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bipartite-package Analysis of bipartite ecological webs

Description

Bipartite provides functions to visualise webs and calculate a series of indices commonly used to
describe pattern in (ecological) networks, a.k.a. webs. It focusses on webs consisting of only two
levels, e.g. pollinator-visitation or predator-prey webs. Visualisation is important to get an idea of
what we are actually looking at, while the indices summarise different aspects of the webs topology.

Details

Note: We only had three types of bipartite webs in mind when starting this package: seed-disperser,
plant-pollinator and host-parasitoid systems. In how far it makes sense to use these functionalities
for other systems (or indeed even for these systems) lies in the hands of the user. Please refer to the
literature cited for details on the theory behind the indices.

Networks can be either binary (0/1 or FALSE/TRUE matrices) or quantitative (matrices containing
estimates of pairwise interaction strength, usually assumed here to be interaction frequency).

Input for most analyses is an interaction matrix of m nodes (= species) from one group (“higher”)
with n nodes (= species) from another group (“lower”), i.e. a n x m matrix, where higher level nodes
are in columns, lower level nodes in rows. Column and row names can be provided. This is funda-
mentally different from “one-mode” networks, which are organised as k x k matrix, i.e. one group of
nodes only, in which each node can link (= interact) with each other. Such a format is incompatible
with the functions we provide here. (Note, however, that functions as.one.mode and web2edges
are convenience functions to morph bipartite networks into one-mode webs. Furthermore, some
indices build on one-mode networks and are called from bipartite.)

Before you start with the network, you have to get the data into the right shape. The function
frame2webs aims to facilitate this process. Arranging a web, e.g. by size, is supported by sortweb.

The typical first step is to visualise the network. Two functions are on offer here: one (visweb) sim-
ply plots the matrix in colours depicting the strength of an interaction and options for re-arranging
columns and rows (e.g. to identify compartments or nesting). The other function (plotweb) plots
the actual web with participants (as two rows of rectangles) connected by lines (proportional to
interaction strength). Both can be customised by many options.
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The second step is to calculate indices describing network topography. There are three different
levels this can be achieved at: the entire web (using function networklevel), at the level of each
group (also using function networklevel) or the individual node (= species; thus somewhat incon-
sistently called specieslevel). Most other functions in the package are helpers, although some
can be called on their own and return the respective result (dfun, H2fun and second.extinct with
slope.bipartite).

The third step is to compare results to null models. Many interaction matrices are very incomplete
snapshots of the true underlying network (e.g. a one-week sampling of a pollination network on a
patch of 4 x 4 meters). As a consequence, many species were rarely observed, many are singletons
(only one recording). To make analyses comparable across networks with different sampling inten-
sity and number of species per group, we need a common yardstick. We suggest that users should
use a null model, i.e. an algorithm that randomises entries while constraining some web properties
(such as dimensions, marginal totals or connectance). The function nullmodel provides a few such
null models, but this is a wide field of research and we make no recommendations (actually, we do:
see Dormann et al. 2009 and Dormann 2011, both shipping in the doc-folder of this package). You
can also simulate networks using genweb or null.distr.

Finally, bipartite comes with 23 quantitative pollination network data sets taken from the NCEAS
interaction webs data base (use data(package="bipartite") to show their names) and it has a few
miscellaneous functions looking at some special features of bipartite networks (such as modularity:
computeModules or potential for apparent competition: PAC).

See help pages and vignette for details and examples.

For an overview of other computing resources, data, books, journals etc. check out this page:
https://github.com/briatte/awesome-network-analysis.

Package: bipartite
Type: Package
Version: 2.20
Date: 2024-05-10
License: GPL

versionlog

Please see help page versionlog for all changes and updates prior to version 2.00. This page will
only list most recent changes.

• 2.20 (10-May-2024)

Code changes to plotweb, plotweb2, visweb and compart as well as the namespace, due
to changes in the cca-function in vegan. Many thanks to Jari Oksanen (maintainer of
vegan) to provide these patches!

Added new option ‘effective’ to networklevel: With this option, diversity, H2’ and even-
ness indices are turned into “effective” diversity and evenness indices, by exponentiating
them. It has been repeatedly argued that Shannon’s H is ecologically difficult to interpret
and should instead be exponentiated to yield the “effective number of species, if all were
equally abundant” (e.g. Jost 2006). The same logic goes for evenness (Jost 2010) and, by
extension, for H2’. Since H2’ then becomes an index with data-dependent upper bound,
rather than one on [0,1], this version may not fly. For diversity, exponentiating will yield

https://github.com/briatte/awesome-network-analysis
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the same values as indices “vulnerability” and “generality”, which is why we had re-
moved that option from an earlier version (and now it’s back). So largely this option is
useful for “interaction evenness” and for experimenting.

• 2.19 (29-Nov-2023)

Fixed missing any causing a problem when plotting modules, reported by rubenroos and
Celia Ferriol Gonzalez: many thanks!

When a matrix has more columns/rows than the sum of entries, r2dexternal will not work
without external abundances. The fix is incomplete, as it is only applied to columns in
the moment, and not to vaznullexternal either. Thanks to Emilie Ellis for reporting!

Warning fix in internal function isCorrectModuleWebObject: Incorrect testing of dimen-
sions of modularity object. Thanks to Frazer Moore for reporting.

• 2.18 (22-Oct-2022)

Bug fix in robustness: For large matrices, the (too short) subdivision length and the possible
non-zero starting values caused an error. Thanks to Rafael Pinheiro for reporting.

Small semantic fixes newly picked up by sterner CRAN checks (e.g. non-UTF in comment;
escaped ampersand in title).

• 2.17 (release date: 12-Apr-2022)

New null model for "compound network structure" using restrictednull: This function,
contributed by Gabriel Felix, Rafael Pinheiro, and Marco Mello from the Ecological Syn-
thesis Lab (SintECO) in São Paulo, constructs null model expectations for networks with
modules. So far, nestedness could not be properly tested for within null model modules,
only at the level of the entire network. This function uses information from previously
identified modules (typically using computeModules) to generate expectations based on
marginal totals and observed connectivity. It builds on vaznull in that respect, but adds
the modular structure.

Major rehaul of mgen: 1. the biggest change is that ‘keep.species=TRUE’ now respects the
probabilities of the input web (before it had used marginal totals) already for the first
interaction of each species, and tries to minimize the number of interactions assigned
in this first part of the function. 2. the main part of the function has been changed,
not using a while-loop anymore and thus dropping the argument ‘trials’. 3. handling
of ‘autotransfrom’ has been slightly changed, avoiding unnecessary warnings. 4. the
output web now keeps dimnames of input web.

Slight changes to specieslevel, where the weighted betweenness values could be wrongly
placed if the web contained compartments without indirect links. Thanks to Marco Mello
for drawing our attention to this!

computeModules used to remove all-1 rows and columns in a binary network, as they con-
tain no information on modules. However, this affects the modularity value. Now the
function always keeps the full network. Note that all-0-values are still removed. Thanks
to Elvira D’Bastiani for reporting this problem!

Substantial speed boost to vaznull, thanks to an improvement suggested by Rafael Pin-
heiro!

Bug fix in webs2array, which caused problems when called within another function.
Added index modularity (= Newman’s Q) to networklevel. No options are available, hence

this value is the likelihood of the default setting of computeModules.
Bug fix in index PSI in specieslevel, where the beta-exponent was on the wrong matrix,

and hence it did not yield species strength for beta=0.
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Retired binmatnest as called by nestedness. Binmatnest was one of the first nice nested-
ness algorithms, implemented in C++. It has been kept merely for historical reasons, as
vegan’s nestedtemp is more reliable. We finally decided to kick binmatnest out, using
this function as legacy-call to nestedtemp and leaving the legacy help page. (Also makes
package maintenance a bit easier: one C++ function less to think about.)

Added text-option to plotPAC. Species names have a tendency to always be in the way, and
too long. Therefore the original function only plotted numbers. Now we added the option
to plot (and scale and move) labels for each species. Not nice, but practical.

Function networklevel now calls vegan’s nesteddisc when computing the index "dis-
crepancy". That function tries to handle ties in the data consistently, although for webs
with many columns (or rows) with the same number of links this will still lead to slightly
different values. Thanks to Valentin Stefan for drawing our attention to this! Also, we
added an explicit note of this behaviour in networklevel.

Bug fix in r2dexternal and vaznullexternal: Sometimes did not yield the correct row/column
sums, when margins were extremely skewed.

Addressed long-standing confusion in nested, which reports some indices in [0,1], others
in [0, 100] (i.e. as percent). Thanks to Jari Oksanen for reminding me of this point. All
but one now report in the 0-100% range. While fixing this, also added WNODA (based
on nest.smdm) to the fray.

• 2.16 (release date: 08-Jan-2021)

Bug fix in H2fun: threw an error when ‘H2_integer=TRUE’. Thanks to mxdub for finding
and fixing this! (Sorry that I managed to click on “comment and close” before “confirm
accept merg”; this github interaction is still somewhat new to me.)

Bug fix in betalinkr: Now standardization to proportions also works for empty webs as di-
vision by zero is avoided. 2. specmx.higher.unique can now be assessed even for
1-link-networks, as setting ‘drop=FALSE’ keeps the dimensions of the matrix. Thanks to
Benjamin Schwarz for providing these fixes! (And don’t ask me why the pull request on
github does not show.)

Added multicolour-option to ‘arrow.col’ in plotPAC, following a question by Horacio Silva.
We can now colour each arrow of the plot individually, although the sequence of colours
provided may require some fiddling around.

• 2.15 (release date: 04-Apr-2020)

A pair of new functions for plotting: sortmatrix and plotmatrix, both provided by Rafael
Pinheiro and Gabriel Felix from the University of Campinas in Brazil. The functions’
scope is to plot interaction networks of nested, modular and mixed topology (Pinheiro et
al. 2019). As plotting is not the forte of bipartite so far, and these two functions help to
add a bit of plotting facilities. Many thanks for contributing!

Bug fix in robustness: in my previous updates of the discontinued class-issues I managed
to omit a crucial “!” in the code. Thanks to Hanlun Liu and Felix Neff for reporting!

Bug fix in extinction: for sparse networks, the function sometimes returned a vector rather
than a matrix, due to incorrectly dropping a dimension. Thanks to Felix Neff for reporting
and providing the solution!

Expanded help of as.one.mode: in particular the way the weights were computed was not
documented at all, as pointed out by Lennart Dittmer. This is now rectified and also the
R-code now features in-line comments as to what is happening at each step.

• 2.14 (release date: 07-Jan-2020)
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Updates of betalinkr-options.
Future R-version 4.x.x requires discontinuation of class(x) == "y"-like code (rather using

is(x, "y") or inherits(x, "y")). Updated accordingly.
C++-style changes requiring identifyModules-Arguments to be labelled slightly differently.

Impossible to check without setting up a linux chain, but still reason for CRAN not to
accept.

• 2.13 (release date: 21-May-2019)

Several small fixes, e.g. check for binary networks in nullmodel failed if values < 1 were in
the matrix.

Added a lengthy vignette, illustrating the use of the package.
(Small) bug fix in empty: something was stupidly wrong for matrices of only one row or

column. Spotted by Benjamin Schwarz, thanks!
New function vaznullexternal, as wished by Matt Funaki. This is the “normal” vaznull-

nullmodel, but now external abundances for either or both groups can be provided. Mod-
elled on r2dexternal.

Important bug fix and new option in webs2array: name indexing was wrong, so that en-
tries were entered in wrong cells. Also, the function now also accepts a weblist as input.

New function betalinkr: it allows comparison of networks and partitioning of network dis-
similarity. Based on betalink package/paper by Tim Poisot, but more integrated into the
bipartite package, and importantly implements many more features and corrected parti-
tioning approaches. Two more new functions come with it: array2linkmx, betalinkr_multi.

New function decimalr2dtable: it allows to simulate matrices with the same marginal to-
tals as the input, but for non-negative, non-integer inputs. Doing so, it “smears” out the
entries over the entire matrix and will hence be meaningless for any index comparison
which responds to matrix filling. An attempt to deal with webs composed of rates rather
than observed interactions. Useful probably only in a very few cases, as marginal totals
are unlikely to be interpretable as abundance-activity, and hence implying a very different
kind of null model to nullmodels.

• 2.12 (release date: 11-Mar-2019)

New function nest.smdm by Rafael Pinheiro, Gabriel Felix, Marco Mello, and the team
of the Ecological Synthesis Lab, University of São Paulo, which computes the nested-
ness measure NODF (as present in vegan) more flexibly, by allowing the matrix to be
sorted not only by number of filled cells (think: binary networks), but also by abso-
lute marginal totals. NODF does not work for completely filled matrices, but this ver-
sion (called NODA) does. Also, nest.smdm compute nesting within modules, if mod-
ule identities are provided (e.g. by computeModules and the new little helper function
module2constraints). All these metrics are computed for binary or weighted networks.

Function NOS yields NA when one or more nodes are 0. The original equation allows an
alternative way to compute NOS, which has been implemented by tchen98: many thanks!

• 2.11 (relase date: 12-Jul-2018)

Change of defaults in metaComputeModules , from ‘DormannStrauss’ to ‘Beckett’. Beck-
ett’s algorithm is far less variable in its performance, thus I assumed that one would not
actually need metaComputeModules for it at all. However, also ‘Beckett’ is not fool-
proof and benefits from a few re-runs with different starting configurations. Now defaults
are consistent with computeModules. Thanks to Laura Burkle for raising the issue.
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Bug fix in nested , which didn’t correctly pass through the ‘normalised’-argument for in-
dex "C score". Also the naming of "C score" (rather than previously "C.score") was
changed for consistency with networklevel. Many thanks to Carlos Zamora-Manzur
for reporting!

Deprecation of the command register in C++17 required attention in the MersenneTwister.h-
code used in computeModules. Thanks to Brian Ripley, for the R Core Team, for noti-
fying all maintainers using this command in advance of future CRAN-submission prob-
lems!

• 2.10 (release date: 20-Dec-2017)

Removed option ‘weighted’ from CC, which had no effect on the way sna::closeness
computes the value. Thanks to Thais Zanata for making me aware of this!

Fixed bug in option ‘rescaled’ of CC, which did not properly rescale values so that they
sum to 1. Thanks to Thais Zanata for making me aware of this!

Added NODF to the indices available in networklevel.
Added network of Olito & Fox (2015) as olito2015; data from dryad (URL given in help

page).

• 2.09 (release date: 30-Jun-2017)

Fixed type of object returned by computeModules, when using ‘method="DormannStrauss"’,
which I had broken after changing the default. Many thanks to Abdul Shakoor for report-
ing. Also added an error catcher to exclude, from binary webs, species that interact with
every other species (i.e. are all 1; all-0 were already excluded).

Fixed imprecise explanation in plotweb’s ‘low/high.spacing’, which now correctly de-
scribes its effect on the horizontal space within a level. (Thanks to Jeff Ollerton for
reporting.)

• 2.08 (release date: 30-Mar-2017)

New modularity algorithm called by computeModules. Although the excellent algorithm DIRT_LPA_wb_plus
by Stephen Beckett has been around for a year, I never managed to find the time to put it
into bipartite. By now, Stephen has even written a wrapper code so that the output is fully
compatible with existing code for plotting (plotModuleWeb) there was really no argu-
ment left to postpone it. Stephen’s DIRT_LPA_wb_plus will be the new default, replac-
ing ’QuanBiMo’, which remains available under ‘method='DormannStrauss'’. While
DIRT could be called recursively, thereby making modules-within-modules computable,
this is not packaged yet. So currently the much slower DormannStrauss-option is the only
way to get recursive modules. Many thanks to Stephen for making this code available!

networklevel and grouplevel inconsistently returned different values for secondary ex-
tinction, because the former by default purged empty columns/rows, while the latter
didn’t. It does now. Thanks to Gianalberto Losapio for bringing this to my attention.

• 2.07 (release date: 08-Nov-2016)

Bug fixed in vaznull, filled the matrix with 1s instead of 0s (although it was a ‘sophisticated’
logical mistake I made, not a simple typo). Thanks to Sandra Bibiana Corea for reporting!

Small patch in C++-code of binmatnest for compatibility with clang. Thanks to Brian Rip-
ley for fixing one of these C++-things that I never will understand! (In this case, the origi-
nal code (by Miguel Rodríguez-Gironés) defined a pointer to "vector", which caused am-
biguities in which "vector" should be used during compilation: the such defined pointer,
or the std::vector.)
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Smaller typographic and referencing corrections/additions (e.g. in plotPAC).

• 2.06b (release date: 10-May-2016)

Some explanation addded to czvalues, where a z-value of NA is returned if a species is
alone (in its trophic level) in a module. This is due to the way z-values are computed, and
not a bug.

Function nestedcontribution was not exported in the namespace. Fixed. Thanks to vari-
ous people reporting this.

• 2.06 (release date: 29-Sep-2015)

Bug fix in C.score, which did not compute the maximum number of possible checkerboards
correctly, and hence let the normalised C-score to be incorrect. Now it uses a brute-force
approach, which works fine but takes its time.

Function nestedcontribution was not exported (i.e. not listed in the namespace file).
Fixed. Thanks to Wesley Dátillo for reporting.

Help page of specieslevel now correctly described a species’ degree as sum of its links.
Thanks to Bernhard Hoiß for the correction!

C++-warnings addressed: outcommented some unused variables in dendro.h and removed
some fprintf-warnings in bmn5.cc

Little bug fix in vaznull: Threw an error when matrix was without 0s. Thanks to Thais
Zanata for reporting.

• 2.05 (release date: 24-Nov-2014)

New function nestedcontribution which computes the contribution of each species to the
overall nestedness, based on Bascompte et al. 2003 and as used by Saavedra et al. 2011.
Many thanks to Daniel Stouffer for contributing this function!

New function mgen: this function is based on R-code written by Diego Vázquez (many thanks
for sending the code), with a bit of brushing up options by CFD. The function takes
a probability matrix generated by whatever mechanism and builds a null model from it.
This is a niffty little idea, making null modelling concerned with generating ideas on what
makes an interaction probable and leaving the step of producing and integer-network of
simulated interactions to this function.

minor fixes in networklevel “weighted connectance” was only returned when “linkage den-
sity” was in “index” call; now also available on its own. Also sligthly revised the help
file.

nested with option ‘weighted NODF’ called the unsorted version of this function, while call-
ing the same index in networklevel called the sorted. This is not nice (although not
strictly wrong). Now both call the sorted version and users have to directly invoke
nestednodf for the unsorted option. Many thanks to Julian Resasco for reporting!

Changes to the help page of vaznull: I (CFD) misread the original paper introducing this
null model and hence assumed thatvaznull would constrain marginal totals and con-
nectance. However, this was not intended in Diego Vázquez original implementation and
never stated anywhere (except in the help pages of this function here in bipartite). Hence,
the help pages were changed to now reflect both intention and actual action of this func-
tion. This also means that currently only one null model with constrained marginal totals
and connectance is available: swap.web. Many thanks to Diego for clearing this up!

Some example code had to be re-written to adapt to the upcoming/new structure of vegan,
which got rid of function commsimulator (replaced by simulate). Many thanks to Jari
Oksanen for informing me about this!
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Added an error message to function second.extinct for the case that a user wants to pro-
vide an extinction sequence for both trophic levels. There is no obvious way to simulate
this across the two groups, and hence it is not implemented. Also added error messages
for non-matching vector/web dimensions and alike.

• 2.04 (release date: 25-Mar-2014)
R-C++-communication bug fixed in computeModules: This bug has been a constant thorn

in my side. Somehow the C-code behind computeModules could only be called once. On
second call, it returned an error because somehow it kept some old files in memory. So far,
I used a work-around (unloading and re-loading the dynamic library), which only worked
on Windows and Mac. I still don’t fully understand it, but thanks to Tobias Hegemann
(whom I paid for being more competent than myself) we now have a function running
bug-free on all platforms. (Deep sigh of relief.)

The call of index “functional complementarity” through networklevel did not work. Fixed
this legacy issue, which was due to a confusion created by the index’ earlier name of
“functional diversity”.

Help page to specieslevel gave incomplete name for one index: Should be ‘interaction
push pull’; also the function itself had the “push pull”-bit messed up. Thanks to Natacha
Chacoff for reporting!

Sequence of indices differed between lower and higher level. (Fixed.) Both should be the
same and should fit the description in the help file. Thanks to Jimmy O’Donnell for
reporting!

• 2.03 (release date: 15-Jan-2014)
Some ghost text led to conflicts with the updated package checking. Ghost text deleted. Thanks

to Brian Ripley of the R-Team and CRAN for not only reporting the issue but also point-
ing to its solution!

Option ‘empty.web’ added to specieslevel: Similar to the argument in networklevel;
non-interacting species from the network were always excluded so far; new option ‘FALSE’
not fully tested yet.

Minor bug fix in specieslevel: “pollination support index” returned “PSI”; “PDI” now ref-
erenced correctly as “paired differences index”.

Simplification in grouplevel and correspondingly in networklevel: Previously, index="generality"
or "vulnerability" was identical to "effective partners" with option weighted=TRUE,
but different for weighted=FALSE (to which only "effective partners" responded).
We reduced this to one index called "generality" or "vulnerability" (depending on the fo-
cal group), but which will now give the non-weighted mean if option weighted=FALSE.
It can still be called by "effective partners" for backward compatibility.

Function grouplevel used fd wrongly! Instead of returning the value for rows, it returned
the functional diversity for columns (and vice versa). We also used the opportunity to
rename the index to its correct name: “functional complementarity” and the function to
fc. Help pages for fc and grouplevel were adapted accordingly. Thanks to Mariano
Devoto for pointing out this mistake!

New index “weighted connectance” in function networklevel: This index is simply com-
puted as linkage density divided by number of species in the network. Note that using
‘empty.web=TRUE’ will affect this value (which is intended). Thanks to Becky Morris for
suggesting to add this index here.

Help page for function PDI corrected. Thanks to Timothy Poisot for reporting some issues
in the help page.
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• 2.02 (release date: 30-Sep-2013)

Glitch fixed in grouplevel (thus also affecting networklevel). Networks with only one species
in one of the two levels resulted in errors, rather than simply return NA for C-score and
secondary extinction computation. Thanks to whoever it was for reporting (at the IN-
TECOL workshop).

Minor bug fixes in specieslevel: Gave error messages for closeness and betweenness if
the network had no shortest path. Now returns a warning and NAs instead. Reported: JF.

Minor bux fix in networklevel: Failed to work when an index was listed twice in the func-
tion call. Reported: JF.

New function r2dexternal: This function is a null model algorithm like Patefields (r2dtable,
but it excepts externally measured abundances to compute the null model-expectation.
Experimental.

Memory leak in computeModules fixed. Because some object was not deleted, memory con-
sumption of this function shot through the roof (with time). Since R has a somewhat weird
way of handling memory, I think that also subsequent operations were slower (because
the dynamically expanded memory is not being shrunken again, which is a problem if
you use the hard drive as RAM). Thanks to Florian Hartig for investing the time to fix it!

• 2.01 (release date: 28-Jun-2013) This release features smoothing of various glitches that were
introduced when we cleaned up the code for version 2.00.

New index for specieslevel: Computes the nestedness rank (as proposed by Alarcon et al.
2008). Can also be employed directly using the new function nestedrank with op-
tions for weighting for number of interactions per link, normalising the rank and different
method to compute the nestedness-arranged matrix.

Polishing specieslevel: Now returns an error message if the index is not recognised, in-
stead of an empty list.

Function plotweb received an option to plot additional individuals of a species in different
ways. For a host-parasitoid network, some hosts are not parasitised. This data vector can
now be interpreted in two ways, making the plotting function a bit more flexible.

Function degreedistr can now be invoked for each level separately. Also arguments can be
passed to the plotting options.

New data set junker2013: a nice and large pollination network. Thanks to Robert Junker
for providing this data set!

Fixed computation of secondary extinction slopes for both levels simultaneously for ran-
dom extinction sequences. This was so far not possible, because the function did not com-
bine extinction sequences of different lengths. This was simply an oversight, reported by
Richard Lance. (Thanks!)

• 2.00 (release date: 15-Mar-2013) A new version number usually indicates substantial changes.
In this case, we have re-named and re-grouped some of the output of networklevel and
specieslevel for greater consistency and transparency. Beware! Running the same functions
now (2.00 and up) will yield different results to <2.00 (because the same values are now in a
different sequence).
We also started carefully renaming indices and re-writing help files. The main reason is that
we started this work thinking of pollination networks. Over time, however, other types of
ecological networks came into focus, and now also non-ecological networks are on the table.
Thus, we started (and shall continue) referring to lower and higher levels, rather than plant and
pollinators, hosts and predators or even trophic levels. Thus, in our emerging nomenclature
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the two levels are referred to as “groups” (their members remain “species” interacting with
their “partners” in the other group).
Please read (or at least skim) the help pages before using a function of version 2.00 for the
first time.
In function specieslevel indices can now be computed for levels separately (or together).
Few user-visible changes, but complete re-structuring under the hood. Option ‘species
number’ was moved to grouplevel as ‘number of species’.
In the new function grouplevel we collected all indices that can be computed for each of the
two groups (i.e. trophic or other levels). Indices can be computed for each group separately or
for both simultaneously. All group-level indices are also accessible through networklevel!
In the new function linklevel we collected all indices that can be computed for each cell of
the bipartite matrix. Currently, there are few such indices, however.
In function networklevel we dropped the plotting options. Users wanting to plot degree dis-
tributions or extinction slopes are encouraged to use the functions degreedistr and slope.bipartite,
respectively.
Furthermore, due to licensing issues, we copy-pasted several functions from the package tnet,
created and maintained by Tore Opsahl, to bipartite. We have so far called these functions
from tnet, but only recently did R start to enforce license compatibility, which caused this
step (bipartite being GPL and tnet being CC by-NC 3.0). We are really very grateful to Tore
for allowing us to include the following functions: as.tnet, betweenness_w, closeness_w,
clustering_tm, distance_w, symmetrise_w, tnet_igraph.
Here a more detailed list of changes:

networklevel – Function call and output now more consistent in naming and sequence.
When higher and lower level indices are given (e.g. extinction slopes, number of
shared partners), the first will always be the one referring to the property of the lower
level. From a pollinator network perspective, the first value in such a pair describes a
plant-level index, the second a pollinator-level index.

– Indices ‘mean interaction diversity’ dropped from networklevel. We found
no reference to this metric and saw little use for it. It is very similar to vulnera-
bility/generality and can easily be computed from the output of specieslevel as
mean(specieslevel(web, index="diversity")).

– Now also accepts non-integer values as input. The argument ‘H2_integer’ will then
automatically be set to FALSE. Will return NA for those indices that cannot be com-
puted (e.g. Fisher’s alpha). As a knock-on effect, H2fun had to be slightly adapted
to round to machine precision when searching for H2min. (A somewhat technical
detail, but making H2fun getting caught sometimes.)

New function grouplevel in which we collected indices that can be computed for each of
the two groups (i.e. trophic or other levels). Indices can be computed for each group
separately or for both simultaneously. All group-level indices are also accessible through
networklevel!

New function linklevel in which we collect indices that can be computed for each cell of
the bipartite matrix.

New option to PDI: ‘normalise=FALSE’ offers the option of using the index as originally
proposed, although we prefer to use TRUE and made this the default.

Corrected network bezerra2009. Network was actually the transpose of the correct net-
work and hence wrongly had plant species as columns.
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New function endpoint computes end-point degrees following Barrat et al. (2004); one of
the indices computed at linklevel.

New function frame2webs helps organising data into one or more webs.
New function webs2array helps organising webs into one array.
Function specieslevel gained two new indices (thanks to Jochen Fründ): ‘proportional’

‘similarity’ and ‘proportional generality’. See help page of that function for de-
tails.

New function npartite Experimental function to analyse more-than-2-level networks.
visweb now obeys the label size to make sure labels are always in the plotting area. Thanks

to Zachary Grinspan for drawing our attention to this issue.
Little bug fix in second.extinct Function failed for argument ‘participant="both"’ be-

cause I filled the extinction sequence with the wrong number of 0s (to achieve always the
same dimensionality of results in repeated runs). Thanks to Carine Emer for reporting!

specieslevel failed to work for non-matrix data (i.e. data.frames). It now coerces data.frames
to matrix as a first step and hence should work also on data.frames. Thanks to Marina
Wolowski for drawing our attention to this problem.

Minor bug fix in dfun: When external abundances were provided with a 0 in it, dfun could
throw up Inf-values. Reported by Indrani Singh and fixed by Jochen Fründ.

Settings for functions called by nested are now enshrined in stone. The initial reason was
to set only the default for one function (nestedness) to a faster setting (‘null.models=FALSE’),
but then I decided to restrict all settings to the defaults of the functions called (except for
this one option).

Bug fix for the rarely used function null.t.test: Did not work if only one index was given.

Author(s)

Carsten F. Dormann, Jochen Fründ and Bernd Gruber, with additional code from many others (re-
ferred to in the respective help file), noticeably from Tore Opsahl’s tnet package.

Maintainer: Carsten Dormann <carsten.dormann@biom.uni-freiburg.de>
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Examples

## Not run:
data(Safariland)
plotweb(Safariland)
visweb(Safariland)
networklevel(Safariland)
specieslevel(Safariland)

## End(Not run)

array2linkmx Reshape a webarray to a web X link matrix

Description

Function to turn an array with sites as third dimension into a web by link matrix (e.g. sites X
links). This is the "link community matrix" to use for dissimilarity calculations. Mostly just a
helper function for betalinkr.

Usage

array2linkmx(webarray)

Arguments

webarray An array of two or more networks. Assumes the third dimension is the webID
in the array, which will become the first dimension in the link-matrix (output).

Details

This function converts the two-dimensional adjacency matrices (i.e., bipartite webs) to one-dimensional
vectors (similar to what network people call “edgelists”). These vectors become rows of a matrix
(which has one row per web). This makes the data available to community ecology methods, e.g.
those offered by the vegan package. Links are treated equivalently to species in a “normal” commu-
nity analysis (note that it makes no difference whether one or both partner of an interaction differ,
in both cases the link has a different identity). The function is used here mostly as a helper for
interaction dissimilarity calculations with betalinkr.

dimnames are optional but recommended for the webarray. Names of the third dimension will
become rownames in the output. Colnames (i.e. names of links) will be created from dimnames[[1]]
(“lower species”) and dimnames[[2]] (“higher species”), separated by “__” (double underscore).

Value

A matrix with one row per web and one column per link (i.e. per combination of lower and higher
species). All-zero columns may often be included.
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Author(s)

Jochen Fründ

Examples

array2linkmx(webs2array(Safariland, vazquenc))

as.one.mode Conversion of a network matrix

Description

This helper function converts a bipartite matrix into a one-mode matrix.

Usage

as.one.mode(web, fill = 0, project="full", weighted=TRUE)

Arguments

web A matrix with lower trophic level species as rows, higher trophic level species
as columns and number of interactions as entries.

fill What shall unobserved combinations be represented as in the one-mode matrix
(see below)? Defaults to 0. Set to NA if links not possible for bipartite networks
should be masked (i.e. those within a level).

project There are different ways to convert a two-mode (bipartite) network into one-
mode networks. The most common is to focus on one set (e.g. the n pollinators)
and compute a n x n matrix with entries between species that pollinate the same
plant (“higher”). Similarly, one can compute a k x k matrix for the k plant
species (“lower”). Or, finally and the default, one can compute an (n+k) x (n+k)
matrix in which only the observed interactions are present (“full”). This is in
fact a near-trivial, symmetric matrix with 0s between species of the same trophic
level.

weighted Logical; shall the strength of links be included in the one-mode output? Defaults
to TRUE, but can be set to FALSE to turn a weighted two-mode into a binary
one-mode network.

Details

In bipartite (or: two-mode) networks, participants are of different types (e.g. pollinators and plants,
actors and parties in social research). Hence, a party cannot connect to another party except through
actors. A pollinator interacts with another pollinator only through the host plant.

Much network theory, however, is based on one-mode networks, where all participants are listed
in one vector, i.e. plants and pollinators alike, actors together with events. This function here
transforms the more condensed bipartite representation into a one-mode-representation, filling the
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unobserved type of interactions (i.e. plants with plants and pollinators with pollinators) with 0
(unless you specify it differently in ‘fill’).

The lower trophic level (e.g. plants or rows) is listed first, then the higher trophic level (e.g. pollina-
tors or columns). Hence, pollinator 2 becomes species number r+2, where r is the number of rows
of the network matrix.

In addition to the "full" projection, there are "inner" projections, yielding a network only of the
lower or higher level (hence the argument ‘project="lower"/"higher"/"full"’). Such an inner
projection inevitably loses information: if two pollinators pollinate three plant species, then they
are connected in such a projection through 3 links. The weight of each link will be different, but in
the projection only one weight can be given. This is where the information is lost. Several indices
(betweenness, centrality) depend on one-mode projections of this kind. Still, the user should always
ask herself, whether the projection might not have unintended consequences!

If ‘weighted=TRUE’, then the returned one-mode network contains the parallel minimum of the
observed interactions between two species. That means, if two species A and B interact with species
1 to 5 in the other group, then the two interaction vectors for A with 1 to 5 and B with 1 to 5 are
placed next to each other, and for every species 1 to 5 the minimum for each of these 5 values for
the two vectors is retained (the parallel minimum). The idea is that the similarity between A and B
is driven by their lowest communality in interactions. Next, the five parallel minimum values are
added to yield the final weight for this link.

The benefit of this conversion is access to the wonderful R-package Social Network Analysis (sna),
with its many one-mode indices (such as betweenness, closeness, centralization, degree,
kpath.census and so forth). Furthermore, gplot in that package also provides cool network de-
pictions well worth checking out.

With respect to bipartite, as.one.mode is employed in the function nodespec, which itself uses
the sna-function geodist.

Value

A matrix of dimension (n+k) x (n+k), where n and k are the dimensions of the input web. Both
dimensions are given the names of the original web (first the lower, then the higher trophic level).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

See Also

Function projecting_tm in package tnet provide an analogous ways of converting two-modes into
one-modes. This function can be accessed after transforming the web-matrix into an edge list using
web2edges.

Examples

data(Safariland)
image(Safariland)
image(as.one.mode(Safariland))
par(xpd=TRUE, mar=c(0, 6, 0, 6))
gplot(as.one.mode(Safariland, project="lower"),
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label=rownames(Safariland), gmode="graph",
label.cex=0.6, vertex.cex=2, vertex.col="green")

as.tnet Ensures that networks conform to the tnet stardards

Description

Checks that a network conforms to the tnet stardards, and attaches a label. If the type parameter is
not set, the network is assumed to be a binary two-mode network, a weighted one-mode network, or
a longitudinal network if there are 2, 3, or 4 columns respectively. Moreover, if a matrix is entered
(more than 4 columns and rows), it is assumed to be a weighted one-mode network if square or a
two-mode network if non-square.

Usage

as.tnet(net, type=NULL)

Arguments

net A network in an edgelist or matrix format. It can be a weighted one-mode
network, a binary two-mode network, a weighted two-mode netork, or a lon-
gitudinal network. If the data-object has two-columns, it is assumed to be a
binary two-mode network; three columns, weighted one-mode network; four
columns, longitudinal; five or more and the same number of rows and columns,
weighted one-mode network; five or more and –not– the same number of rows
and columns, it is assumed to be a two-mode network.

type If you would like to specify the type of network. This could be “weighted one-
mode tnet”, “binary two-mode tnet”, “weighted two-mode tnet”, or “longitudi-
nal tnet”.

