classif.np, classif.kernel and classif.knn
dcor.xy.r/.Rd includes Rdnames
fdata2model.R shortcut to use in classif and fregre method
This version was released in Jan. 2019 to accompany Manuel Oviedo de la Fuente PhD Thesis, see Minerva (University of Santiago de Compostela) repository.
New function implemented: fregre.gsam.vs() accompany paper:
Febrero-Bande, M., Gonz'{a}lez-Manteiga, W. and Oviedo de la Fuente, M.
Variable selection in functional additive regression models,
(2018).
Computational Statistics, 1-19. DOI: 10.1007/s00180-018-0844-5
The current function “fregre.basis.cv” returns an object called fregre.basis (same output as if the “fregre.basis” function had been used) that uses the selected parameters according to the indicated criteria (see example below). The previous function version (up to version 1.5.0) has been renamed in the function “fregre.basis.cv.old”. It is marked as deprecated in the current version and will be deleted in the next version of the package, thanks to Beatriz Bueno.
New functions: plot.fregre.lm and summary.fregre.lm solve errors in the summary of the in fregre.lm function, thanks to Prof. Andros Kourtellos.
A bug in fregre.pc has been fixed (thanks to Prof. Eduardo Garcia-Portugues).
This was published in December 2017 to accompany the document:
Ordonez, C., Oviedo de la Fuente, M., Roca-Pardinas, J., Rodriguez-Perez, J. R. (2017). Determining optimum wavelengths for leaf water content estimation from reflectance: A distance correlation approach. ,
New functions implemented: LMDC.select() and LMDC.regression().
Oviedo de la Fuente M, Febrero-Bande M, Muñoz MP, Domínguez À (2018) Predicting seasonal influenza transmission using functional regression models with temporal dependence. PLoS ONE 13(4): e0194250. DOI: 10.1371/journal.pone.0194250
This package version also companion for the paper:
“Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes” Cuesta-Albertos et al., 2017). The package implements goodness-of-fit tests for the functional linear model with scalar response.
A bug in functional derivative by raw derivation (function fdata.deriv() with method=“diff”) has been fixed, thanks to Marcos Matabuena.
A bug in classif.knn() and predict.classif() has been fixed, thanks to Ricardo Recarey.
A bug in CV.S() function has been fixed, thanks to Miquel Carbajo.
A bug in anova.hetero has been fixed, thanks to Beatriz Bueno.
Beta version functions to Fit Functional Linear Model Using Generalized Least Squares: “fregre.gls”, “fregre.igls”, “GCCV.S”, “predict.fregre.gls” and “predict.fregre.igls” Internal function “auxiliar”, “corSigma”, “corStruct”.
The functionality of the functions “+.fdata”, “-.fdata”, “*.fdata” an “/.fdata” has been improved.
S3 functions for fdata class calculations: “is.na.fdata” and “anyNA.fdata”. Function “count.na.fdata” returns a vector with the number of “NA” of each curve.
Internal function “count.na” is deprecated.
fdata function converts “xtab” and “ftable” class object into “fdata” class object.
New functions,
fregre.basis.fr fits functional response model.
metric.kl computes Kullback–Leibler distance.
anova.onefactor: tests one–way anova model for functional data.
split.fdata, unlist.fdata: A wrapper functions of the split and unlist function for functional data.
func.mean.formula computes the mean curve for the each level of grouping variable.
New dataset, Mithochondiral calcium overload (MCO) data set.
*New utilities, + fdata converts arrays of 3 dimension in a functional data of 2 dimension plot.fdata allows functional data of 2 dimension. + The functions fdata2ppc, fdata2ppls, fregre.ppc, fregre.ppls, fregre.ppc.cv, fregre.ppls.cv are deprecated in favor of fdata2pc,fdata2pls, fregre.pc, fregre.pc.cv, fregre.pls, fregre.pls.cv. These latter functions include penalty arguments.