Value

Returns the network with an attached label.

Note

version 1.0.0, taken, with permission, from package tnet

Author(s)

Tore Opsahl; https://toreopsahl.com

https://toreopsahl.com
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Examples

## Load sample data
sample <- rbind(
c(1,2,4),
c(1,3,2),
c(2,1,4),
c(2,3,4),
c(2,4,1),
c(2,5,2),
c(3,1,2),
c(3,2,4),
c(4,2,1),
c(5,2,2),
c(5,6,1),
c(6,5,1))

## Run the programme
as.tnet(sample)

barrett1987 Individuals caught in a pollination web in boreal Canada.

Description

This study took place in the boreal forest of central New Brunswick, Canada, from May to Septem-
ber of 1978, 1979, and 1980. The objective was to investigate the role of animals in pollination
and seed dispersal. The study was designed to provide basic descriptive information on breeding
systems, pollination biology, and phenology of understory herbs.

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction.

Usage

data(barrett1987)

References

Barrett, S. C. H. and Helenurm, K. (1987) The Reproductive-Biology Of Boreal Forest Herbs. 1.
Breeding Systems And Pollination. Canadian Journal of Botany 65, 2036–2046

Examples

data(barrett1987)
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betalinkr Calculate network dissimilarity (beta diversity) and its components

Description

This function (betalinkr) is a new implementation of network dissimarility, as proposed by Tim
Poisot (originally implemented in the betalink package). Following Poisot, dissimilarity (of a pair
of networks) is partitioned into the dissimilarity due to difference in species composition (“ST”)
and dissimilarity due to rewiring (“OS”, dissimilarity of shared species subweb). Different par-
titioning approaches and many binary and quantitative indices are available. The recommended
method for additive partitioning is commondenom (originally proposed by Novotny 2009), for which
further partitioning into different aspects of species composition differences (partition.st) and
into replacement and richness difference components (partition.rr) are also available.

betalinkr_multi is a metafunction that calls betalinkr for all pairs of networks (passing argu-
ments), and returns a data.frame.

Usage

betalinkr(webarray, index="bray", binary=TRUE, partitioning="commondenom",
proportions=!binary, function.dist="vegdist", distofempty="zero",
partition.st=FALSE, partition.rr=FALSE)

betalinkr_multi(webarray, ...)

Arguments

webarray Input data, an array with three dimensions, third dimension has length 2 and sep-
arates the two webs to compare. First two dimensions are the species (typically
first Lower and second Higher). For convenience, if ‘webarray’ is a list of two
webs, it will be converted to array format first using webs2array (that function
can also be used to convert single web matrices to array format, but then needs
to be called explicitly). NOTE: When using betalinkr_multi, ‘webarray’
must be an array! Use webs2array when providing networks (see last example
below).

index The dissimilarity index, passed to "method" of either vegdist or betadiver (see
there for naming). If ‘partitioning="commondenom"’ (and thus no external
function is used), it has to be one of ‘sorensen’ (for Sorensen or Bray-Curtis
dissimilarity index) or ‘jaccard’ (for Jaccard or Ruzicka); ‘bray’ is also al-
lowed and gives the same result as ‘sorensen’.

binary Should binary data or quantitative data be used (i.e., quantitative or binary ver-
sions of dissimilarity indices). If TRUE, webs will be converted to binary.

partitioning How should the components (“ST” and “OS”) be calculated? With ‘poisot’,
the original approach will be applied, which calculates ST as WN - OS; not
recommended for partitioning as it underestimates the contribution of species
composition. But with this setting, OS will reflect the uncorrected dissimilarity
of shared species subwebs, which may be interesting as such.
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With ‘commondenom’ (recommended setting), an alternative partitioning approach
is used that should give fair contributions for OS and ST. It keeps a common de-
nominator (of the dissimilarity index) for WN, OS and ST (i.e., the denominator
is based on all links of the pair of webs instead of on subsets). Thus, only the
numerator of the dissimilarity index is partitioned, which ensures additivity di-
rectly by partitioning the sets of links (or link weights).

proportions Should data be standardized to proportions before calculating quantitative dis-
similarity metrics? Note that this is done here directly before calculating dissim-
ilarities, thus gives a different result than if input data were already standardized.
Will be set to TRUE by default if ‘binary=FALSE’ and to FALSE otherwise.

function.dist Which function to use for calculating dissimilarity? The name of vegan package
function, either ‘vegdist’ (quantitative indices available) or ‘betadiver’ (gives
compatibility to the 24 numbered indices of Koleff et al. (2003) as used by
betalink package, but only binary indices). Note that this argument is ignored
if partitioning="commondenom", which implements the dissimilarity index
calculation directly.

distofempty Can be ‘zero’ or ‘na’. How should dissimilarity be defined when there are
either no links to use for OS (i.e. only links involving species just found in one
of the 2 webs) or no links to use for ST (i.e. only “rewiring links” present)?
‘zero’ is appropriate when interested in the contribution of components OS and
ST, whereas ‘na’ is appropriate when b_os should be interpreted separately as
dissimilarity of shared species subwebs

partition.st A secondary partitioning of the species turnover component, following Novotny
(2009), which separates ST further into dissimilarity due to absence of resource
species (lower, ST.l), absence of consumer species (higher, ST.h) or absence of
both (ST.lh)
Only works with ‘partitioning="commondenom"’.

partition.rr A secondary partitioning of dissimilarity (WN and OS) into “true” turnover
components (WN.repl, OS.repl) and a component due to richness difference
(difference in network totals; WN.rich, OS.repl). This follows Legendre (2014,
and references therein) and was first applied to networks by Noreika et al. (2019).
The function implements “Podani family” indices according to Legendre’s ter-
minology.
Only works with partitioning="commondenom".

... Arguments passed on to betalinkr.

Details

The basic idea to calculate dissimilarity (betadiversity) between networks (links instead of species)
has been proposed before. Poisot et al. (2012) came up with the idea to separate between rewiring
and species turnover as causes of network dissimilarity (but see Novotny 2009). They proposed
to calculate rewiring link dissimilarity (“beta_OS” or simply “OS”) by focusing on the sub-web
containing only species observed in both webs (i.e. excluding links with species unique to one
of the webs). Species turnover link dissimilarity (“beta_ST” or simply “ST”) is then calculated
as total dissimilarity minus rewiring dissimilarity, but this assumes an additivity that is rarely given
with dissimilarity indices. Although dissimilarity values may not be additive, the number of “unique
links” (i.e. only observed in one of the two webs) can be well partitioned into additive components.



betalinkr 23

With option ‘partitioning="poisot"’, many different dissimilarity indices can be used with
function.dist either vegdist or betadiver, but no guarantee that all of them can be usefully
interpreted (following Legendre 2014, Jaccard-family and Sorensen-family dissimilarity indices
are recommended; note that with vegdist you get Sorensen-family with ‘bray’, and with betadiver
Jaccard is 15 and Sorensen is 1, although these go under different names there as Koleff et al. (2003)
use the names Jaccard/Sorensen for the corresponding similarity metrics).

The alternative approach (with ‘partitioning="commondenom"’) was inspired by Legendre (2014).
It avoids using an existing dissimilarity function, but rather implements calculation of dissimilarity
indices directly (thus more limited options for these: only binary and quantitative Jaccard-type and
Sorensen-type). Here, the same denominator as for the total dissimilarity WN is used also for its
components OS and ST, thus ensuring additivity. This method was actually already proposed by
Novotny (2009), who further splitted ST (see ‘partition.st’). If your goal is indeed to partition
dissimilarity into its (additive) components, use this method!

Note that if you are interested only in dissimilarity between subwebs (not as an additive component),
you should use ‘partitioning="poisot"’ and look at OS while ignoring ST. This works also for
quantitative data (with binary=FALSE). If this is your goal, you should probably set ‘distofempty="na"’,
returning NA/NaN if there are no interactions between shared species.

To generate results identical to Poisot’s betalink function in package betalink, use these settings:
‘partitioning="poisot", function.dist="betadiver", distofempty="na" and binary=TRUE’.

Again: the output for OS can differ strongly depending on the chosen options! You have to decide:
do you want dissimilarity, which is inherently not additive (use ‘partitioning="poisot"’), or do
you want an additive dissimilarity component, which is not a dissimilarity itself (use ‘partitioning="commondenom"’)?

Value

A named vector of four (or more) dissimilarities (components), naming follows Poisot et al. 2012.

S beta_S, the dissimilarity in species composition

OS beta_OS, the dissimilarity (component) explained by “rewiring” among shared
species

WN beta_WN, the dissimilarity between the two networks

ST beta_ST, the dissimilarity (component) explained by difference in species com-
munity composition

(others) possibly more elements, same names as above, but with secondary partitioning
added after “.”, see partition.st and partition.rr

For betalinkr_multi, output is a dataframe with one row per pair of webs compared.

Note

This function allows to use quantitative dissimilarity indices, which are usually recommended.
However, for quantitative networks it is far from trivial how to correctly separate (or even define)
which part of the dissimilarity is due to rewiring and which due to difference in species composition!
Here I use the concept that all variation between the subwebs of shared species can be attributed to
rewiring, BUT this will most likely not be correct. Even if all species are shared among two net-
works, quantitative species dissimilarity may be large (different [relative] abundances), and this will
most likely lead to changes in network frequencies (changing link weights, or even missing links)
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that should not be called rewiring. How to correctly define and measure that is open to discussion,
but thus I would still consider the values for beta_OS as overestimates.

This function should also work for one-mode networks.

Why the name of the function? Short for “betalink revised”.

Why the names of the output values? These are the indices of beta (for betadiversity); I am keeping
the names used by Tim Poisot and guess what they stand for: S (Species), OS (Only Shared species
links), WN (Whole Network links), ST (Species Turnover links). Some authors would call all this
dissimilarity (or dissimilarity components) and reserve the term betadiversity for something not
standardized between 0 and 1.

For partitioning into replacement and richness difference, note that replacement in WN can mean
richness difference in OS (if shared species switch from interaction with other shared species in one
network to interactions with non-shared species in another network, changing the size of shared-
species subweb), so finding OS.rich > WN.rich is not a bug.

Thanks to Carsten Dormann, Benjamin Schwarz, Benoit Gauzens, Nacho Bartomeus and Timothee
Poisot for their contributions to this function.

Author(s)

Jochen Fründ

References

Poisot, T., E. Canard, D. Mouillot, N. Mouquet, D. Gravel, and F. Jordan. 2012. The dissimilarity
of species interaction networks. Ecology Letters 15, 1353–1361.

Legendre, P. 2014. Interpreting the replacement and richness difference components of beta diver-
sity. Global Ecology and Biogeography 23, 1324–1334.

Koleff, P., Gaston, K.J., and J.J. Lennon. 2003. Measuring beta diversity for presence–absence
data. Journal of Animal Ecology 72, 367–382.

Novotny, V. 2009. Beta diversity of plant-insect food webs in tropical forests: a conceptual frame-
work. Insect Conservation and Diversity 2, 5–9.

Noreika, N., Bartomeus, I., Winsa, M., Bommarco, R., and E. Öckinger. 2019. Pollinator foraging
flexibility mediates rapid plant-pollinator network restoration in semi-natural grasslands.Scientific
Reports, 9, 1–11. doi:10.1038/s41598019519124

See Also

vegdist and betadiver for vegan package functions calculating dissimilarity / betadiversity, used
here unless ‘partitioning="commondenom"’.

For reshaping web data to the array input format expected here, see webs2array and frame2webs.

Examples

# two examples that give the same results as would the
# \code{betalink} function in the package of the same name
betalinkr(webs2array(list(Safariland=Safariland, vazarr=vazarr)),

partitioning="poisot")
betalinkr(webs2array(list(Safariland=Safariland, vazarr=vazarr)),

https://doi.org/10.1038/s41598-019-51912-4
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function.dist="betadiver",index=1, partitioning="poisot")

# same data, with recommended partitioning method plus further partitioning
betalinkr(webs2array(list(Safariland=Safariland, vazarr=vazarr)),

partitioning="commondenom", partition.st=TRUE)

# another example (no shared links)
testdata <- data.frame(higher = c("bee1","bee1","bee1","bee2","bee1","bee3"),

lower = c("plant1","plant2","plant1","plant2","plant3","plant4"),
webID = c("meadow","meadow","meadow","meadow","bog","bog"), freq=c(5,1,1,1,3,7))

# more than two webs:
betalinkr_multi(webs2array(Safariland, vazquenc, vazarr), index="jaccard")

betweenness_w Betweenness centrality in a weighted network

Description

This function calculates betweenness scores for nodes in a weighted network based on the distance_w-
function.
Note: This algorithm relies on the igraphs package’s implementation of Dijkstra’s algorithm. Cur-
rently, it does not find multiple shortest paths if two exist.

Usage

betweenness_w(net, directed=NULL, alpha=1)

Arguments

net A weighted edgelist

directed logical, whether the network is directed or undirected. Default is NULL, this
means that the function checks whether the edgelist is directed or not.

alpha sets the alpha parameter in the generalised measures from Opsahl, T., Agneessens,
F., Skvoretz, J., 2010. Node Centrality in Weighted Networks: Generalizing De-
gree and Shortest Paths. Social Networks. If this parameter is set to 1 (default),
the Dijkstra shortest paths are used. The length of these paths rely simply on the
tie weights and disregards the number of nodes on the paths.

Value

Returns a data.frame with two columns: the first column contains the nodes’ ids, and the second
column contains the nodes’ betweenness scores.

Note

version 1.0.0, taken, with permission, from package tnet
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Author(s)

Tore Opsahl; https://toreopsahl.com/

References

https://toreopsahl.com/2009/02/20/betweenness-in-weighted-networks/

Examples

## Load sample data
sampledata <- rbind(
c(1,2,1),
c(1,3,5),
c(2,1,1),
c(2,4,6),
c(3,1,5),
c(3,4,10),
c(4,2,6),
c(4,3,10))

## Run the programme
betweenness_w(sampledata)

bezerra2009 Individuals observed in a flower-visitation network of oil-collecting
bees in a Brazilian steppe.

Description

Observation of 38 individual plants from 13 oil-flower species of the family Malphighiaceae. Flower
visitors were collected. Only legitimate visitors were considered. Numbers in cells refer to the
amount of visits of each bee species collected in each flower species.

The species interaction matrix describes the number of bee visits to 138 individual plants in natural
clumps of 13 Malpighiaceae species during the flowering peak of each species. The number of bee
visits to flowers was registered over four consecutive days, from 5.00 to 17.00 with a total of 1392
h of observations.

Location: Parque Nacional do Catimbau, Brazil (8°24’00” - 37° 36’35”S and 3° 09’30” - 37°
14’40”W)

Biome: Caatinga (Brazilian steppe)

The paper itself contrasted a network of Malpighiaceae oil-flowers and associated oil-collecting
bees from a Brazilian steppe (“caatinga”) to whole pollination networks from all over the world
available in the Interaction Web Database. The caatinga network had a perfectly balanced propor-
tion of plants and animals (13 x 13) and was more nested and less modular than all of the 22 whole
pollination networks studied. The authors concluded that the oil-flower subweb is more cohesive
and resilient than whole pollination networks, reinforcing the hypothesis that each ecological ser-
vice is in fact a mosaic of different subservices with a hierarchical structure (“webs within webs”).

Take from the NCEAS interaction web database (https://iwdb.nceas.ucsb.edu).

https://toreopsahl.com/
https://toreopsahl.com/2009/02/20/betweenness-in-weighted-networks/
https://iwdb.nceas.ucsb.edu
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Usage

data(bezerra2009)

References

Bezerra, E.L.S., Machado, I.C.S. and Mello, M.A.R. 2009. Pollination networks of oil-flowers: a
tiny world within the smallest of all worlds. Journal of Animal Ecology 78, 1096–1101.

Examples

data(bezerra2009)

C.score Calculates the (normalised) mean number of checkerboard combina-
tions (C-score) in a matrix

Description

Calculates the C-score for all higher-level species; the C-score represents the average number of
checkerboard units for each unique species pair.

Usage

C.score(web, normalise = TRUE, FUN = mean, ...)

Arguments

web A matrix with pollinators as columns and plants as rows. Alternatively, when
used on e.g. species occurrences across islands, rows are islands.

normalise Logical; if TRUE (default), the C-score is ranged between 0 (no checkerboards)
and 1 (only checkerboards). For FALSE the standard value of mean number
of checkerboard pairs is returned. This is somewhat awkward for comparing
different data sets, that’s what the normalisation is for.

FUN Function to use when summarising the C-scores for each pairwise comparison.
Defaults to mean, but other useful functions could be median (because C-scores
are rather skewed) or hist (for a nice graph).

... Options to be passed on to FUN, e.g. ‘na.rm=T’ for matrices with many zeros
and ‘normalise=TRUE’.

Details

As a first step, any quantitative matrix is converted to a binary matrix of presences and absences.

Then, the formula given in Stone and Roberts (1990) is calculated for all species combinations, by
calling designdist from the package vegan. See code for details.
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Value

Returns whatever the ‘FUN’ produces as output. Default would be a single value, i.e. the mean
C-score of the web.

Note

The normalisation, since Jan. 2015, is by brute force: the 1s and 0s are distributed for each pairwise
comparison for maximum checkerboardness. (The previously used approach was incorrect!) As a
consequence, large matrices will take some time to compute.

The minimum is set to 0.

Author(s)

Carsten F. Dormann

References

Gotelli, N.J. and Rohde, K. (2002) Co-occurrence of ectoparasites of marine fishes: a null model
analysis. Ecology Letters 5, 86–94

Stone, L. and Roberts, A. (1990) The checkerboard score and species distributions. Oecologia 85,
74–79

Examples

m <- matrix(c(1,0,0, 1,1,0, 1,1,0, 0,1,1, 0,0,1), 5,3,TRUE)
C.score(m)
C.score(m, normalise=FALSE)
C.score(m, normalise=FALSE, FUN=print)

closeness_w Closeness centrality in a weighted network

Description

This function calculates closeness scores for nodes in a weighted network based on the distance_w-
function.

Usage

closeness_w(net, directed=NULL, gconly=TRUE, precomp.dist=NULL, alpha=1)
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Arguments

net A weighted edgelist

directed Logical: whether the edgelist is directed or undirected. Default is NULL, then
the function detects this parameter.

gconly Logical: whether to calculate closeness only on the main component (traditional
closeness). Default is TRUE. If this parameter is set to FALSE, a closeness
measure for all nodes is computed. For details, see https://toreopsahl.com/
2010/03/20/closeness-centrality-in-networks-with-disconnected-components/

precomp.dist If you have already computed the distance matrix using distance_w-function,
you can enter the name of the matrix-object here.

alpha sets the alpha parameter in the generalised measures from Opsahl, T., Agneessens,
F., Skvoretz, J. (2010. Node Centrality in Weighted Networks: Generalizing De-
gree and Shortest Paths. Social Networks). If this parameter is set to 1 (default),
the Dijkstra shortest paths are used. The identification procedure of these paths
rely simply on the tie weights and disregards the number of nodes on the paths.

Value

Returns a data.frame with three columns: the first column contains the nodes’ ids, the second col-
umn contains the closeness scores, and the third column contains the normalised closeness scores
(i.e., divided by N-1).

Note

version 1.0.0, taken, with permission, from package tnet

Author(s)

Tore Opsahl; https://toreopsahl.com/

References

https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/

Examples

## Load sample data
sampledata <- rbind(
c(1,2,4),
c(1,3,2),
c(2,1,4),
c(2,3,4),
c(2,4,1),
c(2,5,2),
c(3,1,2),
c(3,2,4),
c(4,2,1),
c(5,2,2),
c(5,6,1),

https://toreopsahl.com/2010/03/20/closeness-centrality-in-networks-with-disconnected-components/
https://toreopsahl.com/2010/03/20/closeness-centrality-in-networks-with-disconnected-components/
https://toreopsahl.com/
https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/
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c(6,5,1))

## Run the programme
closeness_w(sampledata)

clustering_tm Redefined clustering coefficient for two-mode networks

Description

This function calculates the two-mode clustering coefficient as proposed by Opsahl (2010).

Usage

clustering_tm(net, subsample=1, seed=NULL)

Arguments

net A binary or weighted two-mode edgelist

subsample Whether a only a subset of 4-paths should we used when calculating the mea-
sure. This is particularly useful when running out of memory analysing large
networks. If it is set to 1, all the 4-paths are analysed. If it set to a value below
one, this is roughly the proportion of 4-paths that will be analysed. If it is set to
an interger greater than 1, this number of ties that form the first part of a 4-path
that will be analysed. Note: The C++ functions are better as they analyse the
full network.

seed If a subset of 4-paths is analysed, by setting this parameter, the results are repro-
ducable.

Value

Returns the outcome of the equation presented in the paper

Note

version 1.0.0, taken, with permission, from package tnet

Author(s)

Tore Opsahl; https://toreopsahl.com

References

Opsahl, T. 2010. Triadic closure in two-mode networks: Redefining the global and local clustering
coefficients. arXiv,1006.0887

https://toreopsahl.com
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compart Detects compartments

Description

Finds number of compartments, based on multivariate ordination techniques, and labels interactions
according to the compartment they belong to.

Usage

compart(web)

Arguments

web A bipartite interaction web, i.e.~a matrix with higher (cols) and lower (rows)
trophic levels.

Details

Internal function, to be called by networklevel.

Value

Returns a list with two entries:

cweb A matrix similar to web, but now with compartment numbers instead of interac-
tion values.

ncompart The number of compartments.

Note

Note that up to (and including) version 0.85 we used a code based on correspondence analysis (see
Lewinsohn et al. 2006). This is, however, faulty for webs with many same-linked species. Hence
we resorted to a brute-force search for compartments, which is orders of magnitude slower, but at
least works correctly. Only in version 1.18 Juan M. Barreneche eventually found a solution that is
fast and works with ties!

Author(s)

Juan M. Barreneche <jumanbar@gmail.com>, but please co-copy comments/questions to package
maintainer: Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Lewinsohn, T. M., P. I. Prado, P. Jordano, J. Bascompte, and J. M. Olesen (2006) Structure in
plant-animal interaction assemblages. Oikos 113, 174–184
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See Also

See also networklevel.

Examples

# make a nicely comparted web:
web <- matrix(0, 10,10)
web[1,1:3] <- 1
web[2,4:5] <- 1
web[3:7, 6:8] <- 1
web[8:10, 9:10] <- 1
web <- web[-c(4:5),] #oh, and make it asymmetric!
web <- web[,c(1:5, 9,10, 6:8)] #oh, and make it non-diagonal
compart(web)

# or, standard, use Safariland as example:
data(Safariland)
compart(Safariland)

computeModules computeModules

Description

This function takes a bipartite weighted graph and computes modules by applying Newman’s mod-
ularity measure in a bipartite weighted version to it. metaComputeModules re-runs the algorithm
several times, returning the most modular result, to stabilise modularity computation.

Usage

computeModules(web, method="Beckett", deep = FALSE, deleteOriginalFiles = TRUE,
steps = 1000000, tolerance = 1e-10, experimental = FALSE, forceLPA=FALSE)

metaComputeModules(moduleObject, N=5, method="Beckett", ...)

Arguments

web web is the matrix representing the weighted bipartite graph (as an example, see
e.g. web small1976 in this package). This matrix can be binary (i.e. consist
only of 0s and 1s), in which case the output will be Newman’s (2006) modular-
ity.

method Choice between the algorithm(s) provided by Stephen Beckett (2016) or Dor-
mann & Strauss (2016) (‘method="DormannStrauss"’). Defaults to the much
faster and in the majority of cases better algorithm of Beckett. (Note the op-
tional argument ‘forceLPA’ to use his slightly inferior but even faster pure LPA
algorithm.)

deep If deep is set to FALSE (default), a flat clustering is computed, otherwise sub-
modules are identified recursively within modules. Works only with ‘method="DormannnStrauss"’.
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deleteOriginalFiles

If deleteOriginalFiles is set to TRUE (default), the files mentioned above in
the description are deleted from the hard drive disk, otherwise not. Applies only
to ‘method="DormannnStrauss"’.

steps steps is the number of steps after which the computation of modules stops if no
better division into modules than the current one can be found. Applies only to
‘method="DormannnStrauss"’.

tolerance How small should the difference between MCMC-swap results be? At some
point computer precision fluctuations make the algorithm fail to converge, which
is why we choose a (very low) defaults of 1E-10. Applies only to ‘method="DormannnStrauss"’.

experimental Logical; using an undescribed and untested version for which no detail is avail-
able? (We suggest: not yet.) Applies only to ‘method="DormannnStrauss"’.

moduleObject Output from running computeModules.

forceLPA Logical; should the even faster pure LPA-algorithm of Beckett be used? DIRT-
LPA, the default, is less likely to get trapped in a local minimum, but is slightly
slower. Defaults to FALSE. Applies only to ‘method="Beckett"’.

N Number of replicate runs; defaults to 5. Not really required for ‘method="Beckett"’,
which starts in different places anyway.

... Arguments passed on to computeModules, which is called internally.

Value

An object of class "moduleWeb" containing information about the computed modules. For details,
please refer to the corresponding documentation file.

Note

For perfectly compartmentalised networks the algorithm may throw an error message. Please add a
little bit of noise (e.g. uniform between 0 and 1 or so) or a small constant (1E-5 or so) and it will
work again.

When using the method ‘DormannStrauss’, files are written onto the hard drive during the compu-
tation. These files are by default deleted after the computation terminates, unless it breaks. Details
of the modularity algorithm can be found in Dormann & Strauß (2013).

Author(s)

Rouven Strauss, with fixes by Carsten Dormann and Tobias Hegemann; modified to accommodate
Beckett’s algorithm by Carsten Dormann

References

Beckett, S.J. 2016 Improved community detection in weighted bipartite networks. Royal Society
open science 3, 140536.

Dormann, C. F., and R. Strauß. 2014. Detecting modules in quantitative bipartite networks:
the QuanBiMo algorithm. Methods in Ecology & Evolution 5 90–98 (and arXiv [q-bio.QM]
1304.3218.)
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Liu X. & Murata T. 2010. An Efficient Algorithm for Optimizing Bipartite Modularity in Bipartite
Networks. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 14
408–415.

Newman M.E.J. 2004. Physical Review E 70 056131

Newman, M.E.J. 2006. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences of the United States of America, 103, 8577—8582.

See Also

See also class "moduleWeb", plotModuleWeb, listModuleInformation, printoutModuleInformation,
DIRT_LPA_wb_plus.

Examples

## Not run:
data(small1976)
(res <- computeModules(small1976))
plotModuleWeb(res)

# slow:
res2 <- metaComputeModules(small1976, method="DormannStrauss")
res2

## End(Not run)

czvalues Computes c and z for network modules

Description

Function to compute c and z values of module members according to Guimerà & Amaral (2005),
with formulae taken from Olesen et al. (2007)

Usage

czvalues(moduleWebObject, weighted=FALSE, level="higher")

Arguments

moduleWebObject

A moduleWeb-class object as created by computeModules.

weighted logical; if TRUE computes c and z from quantitative (=weighted) data; in this
case, it will compute strength, rather than degrees for each species.

level "higher" or "lower" trophic level to compute c and z values for; defaults to
"higher"
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Details

c = 1 - sum( (k.it/k.i)^2) # among-module connectivity = participation coefficient P in Guimerà &
Amaral

z = (k.is - ks.bar) / SD.ks # within-module degree

k.is = number of links of i to other species in its own module s; ks.bar = average k.is of all species
in module s; SD.ks = standard deviation of k.is of all species in module s; k.it = number of links of
species i to module t; k.i = degree of species i

Note that for any species alone (in its level) in a module the z-value will be NaN, since then SD.ks
is 0. This is a limitation of the way the z-value is defined (in multiples of degree/strength standard
deviations).

Olesen et al. (2006) give critical c and z values of 0.62 and 2.6, respectively. Species exceeding
these values are deemed connectors or hubs of a network. The justification of these thresholds
remains unclear to me. They may also not apply for the quantitative version.

Value

A list with two vectors, c and z, for all species of the selected trophic level.

Note

These indices were developed for one-mode networks; we’ll have to see whether they make sense
for bipartite networks, too! In particular, note that this function is based on a higher trophic level
perspective. While the modules are identified using both trophic levels, c and z are computed
through the strengths/degrees of only one trophic level. It would be desirable to have a truly two-
level version. Since there are usually very different numbers of species in the two trophic levels,
simply averaging the values of each trophic level won’t do. But maybe a weighted average?

Consider the following problem for computing c and z for the higher trophic level: For modules
with only one species from the lower trophic level, the z-values will be NaN, since SD.ks is 0! I
decided to SET these values to 0, since they only occur when all species in that module will have
the same number of links (which is obviously the case when there is only one lower-level species).
Then the numerator is also 0. Thus, the value of 0 indicates that this species has no deviation from
the rest of the module members (which is what I think z is supposed to represent).

Since computeModules is experimental, also czvalues may not always work (i.e. if object mod is
corrupted or ill-formed).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>, 20 Mar 2012

References

Guimerà, R. and Amaral, L.A.N. (2005) Functional cartography of complex metabolic networks.
Nature 433, 895–900.

Olesen, J.M., Bascompte, J., Dupont, Y.L. and Jordano, P. (2007) The modularity of pollination
networks. Proceedings of the National Academy of Sciences of the USA 104, 19891-19896.
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Examples

## Not run:
set.seed(2)
mod <- computeModules(memmott1999)
cz <- czvalues(mod)
plot(cz[[1]], cz[[2]], pch=16, xlab="c", ylab="z", cex=0.8, xlim=c(0,1), las=1)
abline(v=0.62) # threshold of Olesen et al. 2007
abline(h=2.5) # dito
text(cz[[1]], cz[[2]], names(cz[[1]]), pos=4, cex=0.7)

# example for computing a c- or z-threshold:
mod <- computeModules(Safariland)
czobs <- czvalues(mod)
nulls <- nullmodel(Safariland, N=10) # this should be larger, of course
null.mod.list <- sapply(nulls, computeModules)
null.cz <- lapply(null.mod.list, czvalues)
# compute 95
null.cs <- sapply(null.cz, function(x) x$c) # c-values across all species in nulls
quantile(null.cs, 0.95)
# this could now serve as thresholds for identifying particularly uncommonly high c-values
# and analogously for z, of course

## End(Not run)

decimalr2dtable Generates matrix with same marginal totals for non-negative decimal
values

Description

Function to generate null model matrices for the cases when the matrix entries are non-negative
numbers, possibly non-integers. It maintains marginal totals (as does r2dtable), but "smears"
them out over all cells.

Usage

decimalr2dtable(N=10, web, steps=prod(dim(web)))

Arguments

N Number of desired null model matrices.

web An interaction matrix.

steps Number of successive alterations of matrix entries. Defaults to 10 times the
number of cells. See details.
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Details

This function is a cross between r2dtable and swap.web. Its output are N matrices of the same
dimension as the input, and with same marginal totals, but with different allocation of values to the
cells. Here is what the algorithm does:

1. Index a 2 x 2 submatrix by select randomly two rows and two columns.

2. Draw a random value between 0 and the minimum of the diagonal entries in the submatrix.

3. Subtract this value from the diagonals and add it to the counter-diagonal entries.

4. Repeat ‘steps’ times

The result is a decimal-numbered matrix, typically with values > 0 in each cell.

Indication: This function may be useful in some rare constellations. Imagine you sampled a plant-
pollinator network and instead of counting the number of flower visits you recorded the nectar
extracted by each pollinator. Then the marginal totals would indicate nectar production (plus con-
founding nectar attractiveness) and consumption potential for plants and pollinators, respectively.
So, given that species differ in nectar production and consumption, what would you expect the
network to look like? Enter decimalr2dtable.

If external abundances (even in funny units such as biovolume in ml) are available, this function
can easily provide the respective null models. See examples.

Value

A list of N randomised matrices with the same dimensions as the initial web, all probably filled
completely.

Note

The output will typically be a fully filled matrix! Computing any index sensitive to matrix filling
(such as connectance, degree, nestedness) for such a matrix is non-sensical!

Also, if used as a null model, an implicit assumption is that the values in the original matrix are
meaningful as marginal totals. This may often not be the case, for example if entries are rates. Thus,
probably this function is of very limited usefulness in the context of network analyses!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

See Also

r2dtable, vaznull, shuffle.web and swap.web

Examples

obs <- networklevel(Safariland, index="generality")

nulls <- decimalr2dtable(10, Safariland)
g.dec <- sapply(nulls, networklevel, index="generality")
nullsint <- nullmodel(Safariland, N=10)
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g.int <- sapply(nullsint, networklevel, index="generality")
plot(density(g.dec[1,]), xlim=c(1, 3))
lines(density(g.int[1,]), col="red")
abline(v=obs[1], col="green")

## If you want to use external abundances to set up your null model:
set.seed(1)
ext.rows <- runif(9) # imagine these are your external abundances for Safariland
ext.cols <- runif(27)
# standardise to sum = 1:
ext.rows <- ext.rows/sum(ext.rows)
ext.cols <- ext.rows/sum(ext.cols)
web <- tcrossprod(ext.rows, ext.cols) * sum(Safariland)
# (to get to the same interaction density as original web)
#
# this can now be used as input for decimalr2dtable:
image(decimalr2dtable(N=1, web)[[1]]) # remember: white are high values!

degreedistr Fits functions to cumulative degree distributions of both trophic levels
of a network.

Description

This function first calculates degrees for each species, then constructs a cumulative distribution
with them, and finally fits three different functions to these distributions: exponential, power law
and truncated power law. Coefficients and fits are returned.

Usage

degreedistr(web, plot.it=TRUE, pure.call=TRUE, silent=TRUE, level="both", ...)

Arguments

web A bipartite network matrix.

plot.it Logical; returns graphs of fits when set to TRUE (default). Dark, median and
light grey lines refer to exponential, power and truncated power law, respec-
tively.

pure.call Logical; adjusts par for two panels (for TRUE) or leaves this to the wrapper
function (FALSE).

silent Logical; suppresses error reporting in the try-function around nls; defaults to
TRUE.

level For which level shall the degree distributions be computed: ‘both’, ‘lower’ or
‘higher’? Defaults to ‘both’.

... Arguments passed on to the plot function (e.g. ‘las=1’).
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Details

Jordano et al. (2003) proposed that plant-animal networks may show scale invariance, as indicated
by the presence of a power law in species degrees. They report on consistently better fits of the
truncated power law, hypothesising that such patterns may arise from morphological mismatch or
phenological uncoupling.

Most problematic with the use of this particular approach is the extreme demand for data. The ex-
ample web Safariland in this package is large (1130 interactions), but it provides only 5 different
degree levels (for plants, only 4 for pollinators). Hence fitting three different non-linear functions
to these few points is stretching it a bit.

Furthermore, the least-square-fit to the cumulative distribution is not ideal. While the most common
approach, it has a bias (albeit much less so than a fit to the probability density function: see Clauset
et al. 2009). In an ideal world, we would want to fit the power law properly. This would require a)
an estimation of the lower bound of the power law (xmin) and b) the maximum likelihood fit to the
remaining data (x > xmin). The data demand is however such that is unlikely that any ecological
bipartite network in the near future will match it. Clauset et al. state that hundreds to thousands of
data points are required to yield satisfactory estimates for xmin and the slope itself. If you happen
to have this much data, please consult the software they provide (even in R!).

Value

For both trophic levels, a table:

... trophic level dd fits

Contains coefficient estimates, estimate’s standard error and P-value, R2 and
AIC for each of the three model fits, for the respective trophic level.

If plots are returned, exponential, power law and truncated power law are given in black, dark grey
and light grey, respectively.

Note

The truncated power law fits two coefficients: slope and cut-off. The function only returns the slope.
R2-values for non-linear fits are not well liked among statisticians! See the discussion the R-help
list (e.g. https://stat.ethz.ch/pipermail/r-help/2002-July/023461.html). Finally, often
data are too few to yield any fit. In this case the error message “singular gradient” is returned to
signal this problem!

Post finally, yes, I am aware that degrees are integers and unlikely to be normally distributed, and
that thus the nls procedure is not really a good idea. My (poor) excuse: I followed the implemen-
tation of the above-cited paper and do not believe enough in degree distributions (and power laws,
for that matter) to implement a proper likelihood-based approach. Check out the statnet bundle for
alternative approaches to this problem.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

https://stat.ethz.ch/pipermail/r-help/2002-July/023461.html
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References

Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data.
SIAM Review 51, 661–703

Jordano, P., Bascompte, J. and Olesen, J. M. (2003) Invariant properties in coevolutionary networks
of plant-animal interactions. Ecology Letters 6, 69–81

See Also

networklevel, where degreedistr is called (without picturing the results)

Examples

data(Safariland)
degreedistr(Safariland)

dfun Calculates standardised specialisation index d’ (d prime) for each
species in the lower trophic level of a bipartite network.

Description

This function returns the specialisation index d’ for the lower level, which expresses how specialised
a given species is in relation to what partners in the higher level are on offer.

Usage

dfun(web, abuns=NULL)

Arguments

web Web is a matrix representing the interactions observed between higher level
species (columns) and lower level species (rows). Usually this will be num-
ber of pollinators on each species of plants or number of parasitoids on each
species of prey.

abuns A vector of abundances for the higher level, usually from independent infor-
mation. If none is given (default) marginal sums are used. Note that if a web
with rows or columns without any interaction is provided, these will not be
purged when an independent abundances vector is given. As a consequence,
these species will have a d’ of NA (see note below).

Details

The d’ index is derived from Kulback-Leibler distance (as is Shannon’s diversity index), and calcu-
lates how strongly a species deviates from a random sampling of interacting partners available. It
ranges from 0 (no specialisation) to 1 (perfect specialist). In the case of a pollination web, a polli-
nator may be occurring only on one plant species, but if this species is the most dominant one, there
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is limited evidence for specialisation. Hence this pollinator would receive a low value. In contrast,
a pollinator that occurs only on the two rarest plants would have a very high value of d’.

The idea of this index is laid out in Blüthgen et al. (2006). It basically calculates the Shannon-
diversity for each column (delivering the raw d-values) and re-ranges them between the theoretical
maximum and minimum (yielding values between 0 and 1). dmax is given analytically (see paper
or code), but dmin must be found ‘heuristically’, since the web can only contain integers. The
idea behind the heuristic minimum is that d will be minimal when observed values differ least from
expected values based on marginal distributions.

The way this function is implemented, it calculates expected values for each cell based on the
product of observed marginal sums (i.e. column and row sums) times sum(web). Then it rounds off
to integers and allocates the remaining interactions in two steps: First, all columns and rows with
marginal sums of 0 obtain one interaction into the cell with the highest expected value. Secondly, all
remaining interactions are distributed according to difference between present and expected value:
those cells with highest discrepancy receive an interaction until the sum of all entries in the new
web equals those in the original web. Now the d-values for this web are calculated and used as
dmin.

Simple rounding of expected values would lead to empty columns or rows, i.e. the dmin-web would
be of lower dimension than the original web.

dfun returns the d’ values for the lower trophic level. Use dfun(t(web)) to get the d’-values for
the higher trophic level (as does specieslevel). If you want to provide external abundances, you
must provide those of the other trophic level! (This help file is written as if you were interested in
the lower trophic level.)

d’ is one of several species-level network indices. It’s generalisation to the entire interaction web is
called H2’ (see H2fun).

The abundances vector allows to incorporate independent estimates of the abundances of the
higher trophic level. In a pollination web, pollinator abundances may be very different from those
estimated by the interaction matrix column sums. This has also, obviously, large consequences for
the specialisation: A plant being pollinated by a bee that is common on this plant, but very rare in
general, will show a low specialisation unless bee abundances are corrected for. Data given in the
abundance vector are here used in replacement for the row sums, both in the d-function itself, as
well as in the calculation of the minimum ds.

In contrast to H2fun, finding the minimum value of d violates marginal totals. The idea is that we
look at each species in turn. Then, we estimate how its observed number of interactions can be
distributed, given the marginal totals (i.e. if 5 interactions were observed, they cannot be put into a
link that only has 3 interactions across all species). So, for each species the number of interactions
never exceeds the total across all species, but if we would put the web together from this sequential
scan, it may well do so. In our view, this is irrelevant, because we are interested in the potential
of each species separately to be perfectly specialised (given the marginal totals), not for the entire
web. We leave this to H2fun.

Value

dprime d’-value for each species

d Raw d-value for each species, i.e. before ranging it between 0 and 1.

dmin Minimum d-value for each species, based on a perfect nesting of the matrix; see
details.
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dmax Maximum d-value theoretically possible given the observed number of interac-
tions and the observed marginal distributions.

Note

When independent abundances were provided, the empty rows/columns are purposefully not re-
moved from the web (because they now still contain information). Logically (and as implemented),
this leads to d-values for these species of NA. This makes sense: the pollinator, say, has never been
observed on any of the flowers, so how can we quantify its specialisation?

As detailed above, deriving the dmin-values ‘heuristically’ leaves room to some variation. We are
very happy with this implementation, but you may want to program something yourself ...

Author(s)

Jochen Fründ and Carsten F. Dormann

References

Blüthgen, N., Menzel, F. and Blüthgen, N. (2006) Measuring specialization in species interaction
networks. BMC Ecology 6, 12

See Also

H2fun for a similar function for the entire network. specieslevel for a method that, amongst other
indices, calls dfun.

Examples

data(Safariland)
dfun(Safariland) # gives d-values for the lower trophic level
# now using independent abundance estimates for higher trophic level:
dfun(Safariland, abuns=runif(ncol(Safariland)))

dfun(t(Safariland)) #gives d-values for the higher trophic level

DIRT_LPA_wb_plus Functions "LPA_wb_plus" and "DIRT_LPA_wb_plus"

Description

Use computeModules to call this function! This function takes a bipartite weighted graph and com-
putes modules by applying Newman’s modularity measure in a bipartite weighted version to it. To
do so, it uses Stephen J Beckett’s DIRTLPAwb+ (or LPAwb+) algorithm, which builds on Liu &
Murata’s approach. In contrast to the tedious MCMC-swapping QuanBiMo algorithm, this algo-
rithm works by aggregating modules until no further improvement of modularity can be achieved.
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Usage

DIRT_LPA_wb_plus(MATRIX, mini=4, reps=10)
LPA_wb_plus(MATRIX, initialmoduleguess=NA)
convert2moduleWeb(MATRIX, MODINFO)

Arguments

MATRIX MATRIX is the matrix representing the weighted bipartite graph (as an example,
see e.g. web small1976 in this package).

mini Minimal number of modules the algorithm should start with; defaults to 4. See
explanation of ‘initialmoduleguess’ to understand why not starting with one
module per species interaction makes sense.

reps Number of trials to run for each setting of ‘mini’; defaults to 10 but my benefit
from higher values.

initialmoduleguess

Optional vector with labels for the modules of the longer web dimension. The
‘initialmoduleguess’ argument in LPA_wb_plus is used as an initial guess of
the number of modules the network contains. The code then randomly assigns
this many labels across the nodes of one of the types. The classical algorithm
(i.e. LPA_wb_plus) would use an initialmoduleguess of the maximum number
of modules a network can contain (i.e. assigning a different label to each node
initially). DIRT_LPA_wb_plus exploits this. By initially assigning fewer than
the maximum number of modules in the first instance nodes that may not have
been placed together by the classical algorithm are placed together - creating
different start points from which to attempt to maximise modularity.Defaults to
NA, i.e. as many modules as there are species in the smaller group.

MODINFO Object returned by modulesLPA.

Value

LPA_wb_plus computes the modules. DIRT_LPA_wb_plus is a wrapper calling LPA_wb_plus re-
peatedly to avoid getting stuck in some local minimum. Both return a simple list of row and column
labels for the modules, as well as the modularity value. Using convert2moduleWeb turns this into
the richer moduleWeb-class object produced by computeModules. For this object, the plotting func-
tion plotModuleWeb and summary functions listModuleInformation and printoutModuleInformation
are available.

Author(s)

Stephen J Beckett (https://github.com/sjbeckett/weighted-modularity-LPAwbPLUS), lifted,
with consent of the author, by Carsten F. Dormann to bipartite

References

Beckett, S.J. 2016 Improved community detection in weighted bipartite networks. Royal Society
open science 3, 140536.

https://github.com/sjbeckett/weighted-modularity-LPAwbPLUS
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Liu X. & Murata T. 2010. An Efficient Algorithm for Optimizing Bipartite Modularity in Bipartite
Networks. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 14
408–415.

Newman M.E.J. 2004. Physical Review E 70 056131

See Also

computeModules; see also class "moduleWeb", listModuleInformation, printoutModuleInformation

Examples

## Not run:
(res <- DIRT_LPA_wb_plus(small1976))
mod <- convert2moduleWeb(small1976, res)
plotModuleWeb(mod)

## End(Not run)

discrepancy Calculates discrepancy of a matrix

Description

Discrepancy is the number of mismatches between a packed (binary) matrix and the maximally
packed matrix (with same row sums)

Usage

discrepancy(mat)

Arguments

mat A matrix (or something that can be transformed into a matrix when as.matrix
is called within the function) of species (in columns) on islands (in rows). If
quantitative data are given (e.g. in a quantitative pollination network), these are
internally transformed into a binary matrix.

Details

Discrepancy is a way to measure the nestedness of a matrix. In a comparative study, Ulrich & Gotelli
(2007) showed discrepancy to outperform all other measures and hence recommend its use (together
with a fixed-columns, fixed-rows null model, such as implemented in simulate.nullmodel in
vegan, see example).

This function follows the logic laid out by Brualdi & Sanderson (1999), although, admittedly, I find
their mathematical description highly confusing. Another implementation is given by the function
nesteddisc in vegan. The reason to write a new function is simple: I wasn’t aware of nesteddisc!
(I was sitting on a train and I wanted to use this measure later on, so I put it into a function con-
sulting only the orignal paper. When looking for the swap algorithm to create null models, which I
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somehow knew to exist in vegan, I stumbled across nesteddisc. If you are interested in the swap
algorithm and come across this help page, let me re-direct you to oecosimu in vegan.)

Now that this function exists, too, I found it to differ in output from nesteddisc. Jari Oksanen was
quick to point out, that our two implementations differ in the way they handle ties in column totals.
This function is, I think, closer to the results given in Brualdi & Sanderson. Jari also went on to
implement different strategies to deal with ties, so my guess is that his version may be (slightly)
superior to this one. Having said that, values don’t differ much between the two implementations.

So what does it do: The matrix is sorted by marginal totals, yielding a matrix A. Then, all 1s in A
are “pushed” to the left to maximally compact the matrix, yielding P. Discrepancy is now simply
the number of disagreements between A and P, divided by two (to correct for the fact that every
“wrong” 1 will necessarily generate a “wrong” 0).

Value

Returns the number of mismatches, i.e. the discrepancy of the matrix from perfecct nestedness.

Note

Discrepancy is well-defined only for matrices that can be sorted uniquely. For matrices with ties no
foolproof way to handle them has been proposed. For small matrices, or large matrices with many
ties, this will lead to different discrepancy values. See also how nesteddisc in vegan handles this
issue! (Thanks to Jari Oksanen for pointing this out!)

Author(s)

Carsten F. Dormann

References

Brualdi, R.A. and Sanderson, J.G. (1999) Nested species subsets, gaps, and discrepancy. Oecologia
119, 256–264

Ulrich, W. and Gotelli, N.J. (2007) Disentangling community patterns of nestedness and species
co-occurrence. Oikos 116, 2053–2061

See Also

nestednodf in vegan for the best nestedness algorithm in existence today (for both binary and
weighted networks!); nestedness for the most commonly used method to calculate nestedness,
wine for a new, unevaluated but very fast way to calculate nestedness; nestedtemp (another imple-
mentation of the same method used in our nestedness) and nestedn0 (calculating the number of
missing species, which has been shown to be a poor measure of nestedness) in vegan

Examples

## Not run:
#nulls <- replicate(100, discrepancy(commsimulator(Safariland,
method="quasiswap")))
nulls <- simulate(vegan::nullmodel(Safariland, method="quasiswap"), nsim = 100)
null.res <- apply(nulls, 3, discrepancy)
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hist(null.res)
obs <- discrepancy(Safariland)
abline(v=obs, lwd=3, col="grey")
c("p value"=min(sum(null.res>obs), sum(null.res<obs))/length(null.res))
# calculate Brualdi & Sanderson's Na-value (i.e. the z-score):
c("N_a"=(unname(obs)-mean(null.res))/sd(null.res))

## End(Not run)

distance_w Distance in a weighted network

Description

The shortest path length, or geodesic distance, between two nodes in a binary network is the min-
imum number of steps you need to make to go from one of them to the other. This distance is the
quickest connection between nodes when all ties are the same. However, in a weighted network, all
ties are not the same. See https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/
for more deatails.

Usage

distance_w(net, directed=NULL, gconly=TRUE, subsample=1, seed=NULL)

Arguments

net A weighted edgelist

directed logical, whether the network is directed or undirected. Default is NULL, this
means that the function checks whether the edgelist is directed or not.

gconly logical, whether the function should only be calculated for the giant component.
Default is TRUE.

subsample Whether a only a subset of starting nodes should we used when calculating the
measure. This is particularly useful when running out of memory analysing
large networks. If it is set to 1, all distances are analysed. If it set to a value
below one, this is roughly the proportion of starting noes that will be analysed.
If it is set to an interger greater than 1, this number of starting nodes that will be
analysed.

seed If a subset of starting nodes is analysed, by setting this parameter, the results are
reproducable.

Value

Returns a distance matrix.

Note

version 1.0.0, taken, with permission, from package tnet

https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/
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Author(s)

Tore Opsahl; https://toreopsahl.com/

References

https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/

elberling1999 No. of visits in a pollination web of arctic-alpine Sweden

Description

This study took place in the subarctic alpine zone of Latnjajaure, in northern Sweden. Field work
was conducted from May 21 to August 23, 1994. The objective was to describe the plant-flower
visitor interaction matrix of this area and compare it with the characteristics of other subarctic alpine
systems and with pollination systems of lower latitudes, especially in relation to the role of flies as
flower visitors at high latitudes.

The authors recorded their data by counting the number of visits of each flower visitor species to
each plant species. Regardless of whether insects were observed to forage for nectar and pollen or
to perform sun-basking, they were all classified as flower visitors and potential pollinators and the
plant species visited were recorded. Data are presented as an interaction frequency matrix, in which
cells with positive integers indicate the frequency of interaction between a pair of species, and cells
with zeros indicate no interaction.

See also https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator

Usage

data(elberling1999)

Format

A data frame with 12 plant species (in rows) and 102 pollinators (columns).

References

Elberling H. and Olesen J.M. (1999) The structure of a high latitude plant-flower visitor system:
the dominance of flies. Ecography 22, 314–323

Examples

data(barrett1987)
## maybe str(barrett1987) ; plot(barrett1987) ...

https://toreopsahl.com/
https://toreopsahl.com/2009/01/09/average-shortest-distance-in-weighted-networks/
https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
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empty Deletes empty rows and columns from a matrix.

Description

Gets rid of empty columns and rows in a matrix. Optionally counts removed rows and columns,
and returns these values as attribute.

Usage

empty(web, count=FALSE)

Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows). Usually this will be
number of pollinators on each species of plants or number of parasitoids on each
species of prey.

count Logical. Shall be counted how many columns and rows were removed? Num-
bers are returned in attribute. Defaults to FALSE.

Details

Helper function to remove empty (i.e. all-zero or all-NA) rows and columns, thereby concentrating
the matrix. This function is also invoked for its side effect by extinction to investigate the effect
of removing a species from the network.

Value

Returns matrix without empty rows or columns. Its attribute ‘out’ (if count=TRUE) contains a named
vector with the number of rows removed and the number of columns removed.

Author(s)

Carsten F. Dormann

See Also

extinction and second.extinct, which repeatedly call empty.

Examples

data(Safariland)
web <- Safariland
web[,5] <- 0
empty(web, count=TRUE)
attr(empty(web), "empty")
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endpoint Computes end-point degrees for a bipartite network

Description

Computes end-point degrees for a bipartite network, following the suggestion of Barrat et al. (2004)

Usage

endpoint(web)

Arguments

web A matrix with pollinators as columns and plants as rows. Alternatively, when
used on e.g. species occurrences across islands, rows are islands.

Details

Computation follows the outline of Gitarranz et al. (2004): “the product k_i k_j of the degree of the
two nodes connected by that link”. We then set additionally endpoint degrees for all non-existing
links to 0! Thus, only for existing links endpoint degrees are computed. This is (to me) not obvious
from the description in Gitarranz et al. (2004).

Value

A matrix of end-point degrees

Note

This approach is, AFAIK, not tested by simulation; whether it is useful has still to be shown.

Author(s)

Carsten F. Dormann

References

Barrat, A., M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. 2004. The architecture of com-
plex weighted networks. Proceedings of the National Academy of Sciences of the USA 101, 3747-
–3752. doi: 10.1073/pnas.0400087101.

Gilarranz, L. J., J. M. Pastor, and J. Galeano. 2011. The architecture of weighted mutualistic
networks. Oikos 121, 1154—1162. doi: 10.1111/j.1600-0706.2011.19592.x.
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Examples

# reproduces the example of Gitarranz et al. (2011):
data(memmott1999)
ends <- endpoint(memmott1999)
weights.mean <- tapply(memmott1999, ends, mean)
ends.weights <- tapply(ends, ends, mean)
plot(weights.mean, ends.weights, log="xy", pch=16)

extinction Simulates extinction of a species from a bipartite network

Description

Following (how I remember) the paper of Memmott et al. (2004), this function deletes a column
(e.g. pollinator) or row (e.g. plant). Only a helper function for second.extinct, really.

Usage

extinction(web, participant = "both", method = "random", ext.row=NULL,
ext.col=NULL)

Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows). Usually this will be
number of pollinators on each species of plants or number of parasitoids on each
species of prey.

participant Which level of participant to remove: ‘lower’ removes a row, ‘higher’ removes
a row, ‘both’ randomly picks either row or column.

method Determines sequence of extinctions: ‘random’ removes a random participant,
while ‘abundance’ removes the least abundant species first. ‘external’ will
use the externally provided vector to determine extinction sequence.

ext.row Optional vector giving the sequence in which lower-level species are to be deleted.

ext.col Optional vector giving the sequence in which higher-level species are to be
deleted.

Details

In itself rather useless. Called repeatedly by second.extinct to build an extinction sequence and
accordingly a sequence of secondary extinctions.

Value

Returns the same matrix that was given as object, just with one row or column being turned into
zeros.
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Author(s)

Carsten F. Dormann

References

Memmott, J., Waser, N. M. and Price, M. V. 2004 Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society B 271, 2605–2611

See Also

second.extinct

Examples

## Not run:
data(Safariland)
(w <- extinction(Safariland, participant="lower", method="abun"))
empty(w, count=TRUE)

## End(Not run)

fc Calculates the functional complementarity for the rows of a web

Description

A community-level measure of ecological niche complementarity measured as the total branch
length of a functional dendrogram based on qualitative differences in visitor assemblages between
plants.

Usage

fc(web, dist="euclidean", method="average", weighted=TRUE)

Arguments

web A bipartite interaction web, i.e.~a matrix with higher (cols) and lower (rows)
trophic levels.

dist A distance accepted by the function dist.

method The linkage method to be used by hclust. Any option accepted by hclust is
allowed; defaults to ‘"average"’.

weighted Option to analyse the web as binary or as weighted network. Default is ‘weighted=TRUE’,
but analysis presented in Devoto et al. (2012) uses ‘weighted=FALSE’.
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Details

fc measures community-level ecological niche complementarity as the total branch length of a func-
tional dendrogram based on qualitative differences in visitor assemblages between plants. For de-
tails see Devoto et al. (2012).

Value

The value of fc, which is not standardised and lies anywhere between 0 and a large number.

Author(s)

Mariano Devoto <mdevoto@agro.uba.ar>

References

Devoto M., Bailey S., Craze P., and Memmott J. (2012) Understanding and planning ecological
restoration of plant-pollinator networks. Ecology Letters 15, 319–328

See Also

networklevel, which uses this function.

Examples

data(Safariland)
fc(Safariland)
fc(t(Safariland), dist="canberra", method="complete")

frame2webs Converts a table of observations into a network matrix

Description

Convenience function to convert a table of observations (i.e. an "edge list", typically compiled in a
spreadsheet programm) into a network matrix for further use in bipartite.

Usage

frame2webs(dframe, varnames = c("lower", "higher", "webID", "freq"), type.out =
"list", emptylist = TRUE)



frame2webs 53

Arguments

dframe table (i.e. data.frame) of observations, typically simply the data read by one of
the read.* functions; see Details for details!

varnames a vector of characters giving the column names in the table (data.frame) that
correspond to

• species names in lower trophic level (e.g. plants),
• species names in higher trophic level (e.g. pollinators),
• the grouping factor for a web (e.g. the site on which interactions were

observed)
• optionally, a fourth column indicating the number of times an interaction

was observed (or another link weight that can be summed);

If only three varnames are provided, it is assumed that each observed interaction
is in a separate row and frequencies are calculated from the number of rows per
link. By default, the names “lower”, “higher”, “webID” and “freq” are used.

type.out defines the type of output; it could be ‘list’ (default) or an ‘array’ with a
separate slice for each network. Lists have the advantage that different webs do
not have to include all species names, i.e. they can be of different dimensions
(ragged). As such they are better suited for webs with non-comparable species
sets. An array has the advantage that dimensions are the same, and therefore (i)
comparisons can be easily made among webs and (ii) webs can be pooled more
easily. The ‘array’-option is more suitable for sets of networks from the same
community.

emptylist logical, defaults to ‘TRUE’; should, for each network in the list of networks,
empty columns and rows be deleted? Since this function first builds an array
and from that a list, each network contains all possible links between species of
the higher and lower level. When set to ‘TRUE’, all species not observed for a
given network are removed.

Details

This function supports the easy handling of typical recording that are used to compose a network.
The assumed structure of the underlying table is two columns for the names of the lower and higher
level species, respectively, one column for a network ID (e.g. site, observer or any other grouping
code) and, optionally, a number that indicates how often this interaction was observed. If not
given, the number of interactions is simply computed from the number of times the same interaction
occurred for each network ID. See example code below.

Typically, data are recorded (in a field book or external data logging device), read into a spreadsheet
software (such as MS Excel or Open/LibreOffice Spreadsheet), where names are checked, typos
corrected and so forth. This table is then imported into R and aggregated into one or more webs (or
an array or a list of webs) using frame2webs.

Each link can have multiple entries or a single entry!

Value

A list or an array of networks, each to be used as input for other bipartite functions.
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Note

Great care should be taken in checking species names, slightly different spellings will be assumed to
be different species! Common problems occur because a space was added to the name or lower and
higher case letters were mixed. For example, R is case sensitive and observes white space, while
“Homo sapiens”, “Homo sapiens ” (with a trailing space) and “homo sapiens” are not recognized
as different in typical spreadsheet software (e.g. Excel).

Author(s)

Jochen Fründ

See Also

empty

Examples

testdata <- data.frame(higher = c("bee1","bee1","bee1","bee2","bee1","bee3"),
lower = c("plant1","plant2","plant1","plant2","plant3","plant4"),
webID = c("meadow","meadow","meadow","meadow","bog","bog"), freq=c(5,1,1,1,3,7))
frame2webs(testdata,type.out="array")
sapply(frame2webs(testdata,type.out="list"), networklevel, index=c("connectance", "C score"))

genweb Generate a random bipartite web

Description

Generates a random bipartite web, based on r2dtable and lognormal marginal distributions.

Usage

genweb(N1 = 10, N2 = 30, dens = 2)

Arguments

N1 Number of species in the lower trophic level; or a vector of length 2 giving
number of lower and higher trophic level species. Defaults to 10. Large values
(>70) will take much longer!

N2 Number of species in the higher trophic level. Ignored if N1 a vector of length
2. Defaults to 30. Large values (>70) will take much longer!

dens Interaction density, i.e. how many interactions there shall be, on average, for
each link. Defaults to 2 (the median observed interaction density in the NCEAS
pollination webs). Large values (> 10) will take much longer to find matrices
for.
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Details

This function can be used to create simple, but not necessarily realistic, bipartite webs for given
dimensionality and interaction density. Marginal distributions are assumed to be lognormal, mean
and standard deviation are calculated from ‘N1’, ‘N2’ and ‘dens’ (see code for details).

Value

A matrix with N1 x N2 species.

Note

Can be a bit time-consuming for large webs, because the absolute values for both dimensions have
to match perfectly. This involves a rather inelegant while-loop.

Author(s)

Jochen Fründ and Carsten F. Dormann

Examples

genweb()

grouplevel Analysis of bipartite webs at the level of each of the two levels (groups)
of the network

Description

Calculates a variety of indices and values for each group of a bipartite network (one.grouplevel
is the actual function to do the computations and is not intended to be called by the user)

Usage

grouplevel(web, index="ALLBUTDD", level="both", weighted=TRUE, empty.web=TRUE,
dist="horn", CCfun=mean, logbase="e", normalise=TRUE, extinctmethod="r",
nrep=100, fcdist="euclidean", fcweighted=TRUE)

Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of host.

index One or more of the following (exact match only!):

• ‘number of species’ in the respective trophic level,
• ‘mean number of links’,
• ‘mean number of shared partners’,



56 grouplevel

• ‘cluster coefficient’,
• ‘weighted cluster coefficient’,
• ‘togetherness’,
• ‘C score’,
• ‘V ratio’,
• ‘discrepancy’,
• ‘degree distribution’,
• ‘extinction slope’,
• ‘robustness’,
• ‘niche overlap’,
• ‘generality’,
• ‘vulnerability’,
• ‘partner diversity’,
• ‘fc’ (or alternatively ‘functional complementarity’),
• ‘ALL’ calculates all the above indices (returning a list (since degree distri-

bution fits are a table within this list and cannot be simplified)),
• ‘ALLBUTDD’ (default) calculates all indices except degree distribution fits.

This latter has the advantage that the output can be simplified to a vector;

level For which of the two groups (“levels”) should these indices be computed? Op-
tions are ‘lower’, ‘higher’ and ‘both’ (default). For index ‘robustness’, the
indicated level is the one that will be exterminated in simulations (see second.extinct).
Although grouplevel can be employed on its own, it typically will be called
through networklevel.

weighted logical; for those indices which are simply averaged across species to yield the
group-level index (e.g. ‘niche overlap’), should this averaging take into ac-
count the number of observations for a species? Defaults to TRUE. The logic
behind this default is that we have more faith in an index value when it is based
on many, rather than few, observations. Bersier et al. (2002) proposed this
weighting and it is also commonly used to compute vulnerability and generality
(e.g. in Tylianakis et al. 2006).

empty.web Shall the empty columns and rows be deleted? Defaults to TRUE.

dist Distance metric to be used to calculate niche overlap (calling vegan::vegdist);
defaults to Horn’s index, which is the recommendation of Krebs (1989); for
other options see vegdist in vegan.

CCfun Method to use when calculating the clustering coefficient. Originally proposed
as mean of cluster coefficients for each node. Defaults to ‘median’, because
cluster coefficients are strongly skewed.

logbase Shall various indices (partner diversity, generality/vulnerability) be calculated to
the base of e (default) or 2? Log2 is the proposal for generality and vulnerability
by Bersier et al. (2002), while Shannon uses ln. The choice of the base will not
affect the results qualitatively, at most by a scaling factor.

normalise Logical; shall the C-score and togetherness metrics be normalised to a range of
0 to 1? Defaults to TRUE.



grouplevel 57

extinctmethod Specifies how species are removed from matrix: ‘random’ or ‘abundance’ (par-
tial matching), where abundance removes species in the order of increasing
abundance (i.e. rarest first); see Memmott et al. (2004).

nrep Number of replicates for the extinction sequence analysis.

fcweighted Logical; when computing "functional complementarity" sensu function fc, should
the weights of the matrix be used. Defaults to TRUE, but original paper (Devoto
et al. 2012) is based on FALSE.

fcdist Distance measure to be used to compute functional complementarity through
fc; any measure accepted by dist is acceptable.

Details

This function implements a variety of the many (and still procreating) indices describing network
topography at the group level.

Note that Bersier et al. (2002) have three levels of values for some of their indices: qualitative (i.e.
based on binary networks), quantitative (based on networks with information on the number of in-
teractions observed for each link), and weighted-quantitative (where each species is given a weight
according to the number of interactions it has). At present, we implement a mixture of qualita-
tive, quantitative and weighted-quantitative indices and offer the option ‘weighted’ to compute the
weighted-quantitative version of some of them (‘mean number of links’, ‘mean number of shared
partners’, ‘cluster coefficient’, ‘partner diversity’, ‘generality / vulnerability’). For
all others, the mechanics behind the index do not allow a weighted mean to be computed (e.g. the
distance-matrix between all species combinations used to compute ‘niche.overlap’).

All indices in this function work with real as well as integer values.

Extinction slope works on a repeated random sequence of species extinctions (within one trophic
level), and calculates the number of secondary extinctions (in the other level). These values are
then averaged (over the ‘nrep’ runs) and plotted against the number of species exterminated. The
proportion still recent (on the y-axis) regressed against the proportion exterminated (on the x-axis)
is hence standardised to values between 0 and 1 each. Through this plot, a hyperbolic regression is
fitted, and the slope of this regression line is returned as an index of extinction sensitivity. The larger
the slope, the later the extinction takes its toll on the other trophic level, and hence the higher the
redundancy in the trophic level under consideration. Using ‘plot.it=F’ also returns the graphs (set
history to recording in the plotting window). Changing the ‘extinctionmethod’ to “abundance”
will always result in the same sequence (by increasing abundance) and hence does not require
replication.

Most indices are straightforward, one-line formulae; some, such as betweenness, also require a
re-arranging of the matrix; and one, secondary extinction slope, internally requires iterative runs,
making the function relatively slow. If you are not interested in the secondary extinction slopes,
simply set ‘nrep=1’ to make it much faster.

Value

The suffixes LL and HL refer to lower and higher level, respectively. If values for both levels are
requested, those for the higher level are given first, followed immediately by those for the lower
level.

Depending on the selected indices, some or all of the below (returned as vector if “degree distribu-
tion” was not requested, otherwise as list):
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mean number of species

sic, possibly weighted (if ‘weighted=TRUE’; the weighted mean is not some-
thing typically reported, but it seems a very plausible way to embrace the uncer-
tainty introduced by species with very few interactions).

mean number of links

sic (sum of links for each species, averaged over all species in that level), possi-
bly weighted (if ‘weighted=TRUE’).

mean number of shared partners

Based on the distance matrix between species, counting the number of species
in the other level that both interact with; based on Roberts & Stone (1990) and
Stone & Roberts (1992), i.e. for pollinators will yield mean number of plants
shared by any two pollinators (Cannot be weighted.)

cluster coefficient

The cluster coefficient for a level is the (weighted) average cluster coefficients
of its members. The cluster coefficient for each species, in turn, is simply
the number of realised links divided by the number of possible links. Intro-
duced by Watts & Strogatz (1998) and described in Wikipedia under https://
en.wikipedia.org/w/index.php?title=Clustering_coefficient. If you
want to use Tore Opsahl’s adaptation to two-modes, please see the next index,
based on his function clustering_tm in tnet. To my knowledge, so far ev-
ery study has used the “wrong” one, i.e. the one presented here as ‘cluster
coefficient’.

weighted cluster coefficient

When asking for “weighted cluster coefficient”, this version will automatically
use interactions as weights unless the data are binary. The computation is based
on clustering_tm in tnet. See there (and more on Tore Opsahl’s webpages)
for help.

niche overlap Mean similarity in interaction pattern between species of that level, calculated
by default as Horn’s index (use ‘dist’ to change this.). Values near 0 indicate
no common use of niches, 1 indicates perfect niche overlap.

togetherness Mean number of co-occupancies across all species-combinations; the whole
matrix is scanned for submatrices of the form (0,0,1,1), representing perfect
matches of co-presences and co-absences. These are counted for each pairwise
species combination, and averaged (without weighting). Since the number of
species differs between the levels, the same number of co-occupancies will lead
to different togetherness-values for the two levels. Based on Stone & Roberts
(1992).

C score (Normalised) mean number of checkerboard combinations across all species of
the level. Values close to 1 indicate that there is evidence for disaggregation, e.g.
through competition. Value close to 0 indicate aggregation of species (i.e. no
repelling forces between species). Since the number of species differs between
the levels, the same number of checkerboard patterns will lead to different C-
scores for the two levels. See Stone and Roberts (1990) for details.

V ratio Variance-ratio of species numbers to interaction numbers within species of a
level. Values larger than 1 indicate positive aggregation, values between 0 and 1
indicate disaggregation of species. See Schluter (1984) for details.

https://en.wikipedia.org/w/index.php?title=Clustering_coefficient
https://en.wikipedia.org/w/index.php?title=Clustering_coefficient
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discrepancy Discrepancy as proposed by Brualdi & Sanderson (1999); see discrepancy for
details.

degree distribution

Coefficients and fits for three different functions to a level’s degree distributions:
exponential, power law and truncated power law. See degreedistr for details
and references.

extinction slope

Slope of the secondary extinction sequence in one level, following extermina-
tion of species in the other level; extinction slope.HL refers to the robust-
ness of the higher level to extinctions in the lower level (and vice versa); see
slope.bipartite and second.extinct for details.

robustness Calculates the area below the “secondary extinction” curve; robustness.HL
refers to the robustness of the higher level to extinctions in the lower level (and
vice versa); see robustness for details. Corresponds to “extinction slope”.

functional complementarity

“Functional complementarity” for a given level. This measure of niche comple-
mentarity (as described by Devoto et al. 2012), is computed as the total branch
length of a “functional dendrogram” based on qualitative differences of inter-
actions of one level with the other. Thus, the “functional” aspect of functional
complementarity refers to the function of sharing interactions. Should be highly
correlated with niche overlap, only binary.

partner diversity

(Weighted) mean Shannon diversity of the number of interactions for the species
of that level. Choose ‘logbase=2’ to change to a log2-based version.

generality/vulnerability

(Weighted) mean effective number of LL species per HL species (generality; HL
species per LL species for vulnerability), weighted by their marginal totals (row
sums); see Tylianakis et al. (2007) and Bersier et al. (2002). This is identical
to exp(“partner diversity”, i.e., simply the Jost (2006)-recommended version of
diversity.

Note

If your web returns and NA for some of the indices, this can be because the index cannot be com-
puted. For example, if the web is full (i.e. no 0-cells), extinction slopes cannot be fitted (singularity
of gradient). Check if you can expect the index to be computable! If it is, and grouplevel doesn’t
do it, let me know.

Some indices require rather long computation times on large webs. If you want to increase the
speed by omitting some indices, here a rough guide: Ask only for the indices you are interested in!
Otherwise, here is the sequence of most time-consuming indices:

1. For somewhat larger networks (i.e. more than 2 dozen species per level), ‘weighted cluster
coefficient’ is very time consuming (an exhaustive search for 4-loops in the one-mode
projection of the network). Omitting it can dramatically boost speed.