New functions:
New depth functions and its corresponding shortcut functions (see help(Descriptive) form more details):
depth.SD() provides the simplicial depth measure for bivariate data.
depth.PD() provides the depth measure using random projections for multivariate data.
depth.MhD() provides the Mahalanobis depth measure for multivariate data.
depth.HD() provides the half-space depth measure for multivariate data.
It introduces a new functions for functional PC and PLS regression:
fregre.ppc,fregre.ppls, fregre.ppc.cv,fregre.ppls.cv, and the auxiliary functions: fdata2ppc,fdata2ppls,P.penalty.
The function rber.gold() has been renamed by rwild() function. *Now, rwild() contructs the Wild bootstrap residuals.
order.fdata() is a wrapper function of order function.
New arguments and options:
New arguments “wild” and “type.wild” in fregre.bootstrap(). In fregre.glm(), fregre.gsam(), classif.glm2boost(), classif.gsam2boost() the “fdataobj” argument allows a multivariate data or functional data. * fregre.lm() allows penalization by “rn” parameter (ridge regression). * fregre.pc() and fregre.basis() allow weighted least squares by “weights” argument.
*Release 1.0.0 was released in Oct. 2012 as the working version to accompany ’Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). ’Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28., URL https://www.jstatsoft.org/article/view/v051i04
Release 0.9.8.1 introduces new functions flm.Ftest() and dfv.test(). The first performs a functional F-test and the second implements the test of Delsol, Ferraty and Vieu (2010).
Function flm.test() now has a better computational performance and function Aijr() has been replaced by Adot().
New argument “lambda” in fdata2fd() function.
New argument “rn” in create.pc.basis() function.
fregre.kgam() has been renamed to fregre.gkam().
Release 0.9.8 introduces a new function flm.test() that allows to test for the Functional Linear Model with scalar response for a given dataset. Is based on the new functions PCvM.statistic(), Aijr() and rber.gold().
A bug in fregre.kgam has been fixed.
New functions:
fregre.kgam(), classif.kgam(), dev.S(),
predict.fregre.kgam(), print.fregre.kgam(),
summary.fregre.kgam(), fregre.gsam(),
classif.np(), classif.kgam(), classif.gsam().
New argument “par.S” in: fregre.np(), fregre.np.cv(), fregre.plm(), S.NW(), S.KNN(), S.LLR().
New attributes for: metric.lp(), semimetric.basis() and semimetric.NPFDA()
Release 0.9.6 renames the functions:
pc.fdata()–>fdata2pc()
pls.fdata()–>fdata2pls()
pc.cor()–>summary.fdata.comp()
pc.fdata()–>summary.fdata.comp()
It added create.pls.basis(), Math.fdata(), Ops.fdata(), Summary.fdata() and dis.cos.cor() function.
New argument par.S in: fregre.np, fregre.np.cv, fregre.plm, New argument cv in: S.NW,S.KNN, S.LLR
In metric.lp the argument p now is called lp.
Release 0.9.5 improves fdata.bootstrap() function (better computational efficiency). It introduces a new functions: for Partial Linear Square (pls.fdata(), fregre.pls() and fregre.pls.cv()) and Simpson integration (int.simpson() and int.simpson2()). It modifies the functions metric.lp(), inprod.fdata(), summary.fregre.fd() and predict.fregre.fd().
Release 0.9.4 added 3 script files: Outliers_fdata.R, flm_beta_estimation_brownian_data.R and Classif_phoneme.R. It has introduced the functions fregre.glm() and predict.fregre.glm() which allow fit and predict respectively Functional Generalized Linear Models. It has introduced the functions create.pc.basis and create.fdata.basis which allow to create basis objects for functional data of class “fdata”.
Release 0.9 introduces a new function h.default() that simplifies the
calculation of the bandwidth parameter “h” in the functions:
fregre.np(), fregre.np.cv() and fregre.plm().
In most of the functions has added a stop control when the dataset has
missing data (NA’s). It adds the attribute “call” to the distance matrix
calculated in metric.lp(), semimetric.basis() and semimetric.NPFDA()
functions.