2. Typically, the slowest function is related to extinction slopes and robustness. Excluding both
makes the function faster.

3. Degree distributions are somewhat time consuming.
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Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Bascompte, J., Jordano, P. and Olesen, J. M. 2006. Asymmetric coevolutionary networks facilitate
biodiversity maintenance. Science 312, 431–433

Bersier, L. F., Banasek-Richter, C. and Cattin, M. F. 2002. Quantitative descriptors of food-web
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Devoto M., Bailey S., Craze P., and Memmott J. (2012) Understanding and planning ecological
restoration of plant-pollinator networks. Ecology Letters 15, 319–328.

Dormann, C.F., Fründ, J., Blüthgen, N., and Gruber, B. (2009) Indices, graphs and null models:
analysing bipartite ecological networks. The Open Ecology Journal 2, 7–24.

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002 Food-web structure and network theory:
the role of connectance and size. Proceedings of the National Academy of Science USA 99, 12917–
12922

Gotelli, N. J., and G. R. Graves. 1996 Null Models in Ecology. Smithsonian Institution Press,
Washington D.C.

Jost, L. 2006. Entropy and diversity. Oikos 113, 363-–375.

Krebs, C. J. 1989 Ecological Methodology. Harper Collins, New York.

Memmott, J., Waser, N. M. and Price M. V. 2004 Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society B 271, 2605–2611

Müller, C. B., Adriaanse, I. C. T., Belshaw, R. and Godfray, H. C. J. 1999 The structure of an
aphid-parasitoid community. Journal of Animal Ecology 68, 346–370

Roberts, A. and Stone, L. 1990 Island-sharing by archipelago species. Oecologia 83, 560–567

Schluter, D. (1984) A variance test for detecting species associations, with some example applica-
tions. Ecology 65, 998-1005.

Stone, L. and Roberts, A. (1990) The checkerboard score and species distributions. Oecologia 85,
74–79.

Stone, L. and Roberts, A. (1992) Competitive exclusion, or species aggregation? An aid in deciding.
Oecologia 91, 419–424

Tylianakis, J. M., Tscharntke, T. and Lewis, O.T. (2007) Habitat modification alters the structure of
tropical host-parasitoid food webs. Nature 445, 202–205

Watts, D. J. and Strogatz, S. (1998) Collective dynamics of ‘small-world’ networks. Nature 393,
440–442



H2fun 61

See Also

This function can (and typically will) be called, with all its arguments, by networklevel. Several
indices have their own function as implementation: second.extinct, degreedistr, C.score and
V.ratio

Examples

## Not run:
data(Safariland)
grouplevel(Safariland)
grouplevel(Safariland, level="lower", weighted=FALSE) #excludes degree distribution fits

## End(Not run)

H2fun Specialisation of a bipartite web.

Description

Calculates the overall level of specialisation of all interacting species in a bipartite web.

Usage

H2fun(web, H2_integer=TRUE)

Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows). Usually this will be
number of pollinators on each species of plants or number of parasitoids on each
species of prey.

H2_integer logical; indicates whether web entries are integer numbers. If set to false, H2fun
can be used also on rates, percentages and other non-integer values indicating
the intensity of an interaction.

Details

H2’ is an index describing the level of “complementarity specialisation” (or should one say: se-
lectiveness?) of an entire bipartite network (Blüthgen et al. 2006). It describes to which extent
observed interactions deviate from those that would be expected given the species marginal totals.
The more selective a species, the larger is H2’ for the web.

H2’ is an extension of d’ (see dfun) for the entire network.

For non-integer values, H2 max can be readily computed and is thus more reliable and much faster.
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Value

H2 The H2’-value for the web matrix.

H2min Heuristic minimum H2-value for the web matrix.

H2max Heuristic maximum H2-value for the web matrix.

H2uncorr Uncorrected H2-values (before ranging between min and max), rounded to three
digits.

Author(s)

Carsten F. Dormann and Jochen Fründ

References

Blüthgen, N., Menzel, F. and Blüthgen, N. (2006) Measuring specialization in species interaction
networks. BMC Ecology 6, 9.

See Also

dfun following the same idea for each species in the web matrix.

Examples

data(Safariland)
H2fun(Safariland)

inouye1988 A pollination network from the Snowy Mountains of New South Wales,
Australia

Description

This data set reports a community-level study of the pollination biology of alpine plants in Kosciusko
National Park in the Snowy Mountains of south-eastern New South Wales, Australia. The flora and
their associated insect pollinators were observed from December 1983 until March 1984.

Usage

data(inouye1988)

Format

A data frame with 41 observations on the following 83 variables, with plant species in rows and
pollinators in columns.
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Details

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction.

Note

Male and female pollinators were summed when moving this data set from NCEAS to bipartite.

Source

NCEAS data base on interaction webs: https://iwdb.nceas.ucsb.edu/resources.html#plant_
pollinator

References

Inouye, D.W. and G.H. Pyke (1988) Pollination biology in the Snowy Mountains of Australia:
comparisons with montane Colorado, USA. Australian Journal of Ecology 13: 191–210.

Examples

data(inouye1988)
plotweb(inouye1988)

junker2013 Flower visitation network

Description

A large (56 plant species by 257 visitor species) network published by Junker et al. (2013).

Usage

data(junker2013)

Format

The format is: int [1:56, 1:257] 0 0 0 0 0 0 1 0 0 0 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:56]
"Achillea.millefolium" "Alliaria.petiolata" "Bellis.perennis" "Bunias.orientalis" ... ..$ : chr [1:257]
"Agrypnus.murinus" "Ampedus.pomorum" "Anaspis.frontalis" "Anthaxia.nitidula" ...

https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
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Details

I modified some entries in the table: (1) There were two instances of Prunus.sp.1.Kirsche (cherry),
which I summed and represented as one. Similarly, there (2) two species named Apidae_sp._1 and
Apidae_sp.1 which I merged and (3) the exact same thing for Apidae_sp._2 and Apidae_sp.2. In
all cases, only one or two observations were added to the column containing more counts. I do not
think that these changes will have any effect on the analyses.

References

Junker, R. R., Blüthgen, N., Brehm, T., Binkenstein, J., Paulus, J., Schaefer, H. M. and Stang, M.
2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring
mechanism of ecological networks. Functional Ecology 27, 329—341

Examples

data(junker2013)
## Not run: plotweb(junker2013)

kato1990 No. of individuals caught in a pollination web of a Japanese beech
forest

Description

The study took place at the Kyoto University Forest of Ashu, at the northeastern boundry of the
Kyoto Prefecture in Japan, between 1984 and 1987. The paper deals with the flowering phenology
of 91 plant species, the community structure of flower-visiting insects, and the spectrum of floral
hosts for flower visitors. The emphasis is laid on the pattern of community organization of flower-
visiting insects in a primary forest ecosystem of western Japan.

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction. For details and data see https:
//iwdb.nceas.ucsb.edu/resources.html#plant_pollinator

Usage

data(kato1990)

References

Kato, M., T. Makutani, T. Inoue, and T. Itino. 1990. Insect-flower relationship in the primary beech
forest of Ashu, Kyoto: an overview of the flowering phenology and seasonal pattern of insect visits.
Contr. Biol. Lab. Kyoto Univ. 27, 309–375

https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
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Examples

data(kato1990)
## maybe str(kato1990) ; plot(kato1990) ...

kevan1970 A pollination network from Northern Ellesmere Island, Canada

Description

The total number of individuals collected on each plant species provide a rough estimate of the level
of visitation that each species received.

Usage

data(kevan1970)

Details

General information

This study sought to determine the importance of insect-flower relations to both plants and insects
in a high arctic community as well as the degree to which some of the more common arctic plants
are dependent on insects for pollination and reproduction. The research was conducted in 1967
at Hazen Camp (81 49’N, 71 18’ W) near Lake Hazen on Northern Ellesmere Island, the most
northerly island of the Canadian Arctic Archipelago.

Data type

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction.

References

Kevan, P. G. 1970. High Arctic Insect-Flower Visitor Relations: The Inter-Relationships of Arthro-
pods and Flowers at Lake Hazen, Ellesmere Island, Northwest Territories. University of Alberta,
Canada.

Examples

data(kevan1970)
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linklevel Indices of a bipartite network at the link level

Description

Computes various indices of a network at the link-level, i.e. for each cell of the network matrix

Usage

linklevel(web, index=c("dependence", "endpoint"))

Arguments

web A matrix with pollinators as columns and plants as rows. Alternatively, when
used on e.g. species occurrences across islands, rows are islands.

index Vector of indices to be computed at the link level; options are:

• ‘dependence’ to compute dependence-matrix for each group level;
• ‘endpoint’ to compute end-point degrees following Barratt et al. (2004).

Details

For summaries of such indices see networklevel. It’s still early days for this function ...

Value

Returns a list of indices, each entry being a matrix of the same dimensions as the input web.

Note

This function aims to facilitate analyses at the link level. So far, most studies at this level did not
correct for the fact that observations per cell are clearly non-independent, nor for the abundances
of the species, which also greatly affect indices. Room for improvement, but little room for new
findings ...

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. (2004) The architecture of com-
plex weighted networks. Proceedings of the National Academy of Sciences of the USA 101, 3747-
–3752

See Also

endpoint, specieslevel



listModuleInformation 67

Examples

data(Safariland)
linklevel(Safariland)

listModuleInformation listModuleInformation

Description

This function takes an object of class "moduleWeb" and returns information about the names of the
nodes of which the computed modules exist.

Usage

listModuleInformation(moduleWebObject)

Arguments

moduleWebObject

Object of class "moduleWeb"

Value

The value of the function is a list of lists of lists of vectors representing the names of the nodes
involved in a certain module.

value[[x]][[y]][[1]]

vector with the names of the "row nodes" comprised by the z.th module in depth
x-1 (sic!)

value[[x]][[y]][[2]]

vector with the names of the "column nodes" comprised by the z.th module in
depth x-1 (sic!)

Author(s)

Rouven Strauss

Examples

## Not run:
data(small1976)

moduleWebObject = computeModules(small1976);
moduleList = listModuleInformation(moduleWebObject);

## End(Not run)
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memmott1999 Flower visitation network from a meadow near Bristol, UK

Description

This study was conducted in a 150 m x 250 m meadow plot in the vicinity of Bristol, U.K. in July
1997. The objective was to describe the plant-flower visitor interaction web of this area, taking
into account species abundances and their frequency of interaction. Twenty five plant species were
studied, and 79 flower visitor species were recorded visiting them.

Usage

data(memmott1999)

Details

The author recorded her data by counting the number of visits of each flower visitor species to
each plant species, and by independently measuring the abundance of plant and animal taxa. Data
are presented as an interaction frequency matrix, in which cells with positive integers indicate the
frequency of interaction between a pair of species, and cells with zeros indicate no interaction.

Source

NCEAS

References

Memmott, J. 1999. The structure of a plant-pollinator food web. Ecology Letters2, 276–280.

Examples

data(memmott1999)
## maybe str(memmott1999) ; plot(memmott1999) ...

mgen Generate simulated network according to a given probability matrix

Description

Generic network simulating algorithm based on a probability matrix and a desired number of inter-
actions.

Usage

mgen(web, n=sum(web), keep.species=TRUE, rep.cell=TRUE, autotransform="sum_warn")
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Arguments

web a matrix with observation (interaction) probabilities, emerging from some con-
siderations (model) external to this function; if an original network is used, it
will be converted to a probability matrix by dividing it by its sum.

n number of interactions to allocate into the new matrix. Note that in rare cases,
the number of interactions assigned may be larger than n due to ‘keep.species=TRUE’.

keep.species Ensure each species has at least one interaction? Random assignment of inter-
actions may lead to empty columns or rows and hence reduce the dimensions
of the simulated web. By default, this is prevented from happening, i.e. each
row/column will receive at least one interaction. Setting ‘keep.species’ to
FALSE may (but need not) cause a loss of species.

rep.cell Whether cells can be assigned interactions repeatedly; defaults to TRUE (quan-
titative webs); use FALSE for binary webs

autotransform determines how a non-probability web is converted into probabilities; option
‘"sum"’ simply divides each entry by the sum of interactions in the web (i.e.
probabilities will be proportional to web entries); option ‘"sum_warn"’ (the de-
fault) does the same, but with a warning; option ‘"equiprobable"’ is an odd
name for making probabilities proportional to the product of marginal totals

Details

This is a generic function to simulate mutualistic networks, based on the original function with the
same name used by Vázquez et al. (2009). This function can be used for different purposes, as it
allows any type of probability matrix to be used for constructing the simulated matrices. However,
this probability matrix must be derived from some other model, either fully synthetic or based on
empirical data (if an observed network is given, it will sample from observed interactions, but this
is not the typical use case). This function can thus be used for implementing various types of null
models, but also highly structured or specialised webs.

The use of an externally generated probability matrix is a key difference to genweb and functions
(methods) in nullmodel. Nevertheless, ‘autotransfrom="equiprobable"’ turns mgen into a null
model function, with interaction probabilities according to marginal totals (row and column sums).
This null model does not fix row and column totals (otherwise it is similar to the r2dtable null
model) nor connectance (in difference to vaznull); also, if ‘keep.species=FALSE’, species may
be lost (i.e. have no interactions) by chance.

If ‘rep.cell=TRUE’, repeated interactions are added, thus generating a quantitative matrix with cell
values as positive integers. In this case, connectance is not fixed or constrained. If ‘rep.cell=FALSE’,
no repeated assignment of interactions is allowed, thus generating a binary matrix of zeros and ones.
Note that when ‘rep.cell=FALSE’ the number of interactions to be assigned must be equal or lower
than the number of (nonzero) cells in the matrix. If also ‘keep.species=TRUE’, connectance is fixed
(n / prod(dim(web))).

References

Vázquez, D. P.; Chacoff, N. P. & Cagnolo, L. 2009. Evaluating multiple determinants of the struc-
ture of mutualistic networks. Ecology 90 2039–2046
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Examples

## Generate simulated matrix from homogeneous probability matrix
probmat <- matrix(1/100, 10, 10)
mgen(web=probmat, n=100)

## Generate binary matrix with probability proportional to degree
## of an observed binary matrix m
obs.mat <- matrix(c(1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0,0,0), 5, 5)
rs <- rowSums(obs.mat)
cs <- colSums(obs.mat)
web <- rs %*% t(cs)
web <- web/sum(web)
n = sum(obs.mat)
# Allowing zero marginal sums (but there will be none here):
mgen(web, n, keep.species=FALSE, rep.cell=FALSE)
# Not allowing zero marginal sums:
mgen(web, n, keep.species=TRUE, rep.cell=FALSE)

## Generate quantitative matrix with probability proportional
## to interaction frequency in an observed matrix m:
# Allowing zero marginal sums:
mgen(mosquin1967, keep.species=FALSE, rep.cell=TRUE)
# Not allowing zero marginal sums:
mgen(mosquin1967, keep.species=TRUE, rep.cell=TRUE)

moduleWeb-class Class "moduleWeb"

Description

This class is the output of an application of the function computeModules to a graph. It consists
of the matrix representing the original graph which has been passed to computeModules in order
to compute modules, a matrix representing the same graph but permutated according to the identi-
fied modules, two vectors indicating the permutation of row and column indices, respectively, and
information about the modules themselves.

Objects from the class

Objects from the class should only be created by using the function computeModules.

Slots

likelihood: Contains a number with the likelihood-equivalent of the final proposed module struc-
ture. This value is the same value as Q (or M), the modularity as given by Newman or Guimerà
& Amaral (2005).

originalWeb: Object of class "matrix" representing the original bipartite graph in which modules
have been computed.
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moduleWeb: Object of class "matrix" representing the original bipartite graph but reordered such
that plotting modules is possible.

orderA: Object of class "vector" representing the permutation of the rows of the original graph.

orderB: Object of class "vector" representing the permutation of the columns of the original
graph.

modules: Object of class "matrix" containing for each module the information about its depth
and involved nodes. The first row is just a consecutive number, so of no information; the first
two columns can also be ignored. This matrix shows ALL network players (in the sequence
of the original matrix, starting with rows), so first rows, then columns. There are as many
rows as modules. Each row writes a number if a species is in that module, or a 0 if it isn’t.
For the modules of Safariland (mod <- computeModules(Safariland); mod@modules[-1,
-c(1,2) ]), the third module are species 3 and 24, i.e. Schinus patagonicus (third row) and
Ichneumonidae4 (24 - 9 column).

Methods

Objects of this class are used in following functions:

listModuleInformation(moduleWebObject)

printoutModuleInformation(moduleWebObject)

plotModuleWeb(moduleWebObject, plotModules=TRUE, rank=FALSE, weighted=TRUE, display-
Alabels=TRUE, displayBlabels=TRUE, labsize=1, plotsize=12, xlabel="", ylabel="", square.border="white",
fromDepth=0, upToDepth=-1)

Author(s)

Rouven Strauss

Examples

showClass("moduleWeb")

mosquin1967 Flower visitation network from Melville Island, Northwest Territories,
Canada

Description

This study took place on Melville Island, N.W.T., Canada from July 19 to July 31 1965. While
collecting plants the authors made some observations on the occurence and behavior of flower
visiting insects as well as on the scent and other target characteristics of flowers.

Usage

data(mosquin1967)
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Details

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction.

Source

NCEAS

References

Mosquin, T., and J. E. H. Martin. 1967. Observations on the pollination biology of plants on
Melville Island, N.W.T., Canada. Canadian Field Naturalist 81, 201–205

Examples

data(mosquin1967)
## maybe str(mosquin1967) ; plot(mosquin1967) ...

motten1982 A spring flower visitation network from North Carolina, USA

Description

This is a study of the interactions between insects visitors and spring wildflowers in piedmont North
Carolina. Spring flowering, entomophilous herbs, shrubs, and understory trees were included in the
study.

Usage

data(motten1982)

Details

The author recorded his data by counting the number of visits of each flower visitor species to each
plant species. Data are presented as an interaction frequency matrix, in which cells with positive
integers indicate the frequency of interaction between a pair of species, and cells with zeros indicate
no interaction.

References

Motten, A.F. (1982) Pollination Ecology of the Spring Wildflower Community in the Deciduous
Forests of Piedmont North Carolina. Doctoral Dissertation thesis, Duke University, Durham, North
Carolina, USA.

Motten, A.F. (1986) Pollination ecology of the spring wildflower community of a temperate decid-
uous forest. Ecological Monographs 56, 21–42
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Examples

data(motten1982)
## maybe str(motten1982) ; plot(motten1982) ...

ND Normalised degree, betweenness and closeness centrality

Description

Calculates normalised degrees, and two measures of centrality, betweenness and closeness. These
two are based on one-mode representations of the network and invoke functions from sna.

Usage

ND(web, normalised=TRUE)
BC(web, rescale=TRUE, cmode="undirected", weighted=TRUE, ...)
CC(web, cmode="suminvundir", rescale=TRUE, ...)

Arguments

web A matrix with lower trophic level species as rows, higher trophic level species
as columns and number of interactions as entries.

normalised Shall the degrees be normalised? If so (default), the degree for a species is
divided by the number of species in the other level (see, e.g., Martín González
et al. 2010).

rescale If TRUE (default), centrality scores are rescaled such that they sum to 1.

cmode String indicating the type of betweenness/closeness centrality being computed
(directed or undirected geodesics, or a variant form - see help for closeness
and betweenness in sna for details). The default, ‘"suminvundir"’ for CC and
‘"undirected"’ for BC, uses a formula that can also be applied to disconnected
(=compartmented) graphs. Other cmodes may not.

weighted Logical; if TRUE, bipartite projection will include edge weights, i.e. number of
interactions. Defaults to TRUE.

... Options passed on to betweenness and closeness, respectively. Notice that
in particular the option ‘ignore.eval=FALSE’ will yield VERY different values
than the default. BC and CC use defaults of sna::betweenness and sna::closeness,
respectively, but that does not imply that these settings are per se the best!
(Thanks to Michael Pocock for drawing my attention to this issue!)

Details

These functions are convenience functions to enable easy reproduction of the type of analyses by
Martín González et al. (2010). BC and CC are wrappers calling two functions from sna, which uses
one-mode, rather than bipartite data.
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One-mode projections of two-mode networks are carried out by assigning a link to two species that
share a interaction with a member of the other set (plant in case of pollinators, or pollinators in
case of plants). There are different ways to do this (see as.one.mode), and many authors do not
communicate well, which approach they have taken.

If the network is fully connected, all species of the same level will be linked to each other through
only one step and hence have the same betweenness. This leads to values of 0.

BC reflects the number of unique shortest paths going through the focal node. Note that different
packages compute divergent values for betweenness, as detailed in the vignette (section 5.4.1)! CC
is the inverse of the average distance from the focal node to all other nodes.

Both BC and CC can be normalised so that they sum to 1 (using ‘rescale=TRUE’). This only affects
the absolute values, but not the qualitative results.

The interested user may want to also have a look at the networkX homepage (https://networkx.
org) for a Python-based tool to analyse, depict and manipulate (one-mode) networks. It is not
specifically meant for bipartite networks such as this package, though.

Value

A list with two entries, “lower” and “higher”, which contain a named vector of normalised degrees,
betweenness centrality and closeness centrality, respectively. The lower-entry contains the lower
trophic level species, the higher analogously the higher trophic level species.

Note

Experimental. Should work most of the time, but not necessarily always. Also, on trials with
the same data as those of Martín González et al. (2010), numerical values differed. Whether
this is due to rounding errors, different non-linear least square fits in JMP and R or whatever I
cannot tell. See example for my attempt to reproduce their values for the network “Azores” (aka
olesen2002flores).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Martín Gonzáles, A.M., Dalsgaard, B. and Olesen, J.M. 2010. Centrality measures and the impor-
tance of generalist species in pollination networks. Ecological Complexity 7, 36–41

See Also

centralization, betweenness and closeness in sna; specieslevel which calls them

Examples

## example:
data(olesen2002flores)
(ndi <- ND(olesen2002flores))
(cci <- CC(olesen2002flores))
(bci <- BC(olesen2002flores))

https://networkx.org
https://networkx.org
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cor.test(bci[[1]], ndi[[1]], method="spear") # 0.532
cor.test(cci[[1]], ndi[[1]], method="spear") # 0.403

cor.test(bci[[2]], ndi[[2]], method="spear") # 0.738
cor.test(cci[[2]], ndi[[2]], method="spear") # 0.827
## Not run:
## PLANTS:
bc <- bci[[1]]
cc <- cci[[1]]
nd <- ndi[[1]]
# CC:
summary(nls(cc ~ a*nd+b, start=list(a=1,b=1))) # lower RSE
summary(nls(cc ~ c*nd^d, start=list(c=0.072,d=0.2)))
# BC:
summary(nls(bc ~ a*nd+b, start=list(a=1,b=1)))
summary(nls(bc ~ c*nd^d, start=list(c=2,d=2))) # lower RSE

## ANIMALS:
bc <- bci[[2]]
cc <- cci[[2]]
nd <- ndi[[2]]
# CC:
summary(nls(cc ~ a*nd+b, start=list(a=1,b=1)))
summary(nls(cc ~ c*nd^d, start=list(c=0.2,d=2))) # lower RSE
# BC:
summary(nls(bc ~ a*nd+b, start=list(a=1,b=1)))
summary(nls(bc ~ c*nd^d, start=list(c=0.2,d=2))) # lower RSE

## End(Not run)

nest.smdm Computes nestedness of a matrix as WNODA (and NODF and WN-
ODF)

Description

Calculates network nestedness, also within and between modules, i.e. separate nestednesses for
nodes belonging to the same module and between nodes belonging to different modules. Three
nestedness metrics are implemented in the function: NODF, WNODF and WNODA.

Usage

nest.smdm(x, constraints=NULL, weighted=FALSE, decreasing="fill", sort=TRUE)
module2constraints(mod)

Arguments

x an interaction matrix; typically with rows for lower and columns for higher level
species;
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constraints a vector with modules for vertices of the matrix. The vector indicates first rows
modules and then columns modules, following the sequence of input matrix x.
If no constraints are provided, the function calculates nestedness for the entire
matrix, not taking into account possible network modules.

weighted Logical. Indicate whether to calculate binary or weighted version of the metrics.
If set to FALSE for a weighted input matrix, the binary metric is calculated, but
a warning is returned.

decreasing The matrix has to be sorted before computation of (W)NODA. This can be done
either by ‘"fill"’, i.e. sum of cells with non-zero values, or ‘"abund"’, i.e. sum
of cell values. For a binary matrix decreasing needs to be ‘"fill"’ (as no abun-
dances are available). For weighted matrices, the argument may be ‘"fill"’
(yielding WNODF) or ‘"abundance"’ (yielding WNODA).

sort Logical. Should columns and rows of the matrix be sorted, in order to maximize
nestedness index?

mod Output of a computeModules-object. Returns a vector to be used as input for
‘constraints’.

Value

Function returns a list with elements

WNODArow Nestedness for rows

WNODAcol Nestedness for columns

WNODAmatrix Nestedness for entire matrix

If constraints are provided, e.g. based on computeModules, output additionally includes:

WNODA_SM_row Nestedness for rows belonging to the same modules

WNODA_DM_row Nestedness for rows belonging to different modules

WNODA_SM_col Nestedness for columns belonging to the same modules

WNODA_DM_col Nestedness for columns belonging to different modules
WNODA_SM_matrix

Nestedness for nodes (rows and columns) belonging to the same modules
WNODA_DM_matrix

Nestedness for nodes (rows and columns) belonging to different modules

Author(s)

Rafael Barros Pereira Pinheiro <rafael-bpp@hotmail.com>, Gabriel Felix, Marco Mello, and the
team of the Ecological Synthesis Lab, University of São Paulo

References

Almeida-Neto M, Guimaraes PR, Guimaraes PR Jr, Loyola RD, Ulrich W (2008) A consistent
metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos
117: 1227–1239
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Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring
nestedness using quantitative matrices. Environ. Model. Softw. 26: 173–178

Felix, G.M., Pinheiro, R.B.P., Poulin, R., Krasnov, B.R. & Mello, M.A.R. (2017). The compound
topology of a continent-wide interaction network explained by an integrative hypothesis of special-
ization. bioRxiv

Flores, C.O., Valverde, S. & Weitz, J.S. (2013). Multi-scale structure and geographic drivers of
cross-infection within marine bacteria and phages. ISME J. 7: 520–532

See Also

vegan::nestedNODF, computeModules

Examples

nest.smdm(Safariland)
nest.smdm(Safariland, weighted=TRUE)
nest.smdm(Safariland, weighted=TRUE, decreasing="abund")
nest.smdm(Safariland, weighted=TRUE, decreasing="abund", sort=FALSE)
# identify modules using computeModules:
mod <- computeModules(Safariland)
const <- module2constraints(mod)
nest.smdm(Safariland, constraint=const)
nest.smdm(Safariland, constraint=const, weighted=TRUE)

nested Calculates any of several measures of nestedness

Description

Wrapper function calling one, several or all currently implemented nestedness measures

Usage

nested(web, method = "binmatnest", rescale=FALSE, normalised=TRUE)

Arguments

web A matrix with elements of a set (e.g. plants) as rows, elements of a second set
(e.g. pollinators) as columns and number of interactions as entries.

method One or more of the following: ‘discrepancy’, ‘discrepancy2’, ‘binmatnest’,
‘NODF’, ‘NODF2’, ‘C score’, ‘checker’, ‘weighted NODF’, ‘wine’, ‘ALL’. See
details for details on each method.

rescale Should all measures be rescaled so that higher values mean higher nestedness?
Defaults to FALSE, i.e. the standard interpretation of each measure is main-
tained.

normalised Logical, defaulting to TRUE. Should C-scores be normalised to a value between
0 and 1? See C.score for details.
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Details

There are seven different measures (with variations yielding ten indices) currently available:

1 binmatnest calculates nestedness temperature following the function nestedtemp (0 = cold =
highly nested; 100 = hot = not nested at all). (Note that we replaced ‘binmatnest’, which calls
the retired nestedness, which used the original C++-program of Miguel Rodriguez-Girones,
by what used to be binmatnest2. Because binmatnest sometimes (and to us unexplicably)
invert the matrix, we prefer the vegan’s binmatnest2, now binmatnest, option. That is the
implementation by Jari Oksanen in nestedtemp of the same algorithm.)

2 Discrepancy calculates the number of non-nested 0s and 1s. While discrepancy calls the func-
tion with the same name, discrepancy2 calls nesteddisc, which handles ties differently. Most
of the time, these two should deliver very, very similar results. Higher values indicate lower
nestedness.

3 NODF is the nestedness measure proposed by Almeida-Neto et al., correcting for matrix fill
and matrix dimensions. Values of 0 indicate non-nestedness, those of 100 perfect nesting.
NODF2 sorts the matrix before calculating the measure. NODF is, I understand, closer to
the version presented in the paper, while NODF2 seems to make more sense for comparisons
across different networks (because it is independent of the initial presentation of the matrix).
Both call nestednodf in vegan. (Yes, I initially programmed NODF myself, only to find that
it was there already. Luckily, there was a perfect agreement between my (depricated) version
and nestednodf.) A weighted version is also now available (see point 6 below), following the
paper of Almeida-Neto and Ulrich (2010).

4 C.score calculates the number of checkerboard pattern in the matrix. As default, it normalises
this value between min and max, so that values of 0 indicate no checkerboards (i.e. nesting),
while a value of 1 indicates a perfect checkerboard. checker is the non-normalised version,
based on nestedchecker.

5 wine is one of two nestedness measure using the information on the weight of a link. See wine
for details.

6 weighted NODF is a version of 3, but now incorporating information on the weights of the link;
it is the second quantitative nestedness measure, (chronologically) after wine. It uses the
sorted matrix to compute NODF. If you want NODF of the unsorted, you have to directly use
nestednodf in vegan.

7 weighted NODA, or WNODA, does try to give a good nestedness measure without correcting for
column/row expectations, as that should be left to the null model; see Félix et al. (2017) for
details. Also, NODA accounts for modular structures of the network, computing nestedness
separately in each (see nest.smdm for further details).

Value

A vector with values for each of the selected nestedness measures.

Note

The idea behind this function is to encourage the comparison of different nestedness measures. That
does not mean, we necessarily see much ecological sense in them (see, e.g., the paper by Blüthgen
et al. 2008).
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nested uses one non-default setting for the nestedness measures called: ‘null.models=FALSE’.
This is simply to speed up the computation. Null models should be built for all nestedness measures,
of course, not only for nestedness!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Almeida-Neto, M., Guimaraes, P., Guimaraes, P.R., Loyola, R.D. and Ulrich, W. 2008. A consistent
metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos
117, 1227–1239.

Almeida-Neto, M. and Ulrich, W. (2011) A straightforward computational approach for measuring
nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173–178

Blüthgen, N., J. Fründ, D. P. Vazquez, and F. Menzel. 2008. What do interaction network metrics
tell us about specialisation and biological traits? Ecology 89, 3387–3399.

Brualdi, R.A. and Sanderson, J.G. 1999. Nested species subsets, gaps, and discrepancy. Oecologia
119, 256–264.

Felix, G.M., Pinheiro, R.B.P., Poulin, R., Krasnov, B.R. & Mello, M.A.R. (2017). The compound
topology of a continent-wide interaction network explained by an integrative hypothesis of special-
ization. bioRxiv

Galeano, J., Pastor, J.M., Iriondo and J.M. 2008. Weighted-Interaction Nestedness Estimator (WINE):
A new estimator to calculate over frequency matrices. arXiv 0808.3397v2 [physics.bio-ph]

Rodríguez-Gironés, M.A. and Santamaría, L. 2006. A new algorithm to calculate the nestedness
temperature of presence-absence matrices. J. Biogeogr. 33, 924–935.

Stone, L. and Roberts, A. 1990. The checkerboard score and species distributions. Oecologia 85,
74–79.

Almeida-Neto, M. and Ulrich, W. 2010. A straightforward computational approach for measuring
nestedness using quantitative matrices. Environmental Modelling & Software, in press.

See Also

C.score, wine, nestedness, discrepancy; and, within vegan: nestedtemp, nestedchecker,
nesteddisc, nestednodf

Examples

## Not run:
data(Safariland)
nested(Safariland, "ALL")
nested(Safariland, "ALL", rescale=TRUE)
# illustration that non-normalised C.score and checker are the same:
nested(Safariland, c("C.score", "checker"), normalise=FALSE)

## End(Not run)
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nestedcontribution Calculates the per-species contribution to nestedness (z-score relative
to null model)

Description

Estimates the degree to which the interactions of each row and column species increase or decrease
community nestedness.

Usage

nestedcontribution(web, nsimul = 99)

Arguments

web A matrix with elements of a set (e.g., plants) as rows, elements of a second set
(e.g., pollinators) as columns and number of interactions as entries. Non-binary
matrices will be converted to 0/1 data.

nsimul Number of randomizations to use as the basis for each comparison.

Details

The idea behind nestedness contribution is to determine how individual species’ interactions change
community nestedness compared to a random null model that is designed to control for the effect of
differences in degree. For each row and column species, this function compares observed nestedness
to an ensemble of nestedness values generated by randomizing the interactions of just that focal
species. Nestedness contributions are the z-scores from this comparison. Therefore, a positive
contributor to community nestedness (i.e., a species whose interactions increase overall nestedness)
will obtain values greater than 0 and negative contributors to nestedness will obtain values less than
0.

Value

For both the “higher trophic level” and the “lower trophic level”, this function returns a data frame
with the per-species nestedness contributions.

Note

This function calculates per-species nestedness contributions as described in Saavedra et al. 2011—
namely it is based on the metric NODF to measure nestedness and employs a probabilistic null
model to randomize interactions (that is described in Bascompte et al. 2003). The underlying
methodology is amenable to other choices in both of these cases; however, this is not implemented
at present.

The currently implemented null model replaces the observed vector of 0/1s by a probabalistic draw
of 0/1s as given by the mean of mean degree in the higher trophic level (rowSums(web)/ncol(web))
and the mean degree for the target higher trophic level species i (colSums(web)[i]/nrow(web)).
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Author(s)

Daniel B. Stouffer <daniel.stouffer@canterbury.ac.nz>

References

Bascompte, J., Jordano, P., Melián, C.J., and Olesen, J.M. 2003. The nested assembly of plant-
animal mutualistic networks. Proceedings of the National Academy of Sciences of the USA 100,
9383–9387
Saavedra, S., Stouffer, D.B., Uzzi, B., and Bascompte, J. 2011. Strong contributors to network
persistence are the most vulnerable to extinction. Nature 478, 233–235

Examples

data(Safariland)
## Not run:

nestedcontribution(Safariland)

## End(Not run)

nestedness Calculates nestedness temperature of presence/absence matrices

Description

Deprecated: Calculates matrix temperature using the binmatnest approach of Miguel Rodríguez-
Gironés

Usage

nestedness(m, null.models = TRUE, n.nulls = 100, popsize = 30,
n.ind = 7, n.gen = 2000, binmatnestout=FALSE)

Arguments

m m is the matrix object for which the temperature is calculated. m will be converted
to a binary matrix as temperature is only based on binary data

null.models Ignored. Logical; shall the three different null models to check for significance
of the matrix temperature be calculated? The null models procedure is quite time
consuming and therefore we added this switch. Defaults to null.models=TRUE.

n.nulls Ignored. How many null models should be calculated. Defaults to n.nulls=100.
popsize Ignored. For the genetic algorithm some parameters have to be initialised. First

is popsize, default is 30
n.ind Ignored. Second is number of individuals picked for the next generation. Default

of n.ind is 7.
n.gen Ignored. Third is the number of generations until the genetic algorithm stops.

Default of n.gen is 2000.
binmatnestout Ignored. If set to TRUE a file "binmat.out" is saved in the current working

directory , which stores the original binmatnest output
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Details

This is a note that the original function provided here, and detailed below, has been retired. vegan’s
nestedtemp is more stable and replaces this call whereever we use it in bipartite. Indeed, call-
ing bipartite’s nestedness now simply call’s vegan’s nestedtemp. The function will eventually
disappear, but for now this fix is provided as legacy support for dependent packages.

All arguments except first are ignored.

There are several implementations of nestedness-calculators, most noticeably NTC (nestedness
temperature calculator), BINMATNEST and aninhado (check Wikipedia’s entry on the subject:
https://en.wikipedia.org/wiki/Nestedness). While we used BINMATNEST, this does not
disqualify any of the others. Miguel was simply the first we contacted and he was readily willing to
share his code.

We used BINMATNEST by calling a tweaked version of the C++ program binmatnest. In principle
nestedness temperature is calculated by using a line of perfect order (using a genetic algorithm) to
determine the reordering of rows and columns that leads to minimum matrix temperature of given
size and fills. The deviation from this minimun temperature is the matrix temperature. In addition
nestedness uses different null models to check for statistical significance of the matrix temperature.
For details on what BINMATNEST does different, and better, than the original NTC see reference
below.

Notice also that the original software BINMATNEST is available as a stand-alone application.
Check out Miguel’s homepage: http://www.eeza.csic.es/eeza/personales/rgirones.aspx

Value

comm Returns the input.

u null model matrix

r marginal row proportions

c marginal col proportions

p ??

fill connectance: proportion of non-zero cells

statistic nestedness temperature

smooth ??

References

Rodríguez-Gironés M.A., and Santamaría L. 2006. A new algorithm to calculate the nestedness
temperature of presence-absence matrices. Journal of Biogeography 33, 924–935

https://en.wikipedia.org/wiki/Nestedness
http://www.eeza.csic.es/eeza/personales/rgirones.aspx
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nestedrank Calculates the rank of a species in a matrix sorted for maximum nest-
edness

Description

Ranks species according to their generality, which is measured as the position in the nestedness ma-
trix. A generalist will interact with more species and thus have a rank closer to 1, while specialists
(and rare species) will have ranks with higher values.

Usage

nestedrank(web, method = "NODF", weighted=TRUE, normalise=TRUE, return.matrix=FALSE)

Arguments

web A matrix with elements of a set (e.g., plants) as rows, elements of a second set
(e.g., pollinators) as columns and number of interactions as entries.

method One or more of the following: ‘NODF’, ‘nodf’, ‘binmatnest’, ‘wine’, ‘sort’.
See details for details on each method.

weighted For NODF and wine only: should the number of interactions per link be used as
weights? See help of nestednodf in vegan for details.

normalise Logical; defaulting to TRUE. Divides the rank-1 by the number of species -1,
thereby ranging it between 0 (most generalist) and 1 (most specialised).

return.matrix Logical, defaulting to FALSE. Should the matrix resulting from the nestedness-
sorting be returned as well?

Details

The idea is to re-arrange the network matrix according to its nestedness, so that the most “generalist”
species with most links will be in the first row/column and decreasing from there. The nestedness
matrix can be computed in different ways. There are four different methods currently available:

NODF (or nodf) will use vegan’s nestednodf-function to arrange the matrix. With ‘weighted=TRUE’,
which is the default, it will use the actual number of interactions, rather than the number of
links

binmatnest will use the vegan’s nestedtemp-function to arrange the matrix. This is only using
binary information, so weighting has no effect.

wine will use the wine-function to arrange the matrix. When ‘weighted=FALSE’, wine will be
applied to a binary matrix.

sort will simply sort the matrix by marginal totals (i.e. by number of interactions per species when
‘weighted=TRUE’ or by number links (=degree) when ‘weighted=FALSE’. In this case the
rank simply represents the abundance of the species in this network.
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Value

A list of nestedness ranks vectors for the lower and higher trophic level (smallest value for the most
generalist). If ‘return.matrix=TRUE’, a third list entry will contain the nested matrix.

Note

Since nestedness is itself not a straight-forward measure of something ecologically meaningful, also
these ranks may or may not be. At least there is a high chance that they represent merely abundance
of each species. See example for an idea on how to check for the effect of abundance as such.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Alarcon, R., Waser, N.M. and Ollerton, J. 2008. Year-to-year variation in the topology of a plant-
pollinator interaction network. Oikos 117, 1796–1807

See Also

nested; nestedrank is called by specieslevel

Examples

## Not run:
ranks <- sapply(c("nodf", "binmatnest", "wine", "sort"), function(x)

nestedrank(Safariland, method=x)[[2]])
cor(ranks) # high correlation between sort and other indicate that only abundance matters

## End(Not run)

networklevel Analysis of bipartite webs at the level of the entire network

Description

Calculates a variety of indices and values for a bipartite network

Usage

networklevel(web, index="ALLBUTDD", level="both", weighted=TRUE,
ISAmethod="Bluethgen", SAmethod = "Bluethgen", extinctmethod = "r",
nrep = 100, CCfun=median, dist="horn", normalise=TRUE, empty.web=TRUE,
logbase="e", intereven="prod", H2_integer=TRUE, fcweighted=TRUE,
fcdist="euclidean", effective=FALSE, legacy=FALSE)
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Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of prey.

index One or more of the following (exact match only!). First the group of “pure”
network indices, then those computed for each level.

• ‘connectance’,
• ‘web asymmetry’,
• ‘links per species’,
• ‘number of compartments’,
• ‘compartment diversity’,
• ‘cluster coefficient’, which will compute both the network-wide clus-

ter coefficient as well as those for each level,
• ‘nestedness’ (where ties may induce variation when changing the sequence

of species in ‘web’),
• ‘NODF’,
• ‘weighted nestedness’ (where ties may induce variation when changing

the sequence of species in ‘web’),
• ‘weighted NODF’,
• ‘ISA’ (or alternatively ‘interaction strength asymmetry’ or

‘dependence asymmetry’),
• ‘SA’ (or alternatively ‘specialisation asymmetry’),
• ‘linkage density’,
• ‘weighted connectance’,
• ‘Fisher alpha’,
• ‘interaction evenness’,
• ‘Alatalo interaction evenness’,
• ‘Shannon diversity’,
• ‘H2’;

and/or those invoked through grouplevel:

• ‘number of species’ in the respective trophic level,
• ‘mean number of links’,
• ‘mean number of shared partners’,
• ‘weighted cluster coefficient’,
• ‘degree distribution’,
• ‘togetherness’,
• ‘C score’,
• ‘V ratio’,
• ‘discrepancy’ (where ties may induce variation when changing the se-

quence of species in ‘web’),
• ‘extinction slope’ (where ties may induce variation when changing the

sequence of species in ‘web’),
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• ‘robustness’ (where ties may induce variation when changing the sequence
of species in ‘web’),

• ‘niche overlap’,
• ‘generality’,
• ‘vulnerability’,
• ‘fc’ (or alternatively ‘functional complementarity’).

Furthermore, there are some groups of indices that can be called:

• ‘ALL’ calculates all indices (returning a list (since degree distribution fits
are a table within this list and cannot be simplified)),

• ‘ALLBUTDD’ (default) calculates all indices except degree distribution fits.
This latter has the advantage that the output can be simplified to a vector;

• ‘info’ returns more general information on the network;
• ‘binary’ returns a best-of selection of indices based on a binary network;
• ‘quantitative’ returns a best-of selection of indices based on quantitative

networks;
• ‘topology’ returns indices more abstractly describing network properties.

Also CHECK details below!

level For which level should the level-specific indices be computed: ‘both’ (default),
‘lower’ or ‘higher’?

weighted Logical; should the weighted average be computed for indices that are averaged
across species (at the group level)? Defaults to TRUE.

ISAmethod Method to use for calculating interaction strength (= dependence) asymmetry;
original by ‘Bascompte’ is yielding artefact results based only on the asymme-
try of the web (as shown by example in Blüthgen et al. 2007 analytically in
Blüthgen 2010) and should hence be avoided; ‘Bluethgen’ (default) excludes
singletons and corrects for low number of interactions (range -1 to 1).

SAmethod How to aggregate d’-based specialisation values: mean of log-transformed de-
pendencies (‘log’) or Blüthgen’s marginal totals-weighted mean (default); see
Blüthgen et al. (2007).

extinctmethod Specifies how species are removed from matrix: ‘random’, ‘degree’ or ‘abundance’
(partial matching). See second.extinct for details an option to predefine the
sequence externally; idea from Memmott et al. (2004).

nrep Number of replicates for the extinction sequence analysis.

CCfun Method to use when calculating the clustering coefficient. Originally proposed
as mean of cluster coefficients for each species. Defaults to ‘median’, because
cluster coefficients are strongly skewed.

dist Distance metric to be used to calculate niche overlap. Any of vegan’s vegdist-
metrics can be used; defaults to Horn’s index, which is the recommendation of
Krebs (1989). Binary percent niche overlap would be computed with
‘dist = "jaccard"’.

normalise Logical; shall the C-score and togetherness metrics be normalised to a range of
0 to 1? Defaults to TRUE.

empty.web Shall the empty columns and rows be deleted? Defaults to TRUE.
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logbase Shall the various diversity indices (linkage density, partner diversity, general-
ity/vulnerability, interaction evenness) be calculated to the base of e (default) or
2? Log2 is the proposal for generality and vulnerability by Bersier et al. (2002),
while Shannon uses ln. The choice of the base will not affect the results qual-
itatively, at most by a scaling factor. Note that for all these indices, we follow
common practice and define 0 * log(0) = 0.

intereven Shall all cells of the matrix be used to calculate the interaction evenness
(‘intereven = "prod"’)? Or, as given by Bersier et al. (2002) and Tylianakis
et al. (2007), should only the realised links be used (‘intereven = "sum"’; de-
fault)? Prod and sum refer to using the log of the product of matrix dimensions
(i.e. all cells) or the log of the sum of non-zero cells (i.e. number of links) as
denominator in the evenness formula. See last paragraph of the details-section
for views on these two options!

H2_integer Logical; indicates whether values in web are integers. Passed on to H2fun; see
there for details.

fcweighted Logical; when computing “functional complementarity” sensu function fc, should
the weights of the matrix be used. Defaults to TRUE, but original paper (Devoto
et al. 2012) is based on FALSE.

fcdist Distance measure to be used to compute functional complementarity through
fc; any measure accepted by dist is acceptable.

effective logical; should interaction evenness, Alatalo evenness, H2’ and diversity be ex-
pressed as “effective” diversity? For Jost (2010, page 210) this seems to be the
better decomposition of an index into a diversity and an evenness component.
On a downside, H2’ is then no longer ranged in [0,1], and “diversity” becomes
the same as “vulnerability” and “generality”. For these reasons, and backward
compatibility, the default is FALSE.

legacy Logical; should the old (pre-2.00) version of networklevel be used? To be
backward compatible, the old networklevel-function is still available (.networklevel)
and can be called by setting ‘legacy=TRUE’. This is only for the transition pe-
riod until all papers in the making have been published (or binned). Index names
and sometimes unclear focal level were downsides of the old implementation,
which is now remedied. Thus, the use of ‘legacy=TRUE’ and the direct call of
.networklevel are strongly discouraged!

Details

For explanations of any of the indices computed for a level (i.e. those with HL and/or LL suffix),
please see grouplevel for details.

This function implements a variety of the many (and still procreating) indices describing network
topography. Some are embarrassingly simple and mere descriptors of a network’s outer appearance
(such as number of species in each trophic level or the number of links (= non-zero cells) in the
web). Others are variations on Shannon’s diversity index applied to within column or within rows.
Only extinction slope is newly implemented here, and hence described in a bit more detail.

Currently, you cannot get the qualitative version of quantitative indices such as vulnerability!

Integers or continuous values - what are the quantities in quantitative webs? Some web metrics
expect in their typical formulation that the entries in the web-matrix are integers - e.g. H2’ is de-
fined relative to minimum and maximum based on marginal totals. Blüthgen et al. (2006) use an
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algorithm assuming values can only be integers. If your quantities are not constrained to be inte-
gers, multiplication and rounding may or may not give consistent results, depending on rounding
errors and the factor applied. Multiplication with high numbers such as 10 000 seems to be OK.
For H2’ a simplified calculation applicable to continuous numbers is available (by declaring option
‘H2_integer=FALSE’ in H2fun). Note that values of H2’ based on integers are not directly com-
parable to H2’ based on continuous values (for sparse webs, H2’_continuous is much higher than
H2’_integer). We tentatively think that other indices are hardly affected by non-integer values or by
multiplication and rounding. Please let us know your experience.

Value

The suffixes LL and HL refer to lower and higher level, respectively

Depending on the selected indices, some or all of the below (returned as vector if “degree distribu-
tion” was not requested, otherwise as list):

connectance Realised proportion of possible links (Dunne et al. 2002): sum of links divided
by number of cells in the matrix (= number of higher times number of lower
trophic level species). This is the standardised number of species combinations
often used in co-occurrence analyses (Gotelli & Graves 1996)

web asymmetry Balance between numbers in the two levels: positive values indicate more higher-
trophic level species, negative more lower-trophic level species; implemented as
(ncol(web)-nrow(web))/sum(dim(web)); web asymmetry is a null model for
what one might expect in dependence asymmetry: see Blüthgen et al. (2007).

links per species

Mean number of links per species (qualitative): sum of links divided by number
of species.

number of compartments

Compartments are sub-sets of the web which are not connected (through either
higher or lower trophic level) to another compartment. Mathematically, they are
Jordan blocks, but this implementation is rule-based (and fast). They are also
nicely visualised in the visweb function.

compartment diversity

Shannon’s diversity of compartment sizes (size = number of species from both
levels); see Tylianakis et al. (2007).

cluster coefficient

The cluster coefficient for a network is the average cluster coefficients of its
members, i.e. simply the number of realised links devided by the number of pos-
sible links. Introduced by Watts & Strogatz (1998) and described in Wikipedia
under https://en.wikipedia.org/w/index.php?title=Clustering_coefficient.
The cluster coefficient can be computed both for the entire network, as well as
for each level (for the latter indicated by suffix HL or LL).

nestedness Nestedness temperature of the matrix (0 means cold, i.e. high nestedness, 100
means hot, i.e. chaos). networklevel calls nestedtemp! If you are interested
in the different null models, please use the function nested or nestedtemp di-
rectly.

NODF Another index for nestedness, calling nestednodf. High values indicate nest-
edness. According to the analysis of Almeida-Neto et al. (2008, 2010), NODF
is more consistent and “better” than usual measures of nestedness.

https://en.wikipedia.org/w/index.php?title=Clustering_coefficient
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weighted nestedness

A nestedness version that considers interaction frequencies (and is hence weighted),
proposed by Galeano et al. (2007) and implemented in wine. It ranges between
1 (perfect nestedness) and 0 (perfect chaos). Note that this is the OPPOSITE
interpretation of nestedness temperature!

weighted NODF Another quantitative (=weighted) index for nestedness, building on NODF (see
nestednodf). High values indicate nestedness. According to the analysis of
Almeida-Neto et al. (2008, 2010), NODF is more consistent and “better” than
usual measures of nestedness.

interaction strength asymmetry

(selected using ‘index = "ISA"’). Explaining dependence asymmetry is also a
measure of specialisation, across both trophic levels. Proposed by Bascompte et
al. (2006) and critised and alterations proposed by Blüthgen et al. (2007). The
latter also show that dependence asymmetry can be almost entirely explained
by web asymmetry (see above). Positive values (only possible of ‘ISAmethod =
"Bluethgen"’) indicate higher dependence in the higher trophic level. See func-
tion specieslevel and its index ‘interaction push/pull’, which quantifies
the balance of affecting and being effected by other species. Similarly, index
‘strength’ quantifies the average effect of each species on all its partners.

specialisation asymmetry

(selected by using ‘index="SA"’). Asymmetry (higher vs. lower trophic level)
of specialisation now based on d’ (see dfun), which is insensitive to the dimen-
sions of the web. Again, two options of calculation are available: the one pro-
posed by Blüthgen et al. (2007), where they weight the specialisation value for
each species by its abundance (‘SAmethod="Bluethgen"’) or where d’-values
are log-transformed (arguing that d’-values are indeed log-normally distributed:
‘SAmethod="log"’). Since the mean d-value for the lower trophic level is sub-
tracted from that of the higher, positive values indicate a higher specialisation of
the higher trophic level.

linkage density

Marginal totals-weighted diversity of interactions per species (quantitative). Ac-
tually, this is computed as the average of vulnerability and generality (Bersier et
al. 2002). Does not respond to setting weighted=FALSE.

weighted connectance

Linkage density divided by number of species in the network (Bersier et al.
2002). This will respond to whether non-interacting species (e.g. unparasitised
hosts) are included or not!

Fisher’s alpha An alternative measure of interaction diversity (using fisherfit).
interaction evenness

Shannon’s evenness for the web entries. Note that the two options are rather
different. By definition, IE = H/Hmax; H = -sum(p.i.mat*log(p.i.mat)), where
p.i.mat = matrix/sum(entries in matrix). This means, when calculating H, do we
treat all possible links as species, and the interactions (cell values) as measure
of their abundance? By definition, Hmax = ln(N). The key question is: What is
the right value for N? Since we treat the matrix cells as species, it is (clearly?)
the number of matrix cells, i.e. number of higher trophic level species x number
of lower trophic level species. We think this logic justifies our default "prod".
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However, others argue in favour of N=number of links. Please see note for our
discussion on this point. Note that ‘effective=TRUE’ will turn this into Jost
(2019)’s “effective evenness”.

Alatalo interaction evenness

A different measure for web entry evenness, as proposed by Müller et al. (1999).
Shannon diversity

Shannon’s diversity of interactions (i.e. network entries).

H2 H2’ is a network-level measure of specialisation. It ranges between 0 (no spe-
cialisation) and 1 (complete specialisation). More specifically, H2’ is a measure
of discrimination, i.e. calculated in comparison to no specialisation (see H2fun
for details. To avoid confusion of keys (apostrophe vs. accent), we call H2’ only
H2 here.

others now to come:

all other indices are returned as output from grouplevel. Please see there for
details, we here only provide minimal listing.

number of species

mean number of shared partners

in this level
cluster coefficient

for this level (same for both levels if ‘weighted=FALSE’).
weighted cluster coefficient

niche overlap Mean similarity in interaction pattern between species of the same level, calcu-
lated by default as Horn’s index (‘dist="horn"’).

togetherness Mean number of co-occupancies across all species combinations.

C score Mean (normalised) number of checkerboard combinations across all species.

V ratio Variance-ratio of species numbers to individual numbers within species for that
level.

discrepancy Discrepancy as proposed by Brualdi & Sanderson (1999); see also discrepancy
for details. However, networklevel actually calls vegan’s nesteddisc to bet-
ter handle ties.

degree distribution

See degreedistr for details and references.
extinction slope

Slope of the secondary extinction sequence in that level, following extermination
of species in the other level.

robustness Area below the “secondary extinction” curve; see robustness for details. Cor-
responds to “extinction slope”.

functional complementarity

for a given level.
partner diversity

(Weighted) mean Shannon diversity of the number of interactions for the species
of that level. Choose ‘logbase=2’ to change to a log2-based version.
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generality/vulnerability

(Weighted) mean effective number of LL species per HL species (generality; HL
species per LL species for vulnerability), weighted by their marginal totals (row
sums); see Tylianakis et al. (2007) and Bersier et al. (2002). This is identical
to exp(“partner diversity”, i.e., simply the Jost (2006)-recommended version of
diversity.

Note

Sum or Prod: How to calculate interaction evenness? I shall first put down my argument for
“prod” and then Jason Tylianakis’ arguments for “sum”.

Carsten: “I do not want to defend a position I cannot hold against the flood of qualified criticism,
and shall be happy to change the default to option “sum” (i.e. Jason’s proposal). Nevertheless,
I shall make a very brief attempt to defend my (and Nico’s point of view). Imagine a completely
different situation: I have “counted” birds in a landscape. From a more meticulous colleague I know
that there are 27 bird species breeding at the moment, but on that two mornings that I went out, I
could only hear 15. Now I want to calculate the Shannon diversity (and evenness) of birds in that
landscape. The “normal” (in the sense of established) approach to use the data from my 15 species.
But hold on: I KNOW there are more species out there. I don’t know how many (i.e. there may be
more than the 27 my colleague has found), but there are at least 27. If I only use the data from my
15 species, I will get a higher evenness value than when I also include the 12 zeros. My conclusion
would be: I don’t want to overestimate evenness only because I couldn’t look long enough, thus I
use all 27 values.”

Jason: “I would disagree because what you “know” is based on your meticulous colleague’s ‘sam-
pling’, which will also have its limits. If all you wanted was to know the total number of species
there (assuming none have gone extinct), then what you propose is fine. However, the problem
comes when you want to compare sites, and then sampling effort should be standardised. In most
cases we know we don’t have a full representation of the diversity (or food web) of an area, but
we know for a given spatial or temporal sampling scale that one site differs from another in certain
ways, and to me that is the most important. Anyway, it is all a question of scale and the precise
question being asked. So what about making it an option in bipartite that you can either choose to
divide by the realised links (give our 2007 paper as a ref, so people know it’s comparable to that) or
divide by the number of potential links, if that’s the question people want to ask?” There you go:
it’s your choice!

NA values: All error and warning messages are (or at least should be) suppressed! If your web
returns and NA for some of the indices, this can be because the index cannot be computed. For ex-
ample, if the web is full (i.e. no 0-cells), extinction slopes cannot be fitted (singularity of gradient).
Check if you can expect the index to be computable! If it is, and networklevel doesn’t do it, let me
know.

Reducing computation time: Some indices require rather long computation times on large webs.
If you want to increase the speed by omitting some indices, here a rough guide: Ask only for the
indices you are interested in! Otherwise, here is the sequence of most time-consuming indices:

1. The slowest function is related to extinction slopes and robustness. Excluding both makes the
function faster.

2. ‘weighted cluster coefficient’ is also very time consuming (an exhaustive search for 4-
loops in the one-mode projection of the network). Omitting it can dramatically boost speed.

3. Degree distributions are somewhat time consuming.
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4. Fisher’s alpha is computed iteratively and hence time consuming.

5. Nestedness and weighted nestedness are not the fastest of routines.

6. Number (and diversity) of compartments calls a recursive and hence relatively slow algorithm.

7. H2 and specialisation asymmetry require an iterative, heuristic search algorithm. Finally,
excluding discrepancy can also moderately decrease computation time.

Does the species sequence in the data matter? Obviously, it shouldn’t, and for most indices it
doesn’t. However, particularly indices based on binary representation of ‘web’ will have ties, where
several species have the number of links. In this case, it does matter how the matrix is sorted before
simulating extinctions or computing discrepancy. There is no (known) foolproof way to get this
sequence "right" (see also "Details" of help for nesteddisc). Re-running the same code with a
shuffled network may thus yield (slightly) different values for (weighted) nestedness, togetherness,
discrepancy, extinction slopes and robustness. (Thanks to Valentin Stefan for making us explicitly
addressing this issue!)

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>
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See Also

Some functions are implemented separately: H2fun, second.extinct, degreedistr, C.score and
V.ratio

Examples

## Not run:
data(Safariland)
networklevel(Safariland)
networklevel(Safariland, index="ALLBUTDD") #excludes degree distribution fits

## End(Not run)
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nodespec Calculates the node-based specialisation index

Description

Calculates a specialisation index based on the node positions for all species in a bipartite network,
separately for the higher and lower trophic level.

Usage

nodespec(web, inf.replace = NA)

Arguments

web A matrix with lower trophic level species as rows, higher trophic level species
as columns and number of interactions as entries.

inf.replace What should infinite geodesic distances (e.g. between compartments) be repre-
sented as? Defaults to ‘NA’; only currently implemented alternative is ‘inf.replace=Inf’,
which replaces infinite distances by the maximum path length plus 1.

Details

This index aims to describe the functional specialisation of pollinators and was proposed by Dal-
gaard et al. (2008). It is a purely qualitative measure.

After calculating the geodesic distances between species, i.e. the minimum number of steps from
one species to another, these values are averaged for each species. This mean geodesic distance is
interpreted as functional specialisation (Dalgaard et al. 2008).

Notice that this “new” index is in fact little else than the inverse of (unscaled) closeness centrality
in disguise.

Value

A list with two components, names “higher” and “lower”, both containing the node specialisation
index for each species.

Note

This index is as yet unevaluated. We don’t know how it responds to true specialisation at all. In fact,
it is a rather good example of how to get a new thing published without even having demonstrated
in which way it differs from existing indices of specialisation (such as standardised d included in
the function dfun), or how it performs on artificial data with known properties.

One major disadvantage of any index based on path lenghts is its difficulty with compartments, i.e.
species not linked to the rest of the network. There are, generally speaking, three ways to handle
this: Firstly, ignore it (that is, set infinite distances to NA; our default). Secondly, leave it as it is
(that is, leave infinite distances as infinite). This is not really an option, since then ALL species
would have infinite specialisation values. Thirdly, replace infinite by the largest distance plus one
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(see comments in geodist in sna). That would probably be a plausible thing to do, since we could
argue that with a little bit extra observation we might have found a species linking a compartment
to the rest of the network. However, this solution is “not canonical”, as put in geodist and hence
biased to an unknown extent. To use this option, specify ‘inf.replace=Inf’.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Dalsgaard, B., Martín González, A. M., Olesen, J. M., Timmermann, A., Andersen, L. H. and
Ollerton, J. (2008) Pollination networks and functional specialization: a test using Lesser Antillean
plant-hummingbird assemblages. Oikos 117, 789–793

See Also

See also as specieslevel, which calls nodespec.

Examples

data(Safariland)
nodespec(Safariland, inf.replace=Inf)

NOS Calculates the node overlap and separation according to Strona &
Veech (2015)

Description

This index computes a variation of nestedness, called node overlap and segragation, as well as a
modularity measure

Usage

NOS(web, keep.Nij=FALSE, keep.diag=FALSE)

Arguments

web A bipartite interaction web, i.e.~a matrix with higher (cols) and lower (rows)
trophic levels.

keep.Nij Shall node overlap matrix for each trophic level be returned, too? Logical, de-
faults to FALSE.

keep.diag Shall the diagonal of Nij be kept at a value of 1, or rather be omitted from
computations? If the diagnoal is kept, the index will not be centred on zero as
described in the paper. However, the paper is unclear about this point, and hence
the option to keep the diagonal (rather than setting omitting it from computation)
is offered. Logical, defaults to FALSE.
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Details

According to the authors, NOS is “a new statistical procedure to measure both [the tendency of
network nodes to share interaction partners] and the opposite one (i.e. species’ tendency against
sharing interacting partners) that we call ‘node segregation’. In addition, our procedure provides
also a straightforwardmeasure of modularity, that is, the tendency of a network to be compartmented
into separated clusters of interacting nodes.”

Value

Nbar the NOS-value (referred to by the authors as a funny N (which with the fc-
package in LaTeX is coded as \m{J}, apparently).

mod modularity, computed as mean standard deviation of the Nij-values for each
trophic level.

Nbar_higher the NOS-value for the higher trophic level.

Nbar_lower the NOS-value for the lower trophic level.

mod_higher the mod-value for the higher trophic level.

mod_lower the mod-value for the lower trophic level.

N_ij_higher Optional; the matrix of NOS-values for each species pair, for the higher trophic
level.

N_ij_lower Optional; the matrix of NOS-values for each species pair, for the lower trophic
level.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>, with additional code provided
by “tchen98” (on github).

References

Strona, G., and Veech, J.A. (2015) A new measure of ecological network structure based on node
overlap and segregation. Methods in Ecology & Evolution 15, 319–328

See Also

grouplevel, which eventually shall use this function.

Examples

data(Safariland)
# illustrate difference between keeping/removing the diagonal:
NOS(Safariland)
NOS(Safariland, keep.diag=TRUE)
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npartite Computes indices for a masked-one-mode network

Description

Computes network indices for networks that are represented as stacks of bipartite networks (“npar-
tite”), thus having many impossible links.

Usage

npartite(as.one.mode.web, index=c("connectance", "links per species", "mean degree"))

Arguments

as.one.mode.web

a one-mode representation of a network; if this is based on several bipartite
networks, i.e. species in levels NOT interacting within that level OR without
interactions between separated levels (e.g. 1st and 3rd) then such forbidden links
must be represented as NA! For bipartite networks this can easily be achieved
using as.one.mode(., fill=NA), but obviously for bipartite networks this function
is obsolete.

index Vector of names of indices to be computed for the npartite network. Currently
only ‘connectance’ and ‘links per species’ (=‘mean degree’) are available.

Value

A named list of indices.

Note

An attempt is made to ensure that these indices converge to the same value as returned for a bipartite
network!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

See Also

as.one.mode.

Examples

image(aomw <- as.one.mode(Safariland, fill=NA))
npartite(aomw)
networklevel(Safariland, index=c("connectance", "links per species"))
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null.distr Null model based on fitted marginal distribution

Description

Given a network, this function fits a distribution to the marginal totals and then draws randomly
from this distribution to yield a new network

Usage

null.distr(N, web, distr="lognormal")

Arguments

N Number of null model web to be generated.

web A (bipartite) network matrix.

distr The name of the distribution to be fitted to the marginal totals. Currently only the
lognormal (‘lognormal’ or ‘log-normal’) and the negative binomial (‘negative
binomial’ or ‘negbin’) are supported. Defaults to lognormal.

Details

This package provides several functions to generate null models for the observed data (see nullmodel).
However, this function deviates from any of these in that it does not hold the marginal totals as con-
stant. Rather, it sees them as a random draw of some underlying distribution. This distribution is
fitted (in a very ad hoc manner) to the data. The inspiration for this function comes from Bl ţhgen
et al. (2008).

In the next step, the same number of species is drawn from this distribution randomly, and a new
matrix is generated as the cross-product of these new vectors. The matrix is then standardised to
sum to 1. It now serves as probability of drawing an interaction for any of its cells.

As many interactions as were observed are drawn (given the above probabilities) and hence a new,
null matrix is generated.

In case of the negative binomial fit (and random draw), some 0-values will result from the random
draws. As a consequence, the dimension of the matrix can be dramatically lower than the observed.
To avoid this, I simply add 1 to each marginal total value. Again, this is very ad hoc and not
statistically justified. In fact, values already large should not receive an additional observation (as
shown by Dewdney 1998 in a very different context).

NOTE 1: The fitted distribution is not supposed to represent the true distribution behind the abun-
dances, but merely one way to have new marginal totals. In fact, in many cases the marginal totals
aren’t lognormal (or negative binomial), but much more skewed than that!

NOTE 2: Although the dimensions of the new, null web CAN be the same as that of the original,
quite often they will be lower. This is because some species have a very low probability of being
observed, and only in webs with many observations they will be. Stochasticity may render some
species unobserved. The consequences are potentially large! As species are lost, relative linkage
density goes up automatically, which affects virtually every network index!
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Value

A list of N new matrices with the same number of interactions, but possibly different dimensions.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Blüthgen, N., Fründ, J., Vázquez, D. P. and Menzel, F. 2008. What do interaction network metrics
tell us about specialisation and biological traits? Ecology, 89, 3387–3399.

Dewdney, A.K. 1998. A general theory of the sampling process with applications to the “veil line”.
Theoretical Population Biology, 54, 294–302.

See Also

nullmodel

Examples

## Not run:
data(Safariland)
null.distr(N=2, Safariland)
null.distr(N=2, Safariland, distr="negbin")

round(networklevel(Safariland, "info"), 3)
sapply(null.distr(N=5, Safariland), function(x) networklevel(x, index="info"))
# highly connected
sapply(null.distr(N=5, Safariland, distr="negbin"), function(x) networklevel(x,
index="info")[3])
# similarly highly connected

## End(Not run)

null.t.test Compares observed pattern to random webs.

Description

A little null-model function to check, if the observed values actually are much different to what one
would expect under random numbers given the observed row and column totals (i.e.~information
in the structure of the web, not only in its species’ abundances). Random matrices are based on the
function r2dtable. The test itself is a t-test (with all its assumptions).

Usage

null.t.test(web, N = 30, ...)
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Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows).

N Number of null models to be produced; see ‘Note’ below!

... Optional parameters to be passed on to the functions networklevel and t.test.

Details

This is only a very rough null-model test. There are various reasons why one may consider
r2dtable as an incorrect way to construct null models (e.g.~because it yields very different con-
nectance values compared to the original). It is merely used here to indicate into which direction
a proper development of null models may start off. Also, if the distribution of null models is very
skewed, a t-test is obviously not the test of choice.

Finally, not all indices will be reasonably testable (e.g.~number of species is fixed), or are returned
by the function networklevel in a form that null.t.test can make use of (e.g.~degree distribu-
tion fits).

Value

Returns a table with one row per index, and columns giving

obs observed value

null mean mean null model value

lower CI lower 95% confidence interval (or whatever level is specified in the function’s
call)

upper CI upper 95% confidence interval (or whatever level is specified in the function’s
call)

t t-statistic

P P-value of t statistic

Note

This function is rather slow. Using large replications in combination with iterative indices (degree
distribution, compartment diversity, extinction slope, H2) may lead to rather long runtimes!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

Examples

data(mosquin1967)
null.t.test(mosquin1967, index=c("generality", "vulnerability",

"cluster coefficient", "H2", "ISA", "SA"), nrep=2, N=10)
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nullmodel Generates null models for network analysis

Description

A wrapper function for convenient generation of null models for quantitative and binary networks

Usage

nullmodel(web, N=1000, method="r2d", ...)

Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of prey.

N number of null models to be generated; defaults to 1000 (more might be better,
less probably not).

method Null model type. Can be given as an integer or name: 1/"r2dtable", 2/"swap.web",
3/"vaznull", 4/"shuffle.web", 5/"mgen"; allows for partial match of names; meth-
ods 1 to 4 works for quantitative webs, 4 and 5 for binary.

... arguments to be passed to the function generating the specific null models, see
there for options.

Details

ADVICE: Look at the same-named function in vegan, as well as the long list of potential null mod-
els described in commsim in that package. It offers a richer and more standardised implementation
of null models than this (earlier) function. In particular the method ‘shuffle.web’ is potentially
confusing, as it calls bipartite’s shuffle.web for quantitative networks, but vegan’s ‘quasiswab’
algorithm for binary. Since vegan also now offers the argument ‘greedyqswap’ for quantitative
networks, please have a look at vegan’s nullmodel function.

This is only a wrapper function to facilitate and standardise the generation of null models.

These null models assume that interaction weights are integers that represent frequencies that are
“individually” counted, not decimal numbers. Multiplication by 1000 (say) and rounding does NOT
necessarily make your value frequencies satisfy this assumption. Null models for “continuously
quantitative” webs still have to be developed!

A warning is returned when all entries in a quantitative network are 0 or 1 (which suggests a binary
network).

Value

Returns a list of N null model-generated networks. Species names are (obviously) dropped.
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Note

When a quantitative network contains only 1s (as may happen when sampling intensity is low), the
quantitative null model will be extremely similar (often identical) to the observed network. This
is no error. It is reflecting the fact that this network contains little (no) information beyond the
abundances.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

See Also

For the functions generating the null model network: shuffle.web, swap.web, vaznull, mgen,
vegan::simulate and r2dtable

Examples

## Not run:
data(Safariland)
nullmodel(Safariland, N=2, method=1)
nullmodel(Safariland>0, N=2, method=4)
# analysis example:
obs <- unlist(networklevel(Safariland, index="weighted nestedness"))
nulls <- nullmodel(Safariland, N=100, method=1)
null <- unlist(sapply(nulls, networklevel, index="weighted nestedness")) #takes a while ...

plot(density(null), xlim=c(min(obs, min(null)), max(obs, max(null))),
main="comparison of observed with null model Patefield")
abline(v=obs, col="red", lwd=2)

praw <- sum(null>obs) / length(null)
ifelse(praw > 0.5, 1-praw, praw) # P-value

# comparison of null model 4 and 5 for binary:
nulls4 <- nullmodel(Safariland>0, N=100, method=4)
nulls5 <- nullmodel(Safariland>0, N=100, method=5)
null4 <- unlist(sapply(nulls4, networklevel, index="weighted nestedness"))
null5 <- unlist(sapply(nulls5, networklevel, index="weighted nestedness"))

plot(density(null4), xlim=range(c(null4, null5)), lwd=2,
main="comparison of null models")
lines(density(null5), col="red", lwd=2)
legend("topright", c("shuffle", "mgen"), col=c("black", "red"), lwd=c(2,2),
bty="n", cex=1.5)
abline(v=networklevel(Safariland>0, index="weighted nestedness"))

## End(Not run)
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olesen2002aigrettes A flower visitation network from the Azores

Description

The structure of pollination networks were investigated for two oceanic islands, the Azorean Flores
and the Mauritian Ile aux Aigrettes.

Usage

data(olesen2002aigrettes)

Details

The authors recorded their data by counting the number of visits of each flower visitor species
to each plant species. Data are presented as an interaction frequency matrix, in which cells with
positive integers indicate the frequency of interaction between a pair of species, and cells with zeros
indicate no interaction.

References

Olesen, J. M., L. I. Eskildsen, and S. Venkatasamy. 2002. Invasion of pollination networks on
oceanic islands: importance of invader complexes and endemic super generalists. Diversity and
Distributions 8, 181–192.

Examples

data(olesen2002aigrettes)
## maybe str(olesen2002aigrettes) ; plot(olesen2002aigrettes) ...

olesen2002flores Another flower visitation network from the Azores

Description

The structure of pollination networks were investigated for two oceanic islands, the Azorean Flores
and the Mauritian Ile aux Aigrettes.

Usage

data(olesen2002flores)

Details

The authors recorded their data by counting the number of visits of each flower visitor species
to each plant species. Data are presented as an interaction frequency matrix, in which cells with
positive integers indicate the frequency of interaction between a pair of species, and cells with zeros
indicate no interaction.
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References

Olesen, J. M., L. I. Eskildsen, and S. Venkatasamy. 2002. Invasion of pollination networks on
oceanic islands: importance of invader complexes and endemic super generalists. Diversity and
Distributions 8, 181–192

Examples

data(olesen2002flores)
## maybe str(olesen2002flores) ; plot(olesen2002flores) ...

olito2015 A pollination network from the Canadian Rockies

Description

The total number of individuals collected on each plant species provide a rough estimate of the level
of visitation that each species received.

Usage

data(olito2015)

Details

The authors studied the plant–pollinator assemblage in a large, contiguous low-alpine meadow on
the east face of Mt Murray, located in the Canadian Rockies in Kananaskis Country, Alberta, during
summer 2010. They sampled interactions between plants and pollinators in a square 1-ha plot
located at 2350–2410 m elevation on every day that weather conditions were suitable for pollinator
flight, from the day of first flowering, until killing frosts occurred and pollinators were no longer
observed (24 June 2010 – 26 August 2010, a total of 32 sampling days). That is, they sampled on as
many days as was biologically possible. The authors recorded plant–pollinator interactions along
three 2 m x 100 m transects between the lower and upper plot boundaries.

An interaction was recorded when an insect visitor was observed contacting floral reproductive
structures. The authors documented interactions between 41 flowering plant species and 125 insect
species, and constructed a quantitative plant–pollinator interaction matrix, with rows and columns
corresponding to plant and pollinator species respectively, and cell values indicating the number of
visits observed between corresponding plant and pollinator species. All network data, as well as
a more detailed description of the study system and sampling methods are available as an online
supplement (Supplementary material Appendix 1 – 2). Network data is also available from the
Dryad Digital Repository doi:10.5061/dryad.7st32.

References

When using this data, please cite the original publication:

Olito C, Fox JW (2015) Species traits and abundances predict metrics of plant–pollinator network
structure, but not pairwise interactions. Oikos 124(4): 428–436.

https://doi.org/10.5061/dryad.7st32
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Additionally, please cite the Dryad data package:

Olito C, Fox JW (2014) Data from: Species traits and abundances predict metrics of plant–pollinator
network structure, but not pairwise interactions. Dryad Digital Repository. doi:10.5061/dryad.7st32

Examples

data(olito2015)
plotweb(olito2015)

ollerton2003 ollerton2003

Description

A flower visitation network from an upland grassland site in the KwaZulu-Natal reagion, South
Africa

Usage

data(ollerton2003)

Format

A data frame with 9 observations on the following 56 variables.

Details

The study was conducted in the KwaZulu-Natal region of South Africa. During 3 months of field-
work the flower visitors and pollinators to a assemblage of nine asclepiads at an upland grassland
site were studied Two of the specialized pollination systems that were documented are new to the
asclepiads: fruit chafer pollination and pompilid wasp pollination (the latter is almost unique in the
angiosperms).

The authors recorded their data by counting the number of individua flower visitors observed and/or
caught on each plant species. The total number of individuals observed on each plant species
provide a rough estimate of the level of visitation that each species received. Data are presented
as an interaction frequency matrix, in which cells with positive integers indicate the frequency of
interaction between a pair of species, and cells with zeros indicate no interaction.

Source

NCEAS data base on interaction webs: https://iwdb.nceas.ucsb.edu/resources.html#plant_
pollinator

References

Ollerton, J., S.D. Johnson, L. Cranmer and S. Kellie (2003) The pollination ecology of an assem-
blage of grassland asclepiads in South Africa. Annals of Botany 92 807–834

https://doi.org/10.5061/dryad.7st32
https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator
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Examples

data(ollerton2003)
plotweb(ollerton2003)
## maybe str(ollerton2003) ; plot(ollerton2003) ...

PAC Potential for Apparent Competition

Description

Quantifies, for each pair of lower trophic level species, the potential for showing apparent competi-
tion with another species, mediated through the higher trophic level.

Usage

PAC(web)

Arguments

web A host-parasitoid network (or alike), where the entries represent the sum of
parasitoids emerging from the interactions between parasitoid and host (i.e.
number of interactions * number of parasitoid individuals emerging from each
host). Only if there is only one parasitoid per host this web will be the same as
that used in all other calculations in this package!

Details

Calculates the potential for apparent competition (Holt 1977), following the formula given in Müller
et al. (1999) and Morris et al. (2005). See also Morris et al. (2004) for an experimental test.

Value

Returns a k x k matrix with entries d.ij, where k is the number of species in the lower trophic level
and i and j are lower trophic level species. The matrix represents the effect of column species on
row species. Diagonal entries are “apparent intraspecific competition”.

Note

The idea is that in host-parasitoid networks one host also affects other hosts by the number of
parasitoid that hatch from it and are thus added to the pool of parasitoids. An abundant, large
host can (involuntarily) contribute many parasitoids to the pool, thus also increasing the parasitoid
burden of other hosts. This looks like competition between the two hosts, while in fact it is mediated
through the other trophic level.

Whether this concept can be usefully applied to mutualist networks (such as flower visitation net-
works, aka pollination webs) is still under-investigated. The study of Carvalheiro et al. (2014)
provide an example for constructive use in mutualistic networks.
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Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Carvalheiro, L.G., Biesmeijer, J.C., Benadi, G., Fründ, J., Stang, M., Bartomeus, I., Kaiser-Bunbury,
C.N., Baude, M., Gomes, S.I.F., Merckx, V., Baldock, K.C.R., Bennett, A.T.D., Boada, R., Bom-
marco, R., Cartar, R., Chacoff, N., Dänhardt, J., Dicks, L. V., Dormann, C.F., Ekroos, J., Hen-
son, K.S.E., Holzschuh, A., Junker, R.R., Lopezaraiza-Mikel, M., Memmott, J., Montero-Castaño,
A., Nelson, I.L., Petanidou, T., Power, E.F., Rundlöf, M., Smith, H.G., Stout, J.C., Temitope, K.,
Tscharntke, T., Tscheulin, T., Vilà, M. & Kunin, W.E. 2014 The potential for indirect effects be-
tween co-flowering plants via shared pollinators depends on resource abundance, accessibility and
relatedness. Ecology Letters 17, 1389–1399.

Holt, R. D. 1977 Predation, apparent competition and the structure of prey communities. Theoreti-
cal Population Biology 12, 197–229.

Morris, R. J., Lewis, O. T. and Godfray, H. C. J. 2004 Experimental evidence for apparent compe-
tition in a tropical forest food web. Nature 428, 310–313.

Morris, R. J., Lewis, O. T. and Godfray, H. C. J. 2005 Apparent competition and insect community
structure: towards a spatial perspective. Annales Zoologica Fennici 42, 449–462.

Müller, C. B., Adriaanse, I. C. T., Belshaw, R. and Godfray, H. C. J. 1999 The structure of an
aphid-parasitoid community. Journal of Animal Ecology 68, 346–370

Examples

data(Safariland)
PAC(Safariland)

PDI Paired Differences Index

Description

Computes the Paired Differences Index

Usage

PDI(web, normalise=TRUE, log=FALSE)

Arguments

web A bipartite interaction web, i.e.~a matrix with higher (cols) and lower (rows)
trophic levels.

normalise Logical; divides for each species by the maximum of interactions. Thereby
species can be compared among each other and values range between 0 and
1. Defaults to TRUE, which differs from Poisot et al. (2011a). Note that Tim
Poisot also recommends the normalised computation as default.
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log logical; since number of interactions is often highly skewed, the log yields a
more even spread of PDI-values across species. Defaults to FALSE.

Details

There are many ways to skin a cat. This is a more recent addition proposed by Poisot et al. (2011a)
and used for mutualistic network analysis by Poisot et al. (2011b). This function can be used alone
or through specieslevel.

If P is interaction strength (typically interaction frequency or proportion depending on argument
normalized), then PDI for this species is computed as:

sum(P1 - Pi) /(H-1),

where P1 is the highest number of interactions in a link, while Pi are the remaining values. H is the
number of potential interactors (e.g. plant species if the target species is a pollinator).

Value

Returns a vector with PDI values between 0 (perfect generalist) and 1 (perfect specialist).

Note

1. When a binary web is fed to this function (e.g. PDI(web>0)) this function returns Poisot et
al.’s (2012) “resource range”. Resource range has a value of 0 when all resources are used,
and a value of 1 when only one resource is used. It is thus more an “unused resource range”.

2. This index was originally proposed for performance estimates with standardized resource fre-
quency. It aims to characterize the performance decay as an organism moves away from its
optimal resource. As such, it is strongly influenced by the performance on the optimal resource
(by its absolute value with option normalised=FALSE and by its relative value in relation to
the sum of all performances with normalised=TRUE). It is less clear what this index means for
resource use data with variation in resource availability. In typical plant-flower visitor webs,
PDI values may be close to 1 simply due to highly skewed plant abundance distributions.

3. When interaction strength is estimated by a count variable (interaction frequency), PDI and
many other indices are problematic for species with only one observation (singletons). In
this case P1 is 1 (all interactions are on one plant species), all Pi are 0 and hence PDI is 1 -
independent of the species’ specialization. For a singleton we cannot estimate specificity, only
discrimination (i.e. whether it happens to visit a common or rare plant species), as is done by
d’ (implemented in dfun).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Dormann, C.F. (2011) How to be a specialist? Quantifying specialisation in pollination networks.
Network Biology 1, 1–20

Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J., and Hochberg, M.E. (2011a) Resource
availability affects the structure of a natural bacteria-bacteriophage community. Biology Letters 7,
201–204
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Poisot, T., Bever, J.D., Nemri, A., Thrall, P.H., and Hochberg, M.E. (2011b) A conceptual frame-
work for the evolution of ecological specialisation. Ecology Letters 14, 841–851

Poisot, T., E. Canard, N. Mouquet, and M. E. Hochberg. 2012. A comparative study of ecological
specialization estimators. Methods in Ecology and Evolution 3, 537–544.

See Also

See also specieslevel.

Examples

data(Safariland)
PDI(Safariland) # for pollinators
PDI(t(Safariland), log=TRUE) # for plants

plotmatrix Plot a matrix organised by topology

Description

Plotmatrix is a function to plot binary and weighted matrices

Usage

plotmatrix(x, background_color="white", base_color=NULL, between_color="black",
border_color="black", modules_colors=NULL, within_color = "black", border = FALSE,
row_partitions=NULL, col_partitions=NULL, binary=TRUE, plot_labels=FALSE, xlab=NA,
ylab=NA, offset = 0.4, ...)

Arguments

x the first argument is an interaction matrix (rows and columns are nodes; cells
are links between nodes) or the list returned by sortweb. The matrix may be
binary (only 0s and 1s) or weighted.

background_color

color of the background.

base_color define the base color for the gradient in weighted matrices. If ‘NULL’, defaults to
‘background_color’.

between_color color of links in the regions between modules. If the matrix is weighted, links
between modules are colored following a gradient from the ‘base_color’ to the
‘between_color’. Only applied if partitions are provided.

border_color color of the border plotted around modules (only if ‘border = TRUE’).

modules_colors optional vector with separate colors for modules. Its lengths must match the
number of partitions. If the matrix is weighted, links in each module are colored
following a gradient from the ‘base_color’ to the colors in ‘modules_color’.
Only applied if partitions are provided.
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within_color color of links in the regions within modules. If the matrix is weighted, links
within modules are colored following a gradient from the ‘base_color’ to the
‘within_color’. If partitions are not provided, defines the color of links for the
entire network.

border logical; if ‘TRUE’, a border is plotted around each module. Only applied if parti-
tions are provided.

row_partitions optional vector with partitions for rows. The length of the vector must be the
number of rows in the matrix, each value is the partition of the respective row,
following the row sequence in the matrix. Partition can be defined by numeric
or character values.

col_partitions same as ‘row_partitions’, but for columns.

binary logical; plot the binary or weighted information of the matrix. If the matrix is
binary, must be ‘TRUE’. If the matrix is weighted and binary is ‘TRUE’, plot the
binary structure of the matrix.

plot_labels logical: shall row and column names of the matrix be plotted?

xlab label for the column axis

ylab label for the row axis.

offset defines the size of each filled cell, compared to the border of each cell. Values
higher than 0.4 may result in overlapping of cells.

... arguments passed on to axis ornamenting the image plot.

Value

Invoked for its side effect of plotting the matrix.

Author(s)

Rafael Barros Pereira Pinheiro <rafael-bpp@hotmail.com>, Gabriel Felix, Marco Mello, and the
team of the Ecological Synthesis Lab, University of São Paulo

See Also

The output of sortmatrix is used by plotmatrix.

Examples

S <- sortmatrix(Safariland, topology = "nested", sort_by = "weights")
plotmatrix(S)
plotmatrix(S$matrix, binary=TRUE)
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plotModuleWeb plotModuleWeb

Description

This function takes an object of class moduleWeb and plots the modules found by function computeModules(...)
onto the graph.

Usage

plotModuleWeb(moduleWebObject, plotModules = TRUE,
rank = FALSE, weighted = TRUE, displayAlabels = TRUE,
displayBlabels = TRUE, labsize = 1, xlabel = "", ylabel = "",
square.border = "white", fromDepth = 0, upToDepth = -1)

Arguments

moduleWebObject

An object of class "moduleWeb".

plotModules If plotModules is true, modules are plotted onto the graph, otherwise only the
graph itself is plotted.

rank logical; if true, rows will be standardised for plotting, yielding a range from light
to dark blue for each row; if false, values are ranged across the entire matrix.
The latter is more faithful to the data, while the former makes lower levels more
comparable, irrespective of marginal totals.

weighted If weighted is true, the intensity of squares representing the edges corresponds
with the edge weight, otherwise all squares representing existing edges have
equal intensity.

displayAlabels Row labels are plotted, iff displayAlabels is true.

displayBlabels Column labels are plotted, iff displayBlabels is true.

labsize labsize is the scalar factor with which the size of the plot labels can be changed.

xlabel xlabel is the label for the x-axis.

ylabel ylabel is the label for the y-axis.

square.border Background color of area with squares.

fromDepth Minimal depth of modules which should be plotted.

upToDepth Maximal depth of modules which should be plotted. If upToDepth is smaller
then fromDepth, all modules are plotted.

Value

A plot window with appropriate size according to the dimensions of the web.

Author(s)

Rouven Strauss
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See Also

See also function visweb.

Examples

## Not run:
data(small1976)

moduleWebObject = computeModules(small1976);
plotModuleWeb(moduleWebObject);

## End(Not run)

plotPAC Function to draw a circular plot to visualise potential apparent com-
petition (PAC)

Description

Visualises the Potential for Apparent Competition as a circular graph with species represented by
circles and shared parasitoids/predators/pollinators as connecting lines. Area of circles is propor-
tional to species’ abundance, filling of circles proportional to self-loops (e.g. parasitoids emerging
from this species and then attacking it again) and width of connecting lines is proportional to “ex-
port” of parasitoids. The function is modelled after the example given in Morris et al. (2005)

Usage

plotPAC(web, scaling = 1, plot.scale = 1, fill.col = rgb(0.2, 0.2, 0.2, 0.5),
arrow.col = rgb(0.5, 0.5, 0.5, 0.5), outby = 1, label=TRUE, text = TRUE,
circles = FALSE, radius = 1, text.cex=1)

Arguments

web A community matrix with lower trophic level in rows and higher trophic level
in columns.

scaling A factor scaling the size of species-circles. The default of 1 may cause overlap
when there are many species or some are very large. Smaller values yield smaller
circles.

plot.scale Scales the whole plot to the plotting region. If you want to add labels, you may
want more space around the plot and hence choose smaller values for plot.scale.

fill.col Colour of the species-circles. Note that the default is using transparency, which
is the fourth parameter in the rgb-function.

arrow.col Colour(s) of the arrows (in fact polygons) connecting species. As for ‘fill.col’,
the default uses transparency. If more than one colour is provided, the links will
be coloured in a somewhat complicated sequence, starting with the species with
most interactions and then down. So it might require some playing around if
you want to colour a specific arrow.
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outby A factor determining by how much the text labels should be moved out from the
species-circles. Values smaller than 1 will move them inside the circle-plot.

label Logical; if TRUE (default), a number will be plotted next to each species-circle.

text Logical; if TRUE (default), the name (as provided by the row names of the input
matrix) will be plotted.

circles Logical; shall species labels be put into a circle (as in the original plot of Morris
et al. 2005)? Defaults to FALSE.

radius A factor modifying the size of the label-circles.

text.cex A multiplier to scale the point labels by; defaults to 1.

Details

The function is modelled after Morris et al. (2005). The whole idea and application is explained
there, too. The only change to their plotting is the default choice of transparency for clarity of the
visual effect.

Value

None. The function is invoked for its side effects (i.e. printing).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Morris, R. J., Lewis, O. T. and Godfray, H. C. J. 2005. Apparent competition and insect community
structure: towards a spatial perspective. Annales Zoologica Fennici 42, 449–462.

See Also

See also comments and notes in PAC!

Examples

## Not run:
data(kevan1970)
plotPAC(kevan1970)
plotPAC(kevan1970, arrow.col=rainbow(30))

data(Safariland)
plotPAC(Safariland, plot.scale=1, fill.col="red", arrow.col="orange",
circles=TRUE, radius=1)

## End(Not run)
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plotweb Visualize a bipartite interaction matrix (e.g. a foodweb)

Description

A two dimensional matrix is plotted as a bipartite graph.

Usage

plotweb(web,
method = "cca", empty = TRUE, labsize = 1, ybig = 1, y.width.low = 0.1,
y.width.high = 0.1, low.spacing = NULL, high.spacing = NULL,
arrow="no", col.interaction="grey80", col.high = "grey10",
col.low="grey10", bor.col.interaction ="black", bor.col.high="black",
bor.col.low="black", high.lablength = NULL, low.lablength = NULL,
sequence=NULL, low.abun=NULL, low.abun.col="green",
bor.low.abun.col ="black", high.abun=NULL, high.abun.col="red",
bor.high.abun.col="black", text.rot=0, text.high.col="black",
text.low.col="black", adj.high=NULL, adj.low=NULL, plot.axes = FALSE,
low.y=0.5, high.y=1.5, add=FALSE, y.lim=NULL, x.lim=NULL, low.plot=TRUE,
high.plot=TRUE, high.xoff = 0, low.xoff = 0, high.lab.dis = NULL,
low.lab.dis = NULL, abuns.type="additional")

Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of prey.

method Default method is ‘cca’, which leads to as few crossings of interactions as pos-
sible. The other option is ‘normal’, which leaves order as given by the matrix.

empty logical; should empty columns or empty rows be omitted from plotting; defaults
to true

labsize factor for size of labels, default is 1

ybig vertical distance between upper and lower boxes, default is 1

y.width.low width of lower boxes, default is 0.1

y.width.high width of upper boxes, default is 0.1

low.spacing distance between lower boxes, default is NULL, so automatically spaced that
length of upper and lower boxes is the same. Be aware if set to any value that
x.lim may has to be adjusted to ensure that the network is not plotted outside the
plotting region

high.spacing distance between upper boxes, default is is NULL, so automatically spaced that
length of upper and lower boxes is the same. Be aware if set to any value that
x.lim may has to be adjusted to ensure that the network is not plotted outside the
plotting region



plotweb 115

arrow display type of connection between upper and lower boxes, options are ‘up’,
‘down’, ‘both’, ‘up.center’, ‘down.center’, ‘both.center’ and ‘no’, default
is ‘no’, which is a polygonal connection between boxes.

col.interaction

color of interaction, default is grey80.

col.high color of upper boxes, default is grey10.

col.low color of lower boxes, default is grey10.
bor.col.interaction

border color of interaction, default is black

bor.col.high border color of upper boxes, default is black

bor.col.low border color of lower boxes, default is black

high.lablength number of characters of upper labels that should be plotted. If zero no labels are
shown, default is NULL which plots the complete labels.

low.lablength number of characters of lower labels that should be plotted. If zero no labels are
shown, default is NULL which plots the complete labels.

sequence list of two with two names vectors: seq.high and seq.low, which specify the
order in which species are plotted. Cannot be set for ‘method="cca"’. Defaults
to NULL, where the sequence remains as given or is determined by the CCA
internally.

low.abun Named vector with independent abundance estimates for the lower trophic level,
NULL if none exists. See Notes!

low.abun.col Colour for depicting the abundance estimates for the lower trophic level; defaults
to green.

bor.low.abun.col

border color for depicting the abundance estimates for the lower trophic level,
default is black

high.abun Named vector with independent abundance estimates for the higher trophic
level, NULL if none exists. See Notes!

high.abun.col Colour for depicting the abundance estimates for the lower trophic level; defaults
to red.

bor.high.abun.col

border color for depicting the abundance estimates for the higher trophic level,
default is black

text.rot orientation of labels in the plot (to avoid overlapping of horizontal labels if di-
mension of the webs are high), default is 0 for horizontal labels, use text.rot=90
for vertical labels.

text.high.col Colour for text labels of higher trophic level, a vector of colours can be given

text.low.col Colour for text labels of lower trophic level. A vector of colours can be given

adj.high Adjust upper labels. See adj in ?text how to adjust labels

adj.low Adjust upper labels. See adj in ?text how to adjust labels

plot.axes axis are plotted. Sometimes useful to place boxes in higher order plots. Defaults
to FALSE
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low.y Position of the higher boxes on the y-axis. Defaults to 1.5
high.y Position of the higher boxes on the y-axis. Defaults to 1.5
add if set to TRUE a new bipartite network is added to the previous plot. In this way

multitrophic webs can be plotted, see examples below. Defaults to FALSE.
y.lim To set limits for y-axis. Useful if labels are plotted outside the plotting region

and for multitrophic plots, see examples below
x.lim To set limits for x-axis. Useful if labels are plotted outside the plotting region

and for multitrophic plots, see examples below
low.plot Defines if lower boxes should be drawn. Use in multitrophic plots to avoid

plotting boxes of some trophic levels - see examples below. Defaults to TRUE
high.plot Defines if higher boxes should be drawn. Use in multitrophic plots to avoid

plotting boxes of some trophic levels - see examples below. Defaults to TRUE
high.xoff allows to set an offset to upper boxes. Useful if high.spacing is used to centre

boxes manually. Use plot.axes=TRUE for easy centring
low.xoff allows to set an offset to lower boxes. Useful if low.spacing is used to centre

boxes manually. Use plot.axes=TRUE for easy centring
high.lab.dis normally labels are staggered to avoid plotting over themselves. if set to 0,

higher labels are all on one horizontal line. By using ad.low the position of the
labels can be adjusted. If set to any other value labels are staggered with this
distance. Defaults to NULL

low.lab.dis normally labels are staggered to avoid plotting over themselves. if set to 0, lower
labels are all on one horizontal line. By using ad.low the position of the labels
can be adjusted. If set to any other value labels are staggered with this distance.
Defaults to NULL

abuns.type How to plot abundances - are they ‘independent’ (e.g. flower cover) mea-
surements or are they ‘additional’ (e.g. unparasitised hosts) measurements?
Defaults to ‘additional’. Option ‘none’ is interpreted in the same way as
‘additional’. See Notes!

Value

Returns a window with a bipartite graph of a food web. For all colours vectors can be used (which
are recycled if length differs. Now more trophic webs can be plotted by using plotweb and the
‘add’ switch, which allows to add more webs and staggering them on top of each other. Preferred
option is here to order webs by yourself and use ‘method="normal"’ to keep your preferred order.
See examples on three and four trophic networks.

Note

Note that in previous implementations, ‘low.abun’ and ‘high.abun’ was actually treated as ’addi-
tional abundances’ (e.g. unparasitised hosts). We added the parameter ‘abuns.type’ to switch be-
tween the classic function (values ‘none’ and ‘additional’, the default for backward compatibility)
and an alternative function that plots fully independent abundance estimates (‘abuns.type="independent"’).
To change box (species) colors with ‘abuns.type='independent'’, use ‘low.abun.col’ and ‘high.abun.col’.
The function will likely be revised again in the future, so feedback welcome.

If you have total abundance measure but want to plot used and unused resources, use ‘abuns.type='additional'’
and ‘low.abun= your.low.abun - rowSums(web)’.
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Author(s)

Bernd Gruber <bernd.gruber@canberra.edu.au>

References

Tylianakis, J. M., Tscharntke, T. and Lewis, O. T. (2007) Habitat modification alters the structure
of tropical host-parasitoid food webs. Nature 445, 202–205

See Also

For a different plot of food webs see visweb

Examples

data(Safariland)
plotweb(Safariland)

# shorter labels
plotweb(Safariland, high.lablength=3, low.lablength=0, arrow="down")

# centered triangles for displaying interacions
plotweb(Safariland, text.rot=90, arrow="down.center", col.interaction="wheat2",
y.lim=c(-1,2.5))

#orginal sequence, up arrows and different box width
plotweb(Safariland, method="normal", arrow="up", y.width.low=0.3, low.lablength=4)
# interactions as lines
plotweb(Safariland, arrow="both", y.width.low=0.05, text.rot=90, col.high="blue",
col.low="green")

# add an abundance vector for lower trophic species
low.abun = round(runif(dim(Safariland)[1],1,40)) #create
names(low.abun) <- rownames(Safariland)
plotweb(Safariland, text.rot=90, low.abun=low.abun, col.interaction="purple",
y.width.low=0.05, y.width.high=0.05)

plotweb(Safariland, text.rot=90, low.abun=low.abun, col.interaction ="red",
bor.col.interaction="red", arrow="down")

# now vectors for all colours can be given, to mark certain species or
# interactions. Colour vectors are recycled if not of appropriate length
plotweb(Safariland,col.high=c("orange","green"))
plotweb(Safariland,col.low=c("orange","green"),col.high=c("white","grey","purple"),
text.high.col=c("blue","red"), col.interaction=c("red",rep("green",26),rep("brown",242)),
bor.col.interaction=c(rep("green",26),rep("brown",242)),method="normal",
text.rot=90, low.lablength=10, high.lablength=5)

#example one (tritrophic)
plotweb(Safariland,y.width.low=0.1, y.width.high=0.05,method="normal",
y.lim=c(0,3), arrow="up", adj.high=c(0.5,1.5), col.high="orange",
high.lablength=3,high.lab.dis=0)
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plotweb(t(Safariland), y.width.low=0.05, y.width.high=0.1, method="normal",
add=TRUE,low.y=1.5,high.y=2.5, col.low="green", text.low.col="red",
low.lab.dis=0, arrow="down", adj.low=c(0.5,1.1),low.plot=FALSE)

#example two (4 trophic with abundance)
low.abun = round(runif(dim(Safariland)[1],1,40)) #create
names(low.abun) <- rownames(Safariland)
plotweb(Safariland, text.rot=90, high.abun=low.abun, col.interaction="purple",
y.lim=c(0,4.5), high.lablength=0, arrow="up", method="normal",
y.width.high=0.05)

plotweb(t(Safariland), y.width.low=0.05, y.width.high=0.1, method="normal",
add=TRUE, low.y=1.7,high.y=2.7, col.low="green", text.low.col="black",
low.lab.dis=0, arrow="down", adj.low=c(0.5,1.1), low.lablength=4,
high.lablength=0)

plotweb(Safariland,y.width.low=0.05, y.width.high=0.1, method="normal",
add=TRUE, low.y=2.95, high.y=3.95, col.low="green", text.low.col="black",
low.lab.dis=0, arrow="down", adj.low=c(0.5,1.1), low.lablength=4)

# now some examples with the abuns.type-option:
plotweb(Safariland, abuns.type='independent',arrow="down.center")
plotweb(Safariland, abuns.type='additional',arrow="down.center")

plotweb2 Visualize a tripartite interaction matrix (e.g. a tritrophic foodweb)

Description

Two two dimensional matrix are plotted as a tripartite graph.

Usage

plotweb2(web, web2, method = "cca", empty = FALSE, labsize = 1, ybig = 1,
y_width = 0.1, spacing = 0.05, arrow="no", col.interaction="grey80",
col.pred = "grey10", col.prey="grey10", lab.space=1, lablength = NULL,
sequence=NULL, low.abun=NULL,low.abun.col="green", high.abun=NULL,
high.abun.col="red", method2 = "cca", empty2 = TRUE, spacing2 = 0.05,
arrow2="no", col.interaction2="grey80", col.pred2 = "grey30",
col.prey2="grey20", lablength2 = NULL, sequence.pred2=NULL,low.abun2=NULL,
low.abun.col2="green", high.abun2=NULL, high.abun.col2="red")

Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of prey.
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web2 The other web to be included.

method Default method is ‘cca’, which leads to as few crossings of interactions as pos-
sible. The other option is ‘normal’, which leaves order as given by the matrix.

empty logical; should empty columns or empty rows be omitted from plotting; defaults
to true

labsize factor for size of labels, default is 1

ybig vertical distance between upper and lower boxes, default is 1

y_width width of upper and lower boxes, default is 0.1

spacing horizonatal distance between boxes within a level, default is 0.05

arrow display type of connection between upper and lower boxes, options are ‘up’,
‘down’, ‘both’ and ‘no’, default is ‘no’, which is a polygonal connection be-
tween boxes.

col.interaction

color of interaction, default is grey80.

col.pred color of upper boxes, default is grey10.

col.prey color of lower boxes, default is grey10.

lab.space sometimes it is neccessary to add additional space for labels below and above of
the boxes, so all labels are shown, default is 1.

lablength number of characters of labels that should be plotted. If zero no labels are shown,
default is NULL which plots the complete labels.

sequence list of two with two names vectors: seq.pred and seq.prey, which specify the
order in which species are plotted. Cannot be set for ‘method="cca"’. Defaults
to NULL, where the sequence remains as given or is determined by the CCA
internally.

low.abun Vector with independent abundance estimates for the lower trophic level, NULL
if none exists.

low.abun.col Colour for depicting the abundance estimates for the lower trophic level; defaults
to green.

high.abun Vector with independent abundance estimates for the higher trophic level, NULL
if none exists.

high.abun.col Colour for depicting the abundance estimates for the lower trophic level; defaults
to red.

method2 Default method is ‘cca’, which leads to as few crossings of interactions as pos-
sible. The other option is ‘normal’, which leaves order as given by the matrix.

empty2 logical; should empty columns or empty rows be omitted from plotting; defaults
to true

spacing2 horizontal distance between boxes within one level, default is 0.05

arrow2 display type of connection between upper and lower boxes, options are ‘up’,
‘down’, ‘both’ and ‘no’, default is ‘no’, which is a polygonal connection be-
tween boxes.

col.interaction2

color of interaction, default is grey80.
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col.pred2 color of upper boxes, default is grey10.

col.prey2 color of lower boxes, default is grey10.

lablength2 number of characters of labels that should be plotted. If zero no labels are shown,
default is NULL which plots the complete labels.

sequence.pred2 list of two with two names vectors: seq.pred and seq.prey, which specify the
order in which species are plotted. Cannot be set for ‘method="cca"’. Defaults
to NULL, where the sequence remains as given or is determined by the CCA
internally.

low.abun2 Vector with independent abundance estimates for the lower trophic level, NULL
if none exists.

low.abun.col2 Colour for depicting the abundance estimates for the lower trophic level; defaults
to green.

high.abun2 Vector with independent abundance estimates for the higher trophic level, NULL
if none exists.

high.abun.col2 Colour for depicting the abundance estimates for the lower trophic level; defaults
to red.

Value

Returns a window with a tripartite graph of a food web.

Author(s)

Bernd Gruber <bernd.gruber@canberra.edu.au>

See Also

For a different plot of food webs see visweb and plotweb

printoutModuleInformation

printoutModuleInformation

Description

This takes an object of the class moduleWeb and prints out the information about the modules
stored in this object. It is a formatted print-out of the information one gets as result of the function
listModuleInformation(moduleWebObject).

Usage

printoutModuleInformation(moduleWebObject)

Arguments

moduleWebObject

An object of class moduleWeb.
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Value

None. This function is called for its side effects of printing the content of its object in a more
acceptable format.

Author(s)

Rouven Strauss

Examples

## Not run:
data(small1976)
moduleWebObject = computeModules(small1976)
printoutModuleInformation(moduleWebObject)

## End(Not run)

projecting_tm Projecting binary and weighted two-mode networks onto weighted
one-mode networks.

Description

This function is the implemtation of the procedure outlined on
https://toreopsahl.com/2009/05/01/projecting-two-mode-networks-onto-weighted-one-mode-networks/

Usage

projecting_tm(net, method = "sum")

Arguments

net A two-mode edgelist

method The method-switch control the method used to calculate the weights.
binary sets all weights to 1
sum sets the weights to the number of cooccurances
Newman bases the weights on Newman’s (2001) method of discounting for the
size of collaborations.

Value

Returns a one-mode network

Note

version 1.0.0, taken, with permission, from package tnet
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Author(s)

Tore Opsahl; https://toreopsahl.com

References

Opsahl. T. 2009. Projecting two-mode networks onto weighted one-mode networks. Available at:
https://toreopsahl.com/2009/05/01/projecting-two-mode-networks-onto-weighted-one-mode-networks/

Examples

#please download and investigate tnet for examples!

r2dexternal Generates null models for network analysis by considering external
abundances

Description

An extension of r2dtable (and vaznull, respectively) which rescales marginal totals according to
independent data

Usage

r2dexternal(N, web, abun.higher=NULL, abun.lower=NULL)

vaznullexternal(N, web, abun.higher=NULL, abun.lower=NULL)

Arguments

N number of null models to be generated.

web Web is a matrix representing the interactions observed between higher level
species (columns) and lower level species (rows).

abun.higher Optional vector of externally measured abundances of the higher level. If miss-
ing (NULL) it will be replaced by column totals.

abun.lower Optional vector of externally measured abundances of the lower level. If missing
(NULL) it will be replaced by row totals.

Details

The underlying functions are r2dtable and vaznull, which require a vector of row and column
totals or a web, respectively. In function nullmodel, these marginal totals are computed from the
observed interaction matrix. Here, external abundances can be provided. These will be rescaled and
combined with the observed marginal total to construct new row and column vectors for r2dtable.

If neither row nor column abundances are provided this function will be identical to r2dtable and
vaznull, respectively.
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Value

Returns a list of N null model-generated networks. Species names are (obviously) dropped.

Note

Since the function contains a rounding operation, it also has to include a re-distribution of 1s to keep
all species in the system. That means, if one species has been observed in the external abundances
extremely rarely (compared to the others), it will be overrepresented in this null model, because
otherwise it would have to be dropped altogether! If you have a better solution, please let me know.

When you hand over a web with lots of empty columns/rows, chances are that you have more
columns/rows than interactions. In this case you must provide an external abundance vector, other-
wise the function will throw an error. If you cannot provide an external abundance vector, consider
removing all empty columns and rows (using empty) before applying a null model.

Also note that vaznull itself does not return a matrix with exactly the same marginal totals as the
input, so don’t expect any different from vaznullexternal!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

See Also

nullmodel, vaznull, mgen, vegan::simulate and r2dtable

Examples

## Not run:
abun.lower <- c(15,5,2,7,4,8,6,0.01,6)
set.seed(2)

(abun.higher <- rpois(27, lambda=4))
abun.higher[1] <- 0.001
sum(ext.polls)
## note: external abundances do not sum up; this is intentional!!
r2dexternal(2, Safariland, abun.higher=abun.higher, abun.lower=abun.lower)
r2dexternal(2, Safariland, abun.higher=abun.higher)

vaznullexternal(2, Safariland, abun.higher=abun.higher, abun.lower=abun.lower)

## End(Not run)

restrictednull The restricted null model accounting for modules with nested entries

Description

Null model for "compound network structure", i.e. modules exhibiting nestedness, roughly main-
taining marginal totals and connectance
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Usage

restrictednull(web,
Prior.Pij = "degreeprob",
conditional.level = "modules",
N=10,
print.null = FALSE,
allow.degeneration = FALSE,
return.nonrm.species = FALSE,
connectance = TRUE,
byarea = FALSE,
R.partitions = NULL,
C.partitions = NULL)

PosteriorProb(web,
R.partitions = NULL,
C.partitions = NULL,
Prior.Pij = "degreeprob",
conditional.level="modules")

Arguments

web Matrix with observation interactions.

Prior.Pij Method for computing "a priori" probabilities of interaction between species i
and j. Can be defined as:

• ‘"degreeprob"’: the default; probability of interaction proportional to over-
all species degrees;

• ‘"equiprobable"’: probability of interaction identical to all species;
• ‘"degreeprob.byarea"’: probability of interaction proportional to species

degrees in each matrix area - see "areas" in ‘conditional.level’ for a
definition of matrix areas.

conditional.level

Level to which conditional probability of interaction among species i and j will
be conditioned. Can be defined as:

• ‘"modules"’: the default; conditional probabilities differing between areas
within and outside modules; ‘R.partitions’ and ‘C.partitions’ must be
provided, e.g. based on modularity analyis; see example.

• ‘"matrix"’: conditional probabilities identical in all matrix areas;
• ‘"areas"’: a different set of conditional probabilities for each matrix area.

A matrix area is a submatrix M[AB] of M formed by all rows of mod-
ule A and all columns of module B. If A = B, then M[AB] is a module
area, otherwise M[AB] is the area between two modules. Therefore, when
‘conditional.level = "areas"’, each area has its own conditional prob-
abilities of interaction.

N Integer number of null matrices to be produced.

print.null Logical: Shall the simulation progress be printed? Defaults to FALSE.
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allow.degeneration

Logical. If null matrices are allowed to degenerate, i.e. be of lower dimension
that the observed. Defaults to FALSE. If TRUE, interactions are drawn without
ensuring that all rows and columns must have at least one interaction.

return.nonrm.species

Logical. Shall the index of non-removed rows and columns should be returned
in the output? Defaults to FALSE. Note: if TRUE, each null model will be a list
of three, rather than a single matrix!

connectance Logical. Shall connectance of the null matrices be either exactly (TRUE) or
approximately (FALSE) the same as the original matrix. Defaults to TRUE.

byarea Logical. Shall interactions be drawn independently for each matrix area (i.e. in
each submatrix M[ij] of M formed by all rows of module i and all columns of
module j)? Defaults to FALSE.

R.partitions Vector of integers. Partitioning of rows, used only if ‘byarea = TRUE’.

C.partitions Vector of integers. Partitioning of columns, used only if ‘byarea = TRUE’.

Details

This is the restricted null model used in Felix et al. (2017), Pinheiro (2019), Pinheiro et al. (2019),
Mello et al. (2019) and Queiroz et al. (2020). It was derived from the vaznull model. The synthesis
presented in this function and null model, reported in a series of studies, was based on the ideas first
proposed by Lewinsohn et al. (2006) and followed up by Mello et al. (2009), Flores et al. (2013)
and Pinheiro et al (2016).

Our restricted null model was designed for testing for a compound topology, i.e. a modular net-
work structure with internally nested modules. It allows comparing observed and expected values
of nestedness between species of the same module (NODFsm), and between species of different
modules (NODFdm).

Author(s)

Gabriel Felix, Rafael Pinheiro, and Marco Mello from the Ecological Synthesis Lab (SintECO) in
São Paulo. The code was taken, with permission and encouragement, from Gabriel’s github reposi-
tory (https://github.com/gabrielmfelix/Restricted-Null-Model) and modified by Carsten
F. Dormann for conformity with bipartite’s naming style. The helper function PosteriorProb,
which computes the probabilities of an interaction, given the modular structure, is not exported and
hence would have to be called as bipartite:::PosteriorProb. See Gabriel’s github page for
further details.

References

Bezerra, E. L. S., I. C. Machado, and M. A. R. Mello. 2009. Pollination networks of oil-flowers:
a tiny world within the smallest of all worlds. J. Anim. Ecol. 78: 1096–1101. https://pubmed.
ncbi.nlm.nih.gov/19515098/.

Felix, G. M., R. B. P. Pinheiro, R. Poulin, B. R. Krasnov, and M. A. R. Mello. 2017. The com-
pound topology of a continent-wide interaction network explained by an integrative hypothesis of
specialization. bioRxiv 236687. doi:10.1101/236687

https://github.com/gabrielmfelix/Restricted-Null-Model
https://pubmed.ncbi.nlm.nih.gov/19515098/
https://pubmed.ncbi.nlm.nih.gov/19515098/
https://doi.org/10.1101/236687


126 robustness

Flores, C. O., S. Valverde, and J. S. Weitz. 2013. Multi-scale structure and geographic drivers of
cross-infection within marine bacteria and phages. ISME J. 7: 520-–532. doi:10.1038/ismej.2012.135.

Lewinsohn, T. M., P. Inácio Prado, P. Jordano, J. Bascompte, and J. M. Olesen. 2006. Structure in
plant-animal interaction assemblages. Oikos 113: 174—184.

Mello, M. A. R., G. M. Felix, R. B. P. Pinheiro, R. L. Muylaert, C. Geiselman, S. E. Santana, M.
Tschapka, N. Lotfi, F. A. Rodrigues, and R. D. Stevens. 2019. Insights into the assembly rules of a
continent-wide multilayer network. Nat. Ecol. Evol. 3: 1525–1532. doi:10.1038/s4155901910023

Pinheiro, R. B. P., G. M. F. Félix, A. V Chaves, G. A. Lacorte, F. R. Santos, É. M. Braga, and
M. A. R. Mello. 2016. Trade-offs and resource breadth processes as drivers of performance and
specificity in a host–parasite system: a new integrative hypothesis. Int. J. Parasitol. 46: 115-–121.
https://www.sciencedirect.com/science/article/pii/S0020751915002933

Pinheiro, R. B. P., G. M. F. Felix, C. F. Dormann, and M. A. R. Mello. 2019. A new model
explaining the origin of different topologies in interaction networks. Ecology 100: e02796.

See Also

The function nest.smdm computes NODFsm and NODFdm for such networks, while sortmatrix
and plotmatrix facilitate drawing matrices in a way that helps visualizing a compound topology.

Examples

Mod <- computeModules(Safariland)

# Recover the partitions
Part <- module2constraints(Mod)
row.Part <- Part[1:nrow(Safariland)]
col.Part <- Part[(nrow(Safariland)+1):(nrow(Safariland)+ncol(Safariland))]

# Generate randomized networks with the null model of your choice,
# considering the interaction probabilities calculated before.
nulls <- restrictednull(web = Safariland, R.partitions = row.Part, C.partitions = col.Part)

# Calculate the same nestedness metric for all randomized networks
null <- sapply(nulls, nest.smdm, constraints = Part, weighted = TRUE, decreasing = "abund")
(WNODA.null <- unlist(null[1,])) # WNODArow
(WNODAsm.null <- unlist(null[2,])) # WNODAcol
(WNODAdm.null <- unlist(null[3,])) # WNODAmatrix
# observed values:
nest.smdm(Safariland, weighted = TRUE, decreasing = "abund")

robustness Robustness to species extinctions

Description

Calculates the area below the extinction curve generated by second.extinct.

https://doi.org/10.1038/ismej.2012.135
https://doi.org/10.1038/s41559-019-1002-3
https://www.sciencedirect.com/science/article/pii/S0020751915002933
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Usage

robustness(object)

Arguments

object An object of type class bipartite, usually generated by second.extinct.

Details

This function calculates the area below the extinction curve generated by second.extinct as a mea-
sure of the robustness of the system to the loss of species.

The curve, first proposed by Memmott et al. (2004), is based on the fact that if a given fraction
of species of one guild (for instance, the pollinators) are eliminated, a number of species of the
other guild (e.g. plants) which depend on their interactions become extinct. The slope and general
shape of the curve provided a straightforward graphic description of the tolerance of a system to the
extinction of its component species.

An improvement of Memmott et al.’s curve was developed by Burgos et al. (2007) by introducing a
quantitative measure of robustness with a single parameter R, defined as the area under the extinc-
tion curve. It is intuitive that R = 1 corresponds to a curve that decreases very mildly until the point
at which almost all animal species are eliminated. This is consistent with a very robust system in
which, for instance, most of the plant species survive even if a large fraction of the animal species is
eliminated. Conversely R = 0 corresponds to an ATC that decreases abruptly as soon as any species
is lost. This is consistent with a fragile system in which, for instance, even if a very small fraction
of the animal species is eliminated, most of the plants loose all their interactions and go extinct.

Value

Returns the robustness of the web to the removal of species.

Note

This index complements the information given by slope.bipartite, although it has the advantage
of not being constrained by the shape of the particular curve (concave or convex).

Author(s)

Mariano Devoto <mdevoto@agro.uba.ar>

References

Burgos, E., H. Ceva, R.P.J. Perazzo, M. Devoto, D. Medan, M. Zimmermann, and A. Maria Delbue
(2007) Why nestedness in mutualistic networks? Journal of Theoretical Biology 249, 307–313

Memmott, J., Waser, N. M. and Price, M. V. 2004 Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society B 271, 2605–2611

See Also

second.extinct for generating the required input object and slope.bipartite for an alternative,
but inferior measure



128 Safariland

Examples

## Not run:
data(Safariland)
ex <- second.extinct(Safariland, participant="lower", method="random", nrep=100,
details=FALSE)
robustness(ex)

## End(Not run)

Safariland A pollination web from Argentina

Description

This pollination web was published by Vázquez and Simberloff (2003). See there for details on
how it was measured.

Usage

data(Safariland)

Details

The dataset consists of a matrix with 9 rows, representing plant species and 27 columns, represent-
ing different pollinators. Values in the matrix are observed flower visitations.

This dataset is fairly representative of a pollination web: more pollinators than plants, and an awful
lot of zeros in the matrix.

The study was conducted in four grazed and four ungrazed sites in and around Nahuel Huapi Na-
tional Park and surrounding areas in Rio Negro, Argentina from September 1999 to February 2000.
For each site, the plant-pollinator interaction network was described.

The authors recorded their data by counting the number of visits of each flower visitor species
to each plant species. Data are presented as an interaction frequency matrix, in which cells with
positive integers indicate the frequency of interaction between a pair of species, and cells with zeros
indicate no interaction.

Source

These data can be downloaded, together with the other datasets, on the NCEAS interactionweb
website https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator. See also there
for further details, both on the data and their usage.

https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator


schemske1978 129

References

Vázquez, D. P. 2002 Interactions among Introduced Ungulates, Plants, and Pollinators: A Field
Study in the Temperate Forest of the Southern Andes. Doctoral Dissertation Thesis, University of
Tennessee, Knoxville, Tennessee, USA.

Vázquez, D. P., and D. Simberloff. 2002 Ecological specialization and susceptibility to disturbance:
conjectures and refutations. American Naturalist 159, 606–623.

Vázquez, D. P., and D. Simberloff. 2003 Changes in interaction biodiversity induced by an intro-
duced ungulate. Ecology Letters, 6, 1077–1083.

Examples

data(Safariland)
plotweb(Safariland)

schemske1978 A flower visitation network from Urbana, IL, USA

Description

Populations of seven early flowering, low-growing, perennial woodland herbs were studied in a
24 hectare sit in Brownfield Woods, close to Urbana, Illinois, U.S.A. The sequence and variety
of flowers visited by individual insects were recorded for the first foraging insect observed in a
randomly selected, 1 m2 quadrat located within a 10x10 m grid that included representatives of
several plant species.

Usage

data(schemske1978)

Details

The authors recorded their data by counting the number of visits of each flower visitor species
to each plant species. Data are presented as an interaction frequency matrix, in which cells with
positive integers indicate the frequency of interaction between a pair of species, and cells with zeros
indicate no interaction.

References

Schemske, D. W., M. F. Willson, M. N. Melampy, L. J. Miller, L. Verner, K. M. Schemske, and L.
B. Best. 1978. Flowering Ecology of Some Spring Woodland Herbs. Ecology 59:351-366.

Examples

data(schemske1978)
## maybe str(schemske1978) ; plot(schemske1978) ...
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second.extinct Secondary extinctions in bipartite networks

Description

Calculates the consequences of removing a species from a bipartite network. With plotting and
slope-estimation functionality.

Usage

second.extinct(web, participant = "higher", method = "abun", nrep = 10,
details = FALSE, ext.row=NULL, ext.col=NULL)

Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of prey.

participant high (default) or low or both, depending if you want to exterminate higher
trophic level species, lower trophic level species, or randomly choose species of
both levels.

method Random deletion of a species (‘random’); according to its abundance, with least
abundant going extinct first (‘abundance’; default) or ‘"degree"’ to build a se-
quence from the best-to-least connected species. This is the most extreme case,
where the most generalist species goes extinct first (see Memmott et al. 1998).
(Note that ‘method="abundance"’ does not work with ‘participant="both"’;
in this case a random sequence of species from both trophic levels is generated.)
‘external’ will use the externally provided vector to determine extinction se-
quence.

nrep Number of replicates of extermination sequence. Will not be considered for
method abundance.

details Logical; returns details, i.e. for each replicate the sequence of secondary extinc-
tions. If set to FALSE (default), replicated runs will be averaged. Using anything
but FALSE will not yield the correct object for further analysis. This switch is
really only for understanding what second.extinct does and for possible de-
bugging.

ext.row Optional vector giving the sequence in which lower-level species are to be deleted.

ext.col Optional vector giving the sequence in which higher-level species are to be
deleted.

Details

The procedure of this function is simple. For example imagine the web to represent a pollination
web, in which pollinators die one by one. Set all entries of a column to zero, see how may rows are
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now also all-zero (i.e. species that are now not pollinated any more), and count these as secondary
extinctions of the primary exterminated pollinator.

Internally, each extermination is achieved by a call to extinction, followed by a call to empty,
which counts the number of all-zero columns and rows.

Although written for pollination webs (hence the nomenclature of pollinator and plant), it can be
similarly applied to other types of bipartite networks. It is called by networklevel.

Value

Function returns an object of class “bipartite” to ensure proper working of function plot.bipartite.

If ‘details=FALSE’, the returned object contains a matrix with columns representing the number
of species going extinct from one step to the next, averaged across all runs.

If ‘details=FALSE’, the returned object will be a list of matrices containing the number of species
going extinct at each step.

The objects attribute “exterminated” gives the name of the trophic level (pollinator or plant).

Note

Note: The length of an extinction sequence is obviously given by the number of species in the
selected trophic level. When setting ‘participant="both"’, lengths will differ for each replicate
run, since it is unpredictable in which sequence species go extinct, and hence how many secondary
extinctions will pre-empt further primary extinctions.

Note 2: Because external abundances can be fed to this function, the web is not emptied of all-
empty rows or columns. Thus the results will be different to calls to networklevel or grouplevel,
which by default empty the web!

Author(s)

Carsten F. Dormann

References

Memmott, J., Waser, N. M. and Price, M. V. (2004) Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society B 271, 2605–2611.

See Also

networklevel calls second.extinct; extinction and empty are internal helper functions, and
slope.bipartite calculates extinction slopes from the output of second.extinct.

Examples

## Not run:
data(Safariland)
(ex <- second.extinct(Safariland, participant="lower", method="random", nrep=50,
details=TRUE))
(ex <- second.extinct(Safariland, participant="lower", method="random", nrep=50,
details=FALSE))
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## End(Not run)

shuffle.web Shuffle web entries

Description

Shuffles (= relocates) entries in a web matrix whilst maintaining the dimensionality.

Usage

shuffle.web(web, N, legacy=TRUE)

Arguments

web An interaction matrix.

N Number of desired shuffled matrices.

legacy Logical; use the old or new algorithm? Defaults to TRUE, i.e. the old algorithm.
The new algorithm was written by Paul Rabie and is about 3 times faster (due to
avoiding a loop). For consistency reasons, the old, slow algorithm remains the
default.

Details

This function is designed to behave similar to r2dtable, i.e. it returns a list of randomised matrices.
In contrast to r2dtable is does not keep marginal sums constant!

This function is thought of as a null model for the analysis of bipartite webs. It keeps two web
properties constant: The number of interactions and the number of links (and hence connectance).
A comparison of shuffle.web- and r2dtable-based webs allows to elucidate the effect of marginal
sums.

Value

A list of N randomised matrices with the same dimensions as the initial web.

Note

shuffle.web is not an extremely intelligent nullmodel. You may want to think of a better one for
your specific application!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>
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References

This null model can be thought of as a quantitative version of Fortuna & Bascompte (2006) “null
model 1”:

Fortuna, M. A., and J. Bascompte. 2006. Habitat loss and the structure of plant-animal mutualistic
networks. Ecology Letters 9: 281-286.

For a very nice and thorough overview of null models in general see:

Gotelli, N. J., and G. R. Graves. 1996. Null Models in Ecology. Smithsonian Institution Press,
Washington D.C.

For null models and their application to webs/networks see, e.g.:

Vázquez, D. P., and M. A. Aizen. 2003. Null model analyses of specialization in plant-pollinator
interactions. Ecology 84: 2493-2501.

Vázquez, D. P., C. J. Melian, N. M. Williams, N. Blüthgen, B. R. Krasnov, and R. Poulin. 2007.
Species abundance and asymmetric interaction strength in ecological networks. Oikos 116: 1120-
1127.

See Also

r2dtable

Examples

data(Safariland)

shuffle.web(Safariland, N=2)

slope.bipartite Slope of extinction simulation

Description

Fits a hyperbolic function to the extinction simulation of second.extinct.

Usage

slope.bipartite(object, plot.it = TRUE, ...)

Arguments

object An object of class “bipartite”, usually generated by second.extinct.

plot.it Logical; want to see the graph?

... Graphical parameters passed on to the plot command used for plotting, NOT to
the curve command used for overlaying the curve.
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Details

Function scales extinction sequences to values between 0 and 1 for each participant. The x-axis of
the graph features the proportion of exterminated participants, while the y-axis depicts the propor-
tion of secondary extinctions. Since these curves usually follow a hyperbolic function (see examples
in Memmott et al. 2004), this is fitted to the data.

At present, only a function of type y ∼ 1 − xa is fitted (using nls), i.e. without offset. While
usually this function provides very good fits, do check the graph and judge for yourself. Fitting this
simple function makes its parameter ‘a’ a measure of extinction vulnerability. The more gradual the
secondary extinctions, the lower the absolute value of ‘a’. Or, phrased differently, large absolute
values of ‘a’ indicate a very abrupt die-off, indicative of high initial redundancy in the network.

Value

Returns one number, the exponent of the fitted hyperbolic model.

Note

This function is not as vigorously tested as it should probably be. It worked fine for large networks,
but small ones it may behave strangely, I fathom.

Author(s)

Carsten F. Dormann

References

Memmott, J., Waser, N. M. and Price, M. V. (2004) Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society B 271, 2605–2611

See Also

second.extinct for generating the required input object.

Examples

## Not run:
data(Safariland)
ex <- second.extinct(Safariland, participant="lower", method="random", nrep=100,
details=FALSE)
slope.bipartite(ex)

## End(Not run)



small1976 135

small1976 A flower visitation network from a peat bog in Ottawa, Canada

Description

The study took place in the Mer Bleue peat bog of Ottawa, Canada in 1973. The paper is a prelimi-
nary evaluation of the pollination relationships of the major entomophilous plant species of the Mer
Bleue.

Usage

data(small1976)

Details

The authors recorded their data by counting the number of individual flower visitors caught on
each plant species. The total number of individuals collected on each plant species provide a rough
estimate of the level of visitation that each species received. Data are presented as an interaction
frequency matrix, in which cells with positive integers indicate the frequency of interaction between
a pair of species, and cells with zeros indicate no interaction.

Source

https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator

References

Small, E. 1976. Insect pollinators of the Mer Bleue peat bog of Ottawa. Canadian Field Naturalist
90:22-28.

Examples

data(small1976)
## maybe str(small1976) ; plot(small1976) ...

sortmatrix Organise matrix by topology

Description

Sortmatrix is used to organize matrix rows and columns in order to highlight one of the three
available topologies: nested, modular, and compound

Usage

sortmatrix(matrix, topology="compound", sort_by="degrees", row_partitions=NULL,
col_partitions=NULL, mod_similarity=FALSE)

https://iwdb.nceas.ucsb.edu/resources.html#plant_pollinator


136 sortmatrix

Arguments

matrix the interaction matrix (rows and columns are nodes; cells are links between
nodes). The matrix may be binary (only 0s and 1s) or weighted.

topology defines for which topology the visualization is optimized. We implemented 3
topologies: nested, modular, and compound (modular with internally nested
modules). Defaults to ‘"nested"’. If ‘topology = "nested"’, network is sorted
by decreasing marginal totals. If ‘topology = "modular""’, network is sorted
based on row and column partitions. If ‘topology = "compound"’, network is
first sorted on row and column partitions, then sorted by decreasing marginal
totals within each partition.

sort_by defines whether the marginal totals used for sorting are the binary marginal
totals (‘sort_by = "degrees"’) or the weighted marginal totals (‘sort_by =
"weights"’). If the matrix is binary, sort_by must be set to ‘"degrees"’, which
is also the default.

row_partitions vector with row partitions to be applied in modular and compound topologies.
The length of the vector must be the number of rows in the matrix, each value
is the partition of the respective row, following the row sequence in the matrix.
Partition can be defined by numeric or character values. Not used if topology is
‘"nested"’.

col_partitions same as row_partitions, but for columns.
mod_similarity logical; if ‘mod_similarity=TRUE’, the order of modules is defined based on

the similarity between them. So that more similar modules are closer in the plot.
Similarity is based on Euclidian distances.

Details

More than a visualization choice, the use of binary or weighted marginal totals is related to the
definition of weighted nestedness. One of the most used index, WNODF (Almeida-Neto and Ulrich
2011), requires binary nestedness to account for weighted nestedness. If this index and the definition
of nestedness it reflects, is used, it may be more logical to define sort_by as degrees. Other indices,
as WNODA (Pinheiro et al. 2019) do not require binary nestedness, thus, there is no reason to sort
by degrees rather than weights.

Value

The output of sortmatrix is a list with 5 elements:

matrix is the sorted matrix
row_partitions a vector with the partitions for rows, in the new order
col_partitions a vector with the partitions for columns, in the new order
order_row a vector with the position of each row of the input matrix in the sorted matrix.

order_col: a vector with the position of each column of the input matrix in the
sorted matrix

Author(s)

Rafael Barros Pereira Pinheiro <rafael-bpp@hotmail.com>, Gabriel Felix, Marco Mello, and the
team of the Ecological Synthesis Lab, University of São Paulo
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References

Almeida-Neto, M. and Ulrich, W. 2011. A straightforward computational approach for measuring
nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178

Lewinsohn, T.M. et al. 2006. Structure in plant-animal interaction assemblages. Oikos 113, 174–
184

Pinheiro, R.B.P. et al. 2019. A new model explaining the origin of different topologies in interaction
networks. Ecology 100, 1–30

See Also

The output of sortmatrix is used by plotmatrix.

Examples

sortmatrix (Safariland, topology = "nested", sort_by = "weights")

# see example in help for "plotmatrix"

sortweb Function to sort bipartite webs

Description

This function sorts bipartite webs by either increasing/decreasing row and column totals or by a
given sequence

Usage

sortweb(web, sort.order="dec", sequence=NULL)

Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows). Usually this will be
number of pollinators on each species of plants or number of parasitoids on each
species of prey.

sort.order sort.order can be either
inc: sorted by increasing row/column totals
dec: sorted by decreasing row/column totals
seq: sorted by a given order, see sequence for how to specify an order

sequence list of two with two named vectors: seq.lower and seq.higher, which specify
the order in which species are sorted. To be able to sort by names obviously
the given web must be a NAMED matrix, i.e. has column and row names.
If you want to order an unnamed web, you can either order it by row/column
totals are you have to simply specify the sequence as follows (example puts last
row/column to the front): web[c(9, 1:8), c(27, 1:26)]
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Value

Returns an ordered bipartite web.

Author(s)

Bernd Gruber

References

Vázquez, P.D., Chacoff, N.,P. and Cagnolo, L. (2009) Evaluating multiple determinants of the struc-
ture of plant-animal mutualistic networks. Ecology in press.

See Also

For plotting and ordered web see plotweb, ‘method="normal"’ or visweb, ‘type="none"’.

Examples

data(Safariland)
web <- Safariland

sortweb(Safariland, sort.order="dec")
#rarest species first:
plotweb(sortweb(Safariland, sort.order="inc"), method="normal")
visweb(sortweb(Safariland,sort.order="inc"), type="diagonal",
square="compartment", text="none", frame=TRUE)

# sorted by a given (here random) sequence
sequence <- list(seq.higher=sample(colnames(Safariland)),
seq.lower=sample(rownames(Safariland)))
web.ordered <- sortweb(web, sort.order="seq", sequence=sequence)

specieslevel Calculate various indices for network properties at the species level

Description

Apart from the properties of the entire web, also its participants can be described specifically. Vari-
ous simple numbers and indices are calculated and returned.

Usage

specieslevel(web, index="ALLBUTD", level="both", logbase=exp(1), low.abun=NULL,
high.abun=NULL, PDI.normalise=TRUE, PSI.beta=c(1,0), nested.method="NODF",
nested.normalised=TRUE, nested.weighted=TRUE, empty.web=TRUE)
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Arguments

web Web is a matrix representing the interactions observed between higher trophic
level species (columns) and lower trophic level species (rows). Usually this will
be number of pollinators on each species of plants or number of parasitoids on
each species of host.

index Vector of indices to be calculated for each trophic level of the web; options are:

• ‘degree’,
• ‘ND’ for normalised degrees,
• ‘species strength’ as sum of dependencies for each species,
• ‘nestedrank’ as rank in a nested matrix,
• ‘interaction push pull’ for interaction push/pull (our version of depen-

dence asymmetry: see details),
• ‘PDI’ for Paired Differences Index,
• ‘resource range’ for Poisot et al. (2012)’s index of unused resources,
• ‘species specificity’ (or coefficient of variation of interactions),
• ‘PSI’ for pollination service index (or pollinator support index, depending

on the trophic level),
• ‘NS’ for node specialisation index,
• ‘betweenness’ for betweenness,
• ‘closeness’ (both automatically also return their weighted counterparts

proposed by Tore Opsahl in package tnet),
• ‘Fisher’ for Fisher’s alpha index,
• ‘diversity’ for Shannon diversity of interactions of that species,
• ‘effective partners’ for the effective number of interacting partners,
• ‘proportional generality’ a quantitative version of normalised degree,
• ‘proportional similarity’ specialisation measured as similarity between

use and availability,
• ‘d’ for Blüthgen’s d’,
• ‘ALL’ for all the aforementioned.
• ‘ALLBUTD’ (default) excludes only the dependence matrix and leads to the

output being simplified to a matrix per trophic level.

level For which level(s) should the indices be computed? Options are ‘both’ (de-
fault), ‘lower’ and ‘higher’. Output for one trophic level will be returned as a
data.frame (unless dependencies are also reported), while for two levels a list of
two matrices (higher and lower) will be returned.

logbase numeric; gives the base to which the various diversity indices (partner diversity,
effective partners) shallb be calculated, typcially exp(1) (default) or 2. Log2
is the proposal for generality and vulnerability by Bersier et al. (2002), while
Shannon typically uses the natural logarithm, ln. The choice of the base will not
affect the results qualitatively, only by a scaling factor.

low.abun Optional vector of independent abundances of the lower trophic level to be
passed on to dfun and used as ‘resource availability’ in indices proportional
similarity and proportional generality.
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high.abun Optional vector of independent abundances of the higher trophic level to be
passed on to dfun and used as ‘resource availability’ in indices proportional
similarity and proportional generality.

PDI.normalise Logical; should the normalised PDI be computed? Defaults to TRUE. See func-
tion PDI for details and reasoning.

PSI.beta A length 2 vector of parameter determining the effect of floral constancy and
pollen mixing on the proportion of same-species pollen delivered to a plant.
Defaults to c(1, 0). See section details for details.

nested.method One of ‘NODF’, ‘binmatnest’, ‘wine’ or ‘sort’. See nestedrank for details.
nested.normalised

Logical; defaulting to TRUE. Divides the nestedrank-1 by the number of species
-1, thereby ranging it between 0 (most generalist) and 1 (most specialised).
Species sequences from different networks are now comparable.

nested.weighted

Logical; should the “nestedrank” be computed based on weighted network (de-
fault) or binary version (FALSE)?

empty.web Shall the empty columns and rows be deleted? Defaults to TRUE. option FALSE
not yet fully tested

Details

This function implements a variety of the many (and still procreating) indices describing species
properties. Some are embarrassingly simple (such as number of interacting species for each species).
Others are variations on Shannon’s diversity index applied to within species.

Indices based on graph theory (such as NDI, closeness, betweenness) require the data to form a
connected graph. When the network is compartmented (as would be seen when plotting it using
plotweb), these indices will be computed for the each compartment. However, single-link compart-
ments (only one partner in each trophic level) will not form a proper graph and hence the indices
will have a value of NA.

Most indices are straightforward, one-line formulae; some, such as d’, also require a re-arranging of
the matrix. We (Dormann, Blüthgen, Gruber) came up with a new one, called “Pollination Service
Index” or psi, for which a few more details seem appropriate.

Pollination Service Index (PSI)
This index estimates the importance of a pollinator for all plant species. PSI is comprised of three
calculation steps: firstly, we calculate, for each pollinator species, the proportion to which it visits
each plant species (or, phrased anthropomorphically, the number to the question: which proportion
of my visits are to dandelion?). Secondly, we calculate the proportion to which a plant is visited
by each bee species (Which proportion of my pollinators are red mason bees?). Multiplying, these
two proportions gives the portion of own pollen for each plant species (because this depends both
on a pollinators specialisation (step 1) and the plant’s specific receptiveness (step 2). Finally, we
sum the proportions own pollen delivered across all plant species. This value is the PSI-value. At
its maximum (which depends on the value of beta) it shows that all pollen is delivered to one plant
species that completely depends on the monolectic pollinator. At its minimum, 0, it indicates that a
pollinator is irrelevant to all plant species. Note that PSI can assume values from 0 to 1 (for beta=1)
for species of any frequency: a bee been found only once on a plant species visited by no-one else
receives a PSI of 1, even if in total 14 million visits were recorded.
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(This is all very complicated. So here is another attempt (by Jochen) to explain the PSI: For
PSI, importance of a pairwise interaction (for the plant) is calculated as: ’dependence’_i_on_j
* per.visit.efficiency_i_visitedby_j, where per.visit.efficiency_i_visitedby_j = (average proportion
visits to i by j in all visits by j)^beta.

It assumes that the order of plant species visited is random (no mixing, no constancy). To account
for that not being true, beta could be adjusted. However, this really waits for good empirical tests.)

We envisage a penalty for the fact that a pollinator has to make two (more or less successive) visits
to the same plant species: the first to take the pollen up, the second to pollinate the next. Thus,
using beta=2 as an exponent in step 1 would simulate that a pollinator deposits all pollen at every
visit. In a sense, beta=2 represents a complete turnover of pollen on the pollinator from one visit
to the next; only the pollen of the last-visited species is transferred. That is certainly a very strong
penalisation. At present we set the exponent to beta=1, because the step of controlling for “pollen
purity” is already a major improvement. It assumes, implicitly, that pollen is perfectly mixed on
the pollinator and hence pollen deposited directly proportional to frequency of visits to the different
plants Also, we have no idea to which extent pollen gets mixed and/or lost during foraging flights,
and the true exponent remains elusive. For a value of beta=0, PSI simplifies (and is equal) to species
strength.

For the perspective of the plant’s effect on pollinators (then PSI = pollinator support index), this
index makes less sense. Here we would rather use beta=0, because pollen value is not related to
number of visits, so we cannot compute it from the network. Similarly, for other networks, such as
host-parasitoids, beta=0 seems plausible, since for the host it does not matter, whether a parasitoid
has visited another species before or not. In this case (beta=0), PSI is simply equal to species
strength. Not just pollen turnover/carryover on the pollinator is important and influences beta,
but all these considerations depend on the assumption how the proportion of conspecific pollen
affects pollination (assuming many visits per flower visitation sequence). (a) If only presence of
any conspecific pollen on bee is sufficient for pollination, carryover (how long pollen from one
visits remains on bee) matters, beta is anywhere between 0 (infinite carryover) and 2 (one-step
carryover). (b) If the proportion of conspecific pollen on bee determines pollination success (linear
relationship), carryover does not matter, the proportion can be assumed to be in an equilibrium, and
beta=1.

Our choice of defaults (c(1,0)) will yield species strength for plants, and PSI for pollinators, assum-
ing, for the latter, that pollen mixes perfectly.

Value

For both the “higher trophic level” and the “lower trophic level” a list with the following compo-
nents:

species degree Sum of links per species.
normalised degree

As degree, but scaled by the number of possible partners; see ND.
species strength

Sum of dependencies of each species (used, e.g., in Bascompte et al. 2006). It
aims at quantifying a species’ relevance across all its partners. The alternative
version of Barrat et al. (2004; also used by Poisot et al. 2012) as the sum
of interactions of a species seems too trivial a measure, reflecting abundance
rather than anything else. Do not take this to be the much-discussed “interaction
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strength” in food web papers, which focusses on pairwise interactions (reviewed
in Berlow et al. 2004)!

interaction push pull

Direction of interaction asymmetry based on dependencies: positive values indi-
cate that a species affects the species of the other level it interacts with stronger
then they affect it (“pusher”); negative values indicate that a species is, on av-
erage, on the receiving end of the stick (“being pulled”); formula based on
Vázquez et al. (2007), but push/pull is our own nomenclature. Values are highly
correlated with species strengths (see below), but standardised to fall between
-1 (being pulled) and 1 (pushing). Compared to “strength”, this index quantifies
the net balance, rather than the average effect.

nestedrank Quantifies generalism by the rank of a species in a network matrix re-arranged
for maximal nestedness (Alarcon et al. 2008). A low rank (e.g. 1, 2) indicates
high generality, while high ranks (up to the number of species in that level)
indicate specialism or rarity.

PDI Paired Differences Index as proposed by Poisot et al. (2011a,b), by default using
a normalised version (‘PDI.normalise=TRUE’); ranges between 0 (generalist)
and 1 (specialist); see PDI for details and comments.

resource range Poisot et al.’s (2012) “resource range” is a somewhat strange name for something
that has a value of 0 when all resources are used, but a value of 1 when only
one resource is used. It is, in fact, closer to an “unused resource range”. The
aforementioned Paired Difference Index is a generalisation of resource range,
which is equal to resource range when the web is binary.

species specificity

Coefficient of variation of interactions, normalised to values between 0 and 1,
following the idea of Julliard et al. (2006), as proposed by Poisot et al. (2012).
Values of 0 indicate low, those of 1 a high variability (and hence suggesting low
and high specificity). Since not corrected for number of observations, this index
will yield high specificity for singletons, even though there is no information to
support this conclusion.

PSI Pollination Service Index for the higher trophic level, and the equivalent Pol-
linator Support Index for the lower trophic level. See Details above for more
explanations.

node specialisation index

Another measure of specialisation, based on the path length between any two
higher-trophic level species. Species sharing hosts/prey have an FS-value of 1.
See specific function nodespec for details, problems and reference.

betweenness A value describing the centrality of a species in the network by its position on
the shortest paths between other nodes; see BC and betweenness in sna and the
dedicated section in the vignette (sec. 5.4.1).

weighted betweenness

Computes betweenness (proportion of shortest paths through this species), but
based on weighted representation of the network. It calls betweenness_w from
tnet and often differs considerably from its binary counterpart!

closeness A value describing the centrality of a species in the network by its path lengths
to other nodes; see CC and closeness in sna.
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weighted closeness

Computes closeness (in one of its varieties), but based on weighted representa-
tion of the network. It calls closeness_w from tnet and is usually very similar
to its binary counterpart. Note that NAs indicate that these species belong to a
different compartment and hence no closeness distance could be calculated.

Fisher alpha Fisher’s alpha diversity for each species (see fisher.alpha in vegan for de-
tails).

partner diversity

Shannon diversity (when using ‘logbase="e"’) or per-species generality/vulnerability
(when using ‘logbase=2’) of the interactions of each species. See also networklevel
for the aggregated version of this index (i.e. averaged across all species in a
trophic level).

effective partners

‘logbase’ to the power of “partner.diversity”: Bersier et al. (2002) interpret
this as the effective number of partners, if each partner was equally common.
Note that “partner” is a bit euphemistic when it comes to predator-prey or host-
parasitoid networks.

proportional generality

‘Effective partners’ divided by effective number of resources (‘logbase’ to the
power of ‘resource diversity’; which is calculated from high.abun/low.abun if
provided, and else from marginal totals); this is the quantitative version of pro-
portional resource use or normalised degree (i.e., the number of partner species
in relation to the potential number of partner species); note that this index can
be larger than 1, e.g. when a species selects for a balanced diet.

proportional similarity

Specialization measured as dissimilarity between resource use and availability
(estimated from high.abun/low.abun if provided, else from marginal totals); pro-
posed by Feinsinger et al. (1981).

d Specialisation of each species based on its discrimination from random selection
of partners. More specifically, it returns d’, which is calculated based on the raw
d, dmin and dmax for each species (see dfun). See Blüthgen et al. (2006) for
details.

Note

A comparison of specialisation indices is provided in Dormann (2011); the PDI is missing (since it
was published later).

Dependencies are still an open field of debate. Dependencies are calculated as the value in a matrix
divided by the rowSums (for the lower trophic level) or the colSums (for the higher trophic level).
As such, any pollinator observed only once will receive a dependency-value of 1, indicating perfect
dependence on this plant species. That may or may not be true. In any case it is based on a sample
size of 1, that is why the dependency asymmetry (which is based on the dependencies for both
trophic levels) has come under criticism and may be rather sensitive to singletons.

We here provide the code to calculate the strength of a species (i.e. sum of its dependencies), based
on the current proposal by Bascompte et al. (2006). It may be a good idea to remove all singletons
from the web before calculating this index, to investigate whether it is indeed driven by those scarce
observations.
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The maximum value of the uncorrected d (i.e. the maximal potential specialization defining d’=1)
is not a trivial issue. We treat it here in the same way as given in the BMC Ecology paper, but please
have a look at the (raw) code for further comments.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de> & Jochen Fründ

References
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See Also

networklevel for some further comments; dfun, nodespec, which are called by this function

Examples

data(Safariland)
## Not run:
specieslevel(Safariland)
## End(Not run)
specieslevel(Safariland, index="ALLBUTD")[[2]]

strength Computes species strength according to either of two definitions

Description

Computes species strength of the higher level species as a measure of how important a species is in
the network

Usage

strength(web, type="Bascompte")

Arguments

web A matrix with lower trophic level species as rows, higher trophic level species
as columns and number of interactions as entries.

type Which definition of species strength should be used, ‘Bascompte’ (default) or
‘Barrat’? See Details for definitions.

Details

There are two definitions of species strength, that of Bascompte et al. (2006) as the sum of depen-
dencies of a species, and that of Barrat et al. (2004) as the weighted sum of links. As a consequence,
Bascompte et al.’s strength sums to the number of species in the other group, while Barrat et al.’s
strength is simply the number of interactions, a trivial measure of a species importance.

In contrast to the claim of Gilarranz et al. (2012, p. 1155), this definition of strength gives no
information of the centrality of a species within a network structure (and neither does Bascompte et
al.’s).

Value

A vector of species strengths for the higher level. Employ this function on the transpose of the web
to compute the strengths of the lower level (see example).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>
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References

Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. (2004) The architecture of com-
plex weighted networks. Proceedings of the National Academy of Sciences of the USA 101, 3747-
–3752

Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate
biodiversity maintenance. Science 312, 431-–433

Gilarranz, L.J., Pastor, J.M. & Galeano, J. (2012) The architecture of weighted mutualistic net-
works. Oikos 121, 1154-–1162

See Also

specieslevel which could (but doesn’t yet) call strength (instead it uses the default always)

Examples

data(Safariland)
s1 <- strength(Safariland, type="Barrat")
s2 <- strength(Safariland, type="Bascompte")
plot(s1, s2, log="x")
cor.test(s1, s2, type="ken")
# for lower level:
strength(t(Safariland))

swap.web Creates null model for bipartite networks

Description

Function to generate null model webs under the following constraints: 1. marginal totals are iden-
tical to those observed (as in r2dtable), 2. connectance is as observed (as in shuffle.web.)

Usage

swap.web(N, web, verbose=FALSE, c.crit=1e4)

Arguments

N Number of desired null model matrices.

web An interaction matrix.

verbose Should various verbal outputs of this function be shown? Defaults to FALSE,
since it was mainly used during the debugging period.

c.crit Sometimes the algorithm gets stuck in a very sparse matrix. Then ‘c.crit’ sets
the number of swaps it shall attempt before giving up and starting over on a new
random matrix. Defaults to 10000.
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Details

This function is designed to behave similar to r2dtable, i.e. it returns a list of randomised matrices.
In addition to r2dtable is also keeps the connectance constant!

This function is thought of as a very constrained null model for the analysis of bipartite webs.
It keeps two web properties constant: The marginal totals (as in r2dtable and the number of
links (and hence connectance). A comparison of swap.web- and r2dtable-based webs allows to
elucidate the effect of evolutionary specialisation, since the unrealised connections may represent
“forbidden links”.

This null model is similar to the one employed by Vázquez et al. But while Vázquez starts by
assigning 1s to the allowed connections and then fills the web, swap.web starts with an r2dtable-
web and successively “empties” it. The two approaches should result in very similar null models,
since both constrain marginal totals and connectance.

A few words on the way swap.web works. It starts with a random web created by r2dtable. Then,
it finds, randomly, 2x2 submatrices with entries all larger than 0. Next, it subtracts the minimum
value from the diagonal and adds it to the off-diagonal (minor diagonal). Thereby one cell becomes
0, but the column and row sums do not change. This idea is adapted from the swap-algorithm used
in various binary null models by Nick Gotelli. If the random web has too few 0s (which is I have
yet to encounter), then the opposite strategy is applied.

The algorithm in our implementation has some variations on finding the submatrix and constraining
the number of unsuccessfull trials before starting on a new random matrix, but they are only for
speeding up the process.

Value

A list of N randomised matrices with the same dimensions as the initial web.

Note

Long stories can be told about the swap algorithm. I am not the right person to do so, but for a much
more detailed coverage of the topic, for many more ways to implement null models for binary
matrices, with various flavours of the swap and possible alternatives, first brew yourself a cup of
tea and then check out the help pages of simulate in vegan. (As usual, Jari Oksanen has spend
considerable care to implement even the most bizarre and abstruse way to move 0s and 1s around.
His ecological advise between the lines make his package worthwhile already! I, personally, would
use ‘method="quasiswap"’, as is done in the example to discrepancy.)

When comparing the swap.web algorithm with that proposed by Vázquez et al. (2007, implemented
in vaznull), we found that swap.web contains a certain bias. The subtraction of the swap will
reduce the value of low-value cells, and increase that of high-value cells. As a consequence, it
produces somewhat of a dichotomy between very high and very low values. Using e.g. H2’ to
quantify this pattern, swap.web will produce very specialised networks (around 0.5), while the
Vazquez-algorithm yields lower H2’ values and a more even distribution of interactions within
cells. The ramifications are that swap.web will predict higher-than-necessary expectations. (Date
of this entry: 15.1.2010)

In fact, Artzy-Randrup & Stone (2005) have shown that the swap algorithm is fundamentally biased,
because some swaps are more likely than others. This applies to this version of the swap as well as
to the one implemented in vaznull. So, despite heavy citation, the approach of Miklós & Podani
(2004) is thus also not ideal, as often claimed.
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swap.web is a very constraint null model. You need to consider if it is the right one for your
application!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

References

Artzy-Randrup, Y., and Stone, L. (2005) Generating uniformly distributed random networks. Phys-
ical Review E 72, 1–7

Miklós, I. and Podani, J. (2004) Randomization of presence-absence matrices: comments and new
algorithms. Ecology 85, 86–92

Vázquez, D. P., and M. A. Aizen (2003) Null model analyses of specialization in plant-pollinator
interactions. Ecology 84, 2493–2501

Vázquez, D. P., C. J. Melian, N. M. Williams, N. Blüthgen, B. R. Krasnov, and R. Poulin (2007)
Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–
1127

For a very nice and thorough overview of null models in general see:

Gotelli, N. J., and G. R. Graves (1996) Null Models in Ecology. Smithsonian Institution Press,
Washington D.C.

See Also

r2dtable, vaznull and shuffle.web

Examples

swap.web(Safariland, N=2)

symmetrise_w Symmetrise_w

Description

The symmetrise_w-function creates an undirected one-mode network from a directed one-mode
network.

Usage

symmetrise_w(net, method="MAX")
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Arguments

net A one-mode network

method the method used to decide the weight of the undirected edge. It can be: "MAX"
sets the weight to the maximum of the weight(s) of the arc(s) "MIN" sets the
weight to the minimumof the weight(s) of the arc(s) "AMEAN" sets the weight
to the average (arithmetic mean) of the weight(s) of the arc(s) "SUM" sets the
weight to the sum of the weight(s) of the arc(s) "PROD" sets the weight to the
product of the weight(s) of the arc(s) "DIFF" sets the weight to the absolute
difference between the weight(s) of the arc(s)

Value

Returns the undirected network

Note

version 1.0.0, taken, with permission, from package tnet

Author(s)

Tore Opsahl; https://toreopsahl.com/

References

https://toreopsahl.com/2008/11/28/network-weighted-network/

Examples

## Load sample data
sample <- rbind(
c(1,2,2),
c(1,3,2),
c(2,1,4),
c(2,3,4),
c(2,4,1),
c(2,5,2),
c(3,1,2),
c(3,2,4),
c(5,2,2),
c(5,6,1))

## Run the programme
symmetrise_w(sample, method="MAX")

https://toreopsahl.com/
https://toreopsahl.com/2008/11/28/network-weighted-network/
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tnet_igraph Exports a tnet network to an igraph object

Description

The tnet_igraph function creates an igraph object from a tnet network.

Usage

tnet_igraph(net,type=NULL, directed=NULL)

Arguments

net A tnet network

type type of tnet network, see as.tnet.

directed if a one-mode networks, this can be set to avoid testing whether the network is
directed.

Value

Returns the igraph object.

Note

version 1.0.0, taken, with permission, from package tnet

Author(s)

Tore Opsahl; https://toreopsahl.com

References

https://toreopsahl.com/

Examples

## Load sample data
sample <- rbind(
c(1,2,4),
c(1,3,2),
c(2,1,4),
c(2,3,4),
c(2,4,1),
c(2,5,2),
c(3,1,2),
c(3,2,4),
c(4,2,1),
c(5,2,2),

https://toreopsahl.com
https://toreopsahl.com/
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c(5,6,1),
c(6,5,1))

## Run the programme
tnet_igraph(sample, type="weighted one-mode tnet")

togetherness Calculates the number of identical co-presences and co-absences for
species-on-islands

Description

Togetherness, or T-score, describes the level of similarity in the distributional pattern of two species.
Originally proposed by Stone & Roberts (1992) for biogeographical situations can it also be applied
e.g. to pollinators on different host plants.

Usage

togetherness(web, normalise=TRUE, FUN = mean, ...)

Arguments

web A matrix with binary or counted interactions/links, where the higher trophic
level is represented by columns.

normalise Logical; shall index be normalised to a range of 0-1?

FUN The function to summarise species-pair T-scores with; defaults to mean.

... Arguments passed on to FUN, especially na.rm=T or colours for hist.

Value

Returns the average (default) togetherness of all species combinations.

Author(s)

Carsten F. Dormann

References

Stone, L. and Roberts, A. (1992) Competitive exclusion, or species aggregation? An aid in deciding.
Oecologia 91, 419–424

See Also

C.score for another of Stone & Roberts’ indices.
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Examples

(m <- matrix(c(0,1,0,0,1,1,0,1,1,0), ncol=2, byrow=TRUE))
togetherness(m)
# or, with two togethernesses:
(n <- matrix(c(0,1,1,0,1,1,0,0,1,1,0,1,0,1), ncol=2, byrow=TRUE))
togetherness(n, normalise=FALSE)

data(Safariland)
togetherness(m)

V.ratio Calculates the variance-ratio as suggested by Schluter (1984)

Description

A of species association is provided by the ratio of the variance in total species number (or total
density of individuals) in samples to the sum of the variances of the individual species.

Usage

V.ratio(web)

Arguments

web A matrix with pollinators in columns and plants in rows. For biogeographical
applications: rows are islands (or sites).

Details

This is a rather straight-forward index, which is described and evaluated extensively in Schluter
(1984). He also warns against overinterpretation of the value. In principle, V-ratios larger than 1
indicate positive, smaller than 1 negative associations. Ecologically, competition can lead to small
or large values, depending on their exact effects (see discussion in the Schluter paper).

Value

Returns the V-ratio, i.e. a single value representing the ratio of variance in species number and
variance in individual numbers within species.

Note

Any quantitative matrix is first transformed into a binary (presence-absence) matrix!

Do not interpret without first reading the paper! It’s worth it! See also applications in other studies,
such as Gotelli and Rohde (2002).

Author(s)

Carsten F. Dormann
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References

Gotelli, N.J. and Rohde, K. (2002) Co-occurrence of ectoparasites of marine fishes: a null model
analysis. Ecology Letters 5, 86–94

Schluter, D. (1984) A variance test for detecting species associations, with some example applica-
tions. Ecology 65, 998–1005

See Also

C.score for another measure of species associations.

Examples

data(Safariland)
V.ratio(Safariland)

vazarr A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazarr)

Format

The format is: num [1:10, 1:29] 85 0 94 0 0 0 0 0 0 0 ... - attr(*, "dimnames")=List of 2 ..$ : chr
[1:10] "X2" "X1" "X13" "X4" ... ..$ : chr [1:29] "78" "65" "94" "66" ...

Examples

data(vazarr)
## maybe str(vazarr) ; plot(vazarr) ...
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vazcer A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazcer)

Format

The format is: num [1:9, 1:33] 59 0 110 0 0 0 0 0 0 0 ... - attr(*, "dimnames")=List of 2 ..$ : chr
[1:9] "X2" "X1" "X13" "X4" ... ..$ : chr [1:33] "78" "65" "94" "32" ...

Examples

data(vazcer)
## maybe str(vazcer) ; plot(vazcer) ...

vazllao A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazllao)

Format

The format is: num [1:10, 1:29] 64 0 82 0 0 0 0 0 0 0 ... - attr(*, "dimnames")=List of 2 ..$ : chr
[1:10] "X2" "X1" "X13" "X4" ... ..$ : chr [1:29] "78" "65" "94" "32" ...

Examples

data(vazllao)
## maybe str(vazllao) ; plot(vazllao) ...
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vazmasc A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazmasc)

Format

The format is: num [1:8, 1:26] 73 0 0 0 0 0 0 0 0 6 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:8]
"X2" "X1" "X13" "X4" ... ..$ : chr [1:26] "78" "65" "94" "32" ...

Examples

data(vazmasc)
## maybe str(vazmasc) ; plot(vazmasc) ...

vazmasnc A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazmasnc)

Format

The format is: num [1:8, 1:35] 26 0 0 0 0 0 0 0 0 123 ... - attr(*, "dimnames")=List of 2 ..$ : chr
[1:8] "X2" "X1" "X13" "X4" ... ..$ : chr [1:35] "78" "65" "94" "32" ...

Examples

data(vazmasnc)
## maybe str(vazmasnc) ; plot(vazmasnc) ...
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vaznull Null model with constrained connectance and moderately constrained
marginal totals

Description

Implements Diego Vazquez proposal of a null model for pollination networks

Usage

vaznull(N, web)

Arguments

N Number of desired null model webs.

web An interaction matrix.

Details

This function produces a null model network with the main constraint of a connectance that is the
same as in the original network. In the process of producing this null model, marginal totals will
turn out to be different from the original network, less so for large, dense webs than for small, sparse
webs. vaznull is our implementation of the algorithm proposed by Diego Vazquez, hence its name.
vaznull differs from swap.web in that marginal totals are not strictly constrained! The algorithm
used as well as the null model it outputs are different.

The algorithm was described as follows: "The algorithm randomized the total number of indi-
vidual interactions observed in the original interaction matrix, F. To this end, the algorithm first
created a binary matrix, assigning interspecific interactions according to species-specific probabil-
ities, requiring that each species had at least one interaction. As in Vazquez et al. (2005b), the
species-specific probabilities were proportional to species’ relative abundances (probabilities are in
fact approximately proportional and not equal to relative abundances because of the requirement
that each species receives at least one interaction; this requirement causes probabilities to deviate
from relative abundances, especially for rare species). Once the number of filled cells in the orig-
inal matrix was reached, the remaining interactions were distributed among the filled cells, so that
connectance in the original and randomized matrices was the same." (Vazquez et al. 2007, page
1122-1123).

Value

A list of N randomised matrices with the same dimensions and connectivity as the initial web.

Author(s)

Bernd Gruber <bernd.gruber@canberra.edu.au> & Carsten F. Dormann <carsten.dormann@biom.uni-
freiburg.de>
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References

Vázquez, D. P., C. J. Melian, N. M. Williams, N. Blüthgen, B. R. Krasnov, and R. Poulin. 2007.
Species abundance and asymmetric interaction strength in ecological networks. Oikos 116: 1120-
1127.

See Also

r2dtable, swap.web

Examples

## Not run:
data(Safariland)
networklevel(Safariland, index="info")
networklevel(vaznull(1, Safariland)[[1]], index="info")
system.time(vaznull(10, Safariland))
system.time(swap.web(10, Safariland))

## End(Not run)

vazquec A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazquec)

Format

The format is: num [1:8, 1:27] 31 0 34 150 11 66 2 4 0 63 ... - attr(*, "dimnames")=List of 2 ..$ :
chr [1:8] "X1" "X13" "X4" "X15" ... ..$ : chr [1:27] "65" "94" "32" "66" ...

Examples

data(vazquec)
## maybe str(vazquec) ; plot(vazquec) ...
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vazquenc A pollination network.

Description

[See documentation for Safariland.]

Usage

data(vazquenc)

Examples

data(vazquenc)
## maybe str(vazquenc) ; plot(vazquenc) ...

vazquez.example Examples for some analyses

Description

Describes how to use bipartite to calculate the statistics presented in Vázquez et al. (2009). Some
of these functions are available in bipartite or other packages, and this help page will show how to
use them in line with the publication.

Details

The functions used are:

confint: Is the same as quantile

intasymm: Can be extracted using specieslevel

intereven: Is similar to interaction evenness in networklevel, but only for a specific option

mlik: A specific call to dmultinom and the calculation of the AIC; the number of parameters en-
tering the AIC-calculation is not obvious; this depends on the constraints used by the null
model. In the case of r2dtable, column and row totals are constrained, i.e. ncol+nrow pa-
rameters must be given. In the case of swap.web, connectance is also constrained, but how
many parameters does that imply? One? In shuffle.web, we constrain the dimensionality
and connectance, i.e. 3 (?) parameters. Vázquez et al. (2009) argue that they constrain only
2 parameters when producing the probability matrix given as pweb in the example below.
We tend to disagree: the marginal probabilities of all columns and rows are given, hence k =
(ncol(web) + nrow(web)). To our knowledge, there is no mathematical/statistical treatise of
this problem.

netstats: A wrapper calling the other functions, in that sense similar to networklevel, but also
calling some output from specieslevel.
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plotmat: Now part of visweb, using the right options.

quant2bin: A dedicated function to do a simple thing: (web>0)*1.

sortmatr: newly defined function: sortweb

sortmatrext: sort matrix by some given sequence; also part of sortweb

In the example below, we use the bipartite/standard R functions whenever possible.

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de> based on code and ideas of Diego
Vázquez, Natacha P. Chacoff and Luciano Cagnolo

References

Vázquez, P.D., Chacoff, N.,P. and Cagnolo, L. (2009) Evaluating multiple determinants of the struc-
ture of plant-animal mutualistic networks. Ecology 90, 2039–2046.

See Also

See also networklevel.

Examples

## Not run:
data(Safariland)

# confint:
N100 <- sapply(swap.web(100, Safariland), networklevel, index="nestedness")
quantile(unlist(N100), c(0.025, 0.975))
# intasymm: extract values for the asymmetry of interactions and the
# dependency matrix for pollinators:
specieslevel(Safariland)$"higher trophic level"$"interaction push/pull"
specieslevel(Safariland)$"higher trophic level"$"dependence"
# for plants:
specieslevel(Safariland)$"lower trophic level"$"interaction push/pull"
specieslevel(Safariland)$"lower trophic level"$"dependence"

#intereven
networklevel(Safariland, index="interaction evenness", intereven="sum")[2]
# or, as we recommend (see help on networklevel):
networklevel(Safariland, index="interaction evenness", intereven="prod")[2]

# mlik:
# calculates the log-likelihood of observing a network, given a probability
# matrix of the same size (pweb):
dmultinom(Safariland>0, prob=pweb, log=TRUE)
# AIC (the number of parameters is given by how many constraints are put onto the
# null model; here, we constrain 9 rows and 27 columns, i.e. sum(dim(binweb))):
-2*dmultinom(Safariland>0, prob=pweb, log=TRUE) + 2*(sum(dim(binweb)))

# netstats:
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networklevel(Safariland,
index=c("connectance", "interaction evenness", "nestedness", "ISA"))

mean(specieslevel(Safariland)$"higher trophic level"$"interaction push/pull")
mean(specieslevel(Safariland)$"lower trophic level"$"interaction push/pull")

#plotmat:
visweb(t(unname(Safariland)), circles=TRUE, boxes=FALSE)

#sortmatr/sortmatrext:
sortweb(Safariland, sort.order="inc") #rares species first
plotweb(sortweb(Safariland, sort.order="dec"), method="normal")
plotweb(sortweb(web=Safariland, sort.order="seq",

sequence=list(seq.higher=sample(colnames(Safariland)),
seq.lower=sample(rownames(Safariland)))),
method="normal")

## End(Not run)

versionlog Log of bipartite versions and changes

Description

Log tracking changes, bug fixes and new functions in bipartite

Usage

versionlog()

versionlog

• 1.18 (release date: 06-Sep-2012)
New function and index fd: fd computes the functional diversity for the rows of a web as a

measure of ecological niche complementarity (Devoto et al. 2012). Function written and
provided by Mariano Devoto. fd is also included in the computation of networklevel.

New function czvalues to compute c- and z-values of the higher trophic level for modu-
lar networks. Requires a successful identification of modules through computeModules.
These can then be used to identify connector species in a network.

Speed-up of plotweb: Thanks to Dirk Raetzel, whose smart improvement made this function
orders of magnitude faster! (Amazing how a total of 7 lines of code in a total of over 300
for this function can make such a vast improvement!)

Speed-up of compart: Thanks to Juan M. Barreneche, whose smart improvement made this
function orders of magnitude faster while using dramatically less memory.

New option for simulating extinctions in second.extinct (and necessarily extinction):
Use ‘method="external"’ to impose a specific sequence of exterminations onto the
function. Provide this sequence as an index vector (e.g. c(4,2,3,1)) through the ar-
gument ‘ext.row’ or ‘ext.col’ (for lower and higher species level, respectively). Re-
quested/proposed by Matt Koski. (Implementation is far from elegant and will be cleaned
up in a future version.)
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Modification of visweb: The user is now able to use user-defined colours (def.col) for inter-
action ranks (‘square="d"’). Thereby the number of interactions can define the colour
of the cell in the plot. Makes visweb-plot prettier.

Important bug fix in robustness and second.extinct: robustness sometimes interpreted
wrongly which trophic level was subject to simulated extinction. That was easy to fix. En
route, however, I also discovered unexpected behaviour in the second.extinct function:
it gobbled up the last species to be removed from the web. I do not think that extinction
slope estimates are affected much, but robustness results may well be exhibiting a bias
towards 0.5! Thanks to Silvia Santamaria for reporting this!

Little bug fix in functions BC and CC: Functions always used unweighted networks for com-
puting betweenness and closeness. The default is now to use weighted information, an
option which can be switched off. Thanks to Michael Pocock for reporting and suggest-
ing a fix! (Notice the help file for these functions and the large effect that the choice of
settings can have on the results!)

Little bug fix in function computeModules: Failed to work for networks with empty columns
or rows. These will now be deleted (with a warning) before the analysis. Thanks to Julien
Renoult for reporting.

Little bug fix in function plotweb: Failed to work for networks with only one column or
row. Thanks to Zhijiang Wang for reporting.

Minor bug fix in networklevel: Caused an error if a selection of indices was provided.
Corrections in the help of networklevel: Web asymmetry was explained the wrong way

around (thanks to Bernhard Hoiß for reporting!) and there was some confusion in the help
for whether quantitative or weighted-quantitative indices were implemented (Yvonne
Fabian for correcting the clarification!).

• 1.17 (release date: 20-AUG-2011)
New specialisation index at the species level in function PDI: Computes the Paired Differ-

ences Index proposed by Poisot et al. (2011a,b). Also automatically now included in
specieslevel.

Bug fix in specieslevel: Computation of betweenness was causing an error when the net-
work was containing a single-link compartment. Thanks to Marco Mello for spotting!

Another PDF is included (Dormann 2011): This paper compares specialisation indices, based
on the function specieslevel. All source code to reproduce these results is included. It
can serve as a guide to the specieslevel function and its interpretation.

• 1.16 (release date: 29-May-2011)
Bug fix and extended documentation in dfun: 1. Sometimes d.min was larger than d.raw

yielding negative d’-values. Since the search for d.min is heuristic, it can sometimes fail
to yield lower values than d.raw. In these (rare) cases, d.min is now set to d.raw. 2.
Documentation for a specific (but not uncommon or unreasonable) constellation added:
When independent abundances were provided, the empty rows/columns are purposefully
not removed from the web (because they now still contain information). Logically (and
as implemented), this leads to d-values for these species of NA. This makes sense: the
pollinator, say, has never been observed on any of the flowers, so how can we quantify its
specialisation? While reasonable, it was undocumented behaviour. Thanks to Ana María
Martín Gonzáles for drawing our attention to it!

Speed improvement in shuffle.web: Thanks to Paul Rabie, a faster implementation of the
shuffle.web null model is available. Choosing the option ‘legacy=FALSE’ will deliver
the null models about 3 times faster.
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• 1.15 (release date: 05-Mar-2011)

Bug fix in swap.web: Occasionally, an interaction too many was swapped, leading to a con-
nectance slightly too low compared to the original matrix. Spotted and reported by Sven
Hanoteaux. (For “normal” webs, this bug has luckily caused only very small discrep-
ancies between the realised and the intended null web. We thus regard this error to be
(luckily) of virtually no influence on the results reported in our Open Ecology Journal
paper. Please also note that the help of swap.web recommends using vaznull.)

Bug fix in shuffle.web: Some interactions were lost when there were more rows than columns.
Spotted and reported by Sven Hanoteaux. (Please note that while a shameful mistake, it
luckily does not affect the results reported in our Open Ecology Journal paper, where all
webs analysed were asymmetric “in the right way”.)

Minor bug fix in networklevel: No output was provided when only index “Fisher alpha”
or “mean interaction diversity” was selected. Thanks to Sven Hanoteaux for reporting
and fixing!

• 1.14 (release date: 21-Dez-2010)

New function plotPAC: A plotting function to go with the PAC-function, providing a nice cir-
cularly arranged bubble plot, which has been copied (in style) from Morris et al. (2005).
Various colour options are available.

New index “weighted NODF” included in networklevel and nested: Gustavo Carvallo has
updated the existing function nestednodf in vegan to compute a weighted (quantitative)
version as proposed by Ulrich & Almeida Neto (2011 Env. Mod. Soft). This is now
linked into bipartite.

New data set: bezerra2009 is a“full” flower-visitation network of oil-collecting bees in Brazil.
See help for details.

Minor bug fix in specieslevel: The newly (1.13) added functionality for index “weighted
closeness” did not work for webs without column and row names (such as null models).
Also “weighted betweenness” was occasionally playing up.

Minor bug fix in specieslevel: Betweenness and friends cannot be computed for fully com-
partmented webs (i.e. where each species interacts only with its own partner in the other
trophic level). The function then failed instead of returning NA. Thanks to Nadine Sandau
for reporting.

Minor bug fix in dfun: When providing independent abundances, the computation of dmin
was sometimes incorrect (particularly for small webs) due to a typo. Fixed by Jochen
Fründ.

Minor time-saving improvement in degreedistr: When provided with 3 or less point to
compute the degree-distribution fit from now immediately returns NA-filled matrices.
Saves the time of going through all starting values and still failing.

Change of name of function argument in web2edges: The former ‘quantitative’ did not
really reflect what it does, so it was changed to ‘weight.column’.

Minor improvements to networklevel: Robustness and weighted nestedness were wrapped
in try-functions (for very small networks).

New functionality to find modules in networks. This is still experimental and proper refer-
ences etc. will be added after testing! Please do not use for production yet (at least not
without consultation). Thanks to Rouven Strauß for developing this.

• 1.13 (release date: 29-Sep-2010)
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Option added to H2fun to compute H2’ for non-integer web. Thanks to Jochen Fründ for
providing the inspiration and the code. This option is also now available in networklevel.

Changes to nullmodel: Upon using the modification entered in version 1.12, it turns out this
is no improvement but rather a step in the wrong direction. So this function is back to its
pre-1.12 working with a little bug fixed in swap.web (the helper function ‘upswap’ got an
option too many) that caused the alteration in the 1.12 version. Thanks to Jochen Fründ
for insisting on rolling this back.

Bug fix in networklevel: Alatalo interaction evenness could not be called separately due to
a change of name within the function. Thanks to Rachel Gibson for reporting!

New index added to networklevel: In addition to the binary cluster coefficient, the func-
tion now also (and automatically) computes the weighted clustering coefficient intro-
duced by Tore Opsahl in his package tnet.

New function web2edges: Transforms a web-matrix into an edge list, as used in tnet or other
software (e.g. Pajek).

• 1.12 (release date: 21-May-2010)

Bug fix in vaznull: In very poorly sampled networks, vaznull could fail because after the
initial filling there were no more interactions to distribute. How an if-statement can some-
times make a difference.

Error message in nullmodel changed to a warning. Up to this release, the function created
null models as specified. However, when a supposedly quantitative network was in fact
binary, it returned an error. Now it proceeds, using the null model generating algorithm
“mgen”, and returns a warning.

• 1.11 (release date: 10-May-2010)

Changes to function as.one.mode: Gains options to do projections of the bipartite (=two-
mode) into the one-mode modus required e.g. by sna. In most publications, one focusses
on only one trophic level (e.g. the pollinators) and represents the bipartite network as a
one-mode, pollinators-only network. This can now be achieved using the various options
in the function. See its help for details.

Bug fixes in BC and CC: Upon re-reading the paper motivating the inclusion of these func-
tions, I noticed an error in the previous implementation. The key point, and one that
is contentious in network theory, is that there is no standard best way to project a two-
mode (bipartite) network onto a one-mode network. Up until know, I used the default of
as.one.mode. However, Martín Gonzáles et al. (2010) use the more common projection
(“higher” and “lower”, respectively), and this is also now implemented in BC and CC. The
interested reader may want to follow this problem up by reading the pre-print of Tore
Opsahl (“Triadic closure in two-mode networks”) to see that this one-mode projection
actually distorts the statistics employed on them.

• 1.10 (release date: 02-May-2010)

New function null.distr: Fits a lognormal or negative binomial distribution to the marginal
totals of a network and then draws random values from the thus specified distribution.
These values represent the marginal totals to be used for constructing a null model net-
work. The function thus serves as a way to produce null models without maintaining
exactly the marginal totals, but only their distribution. Please refer to the help for some
cautionary remarks on its use! In particular, null model networks are likely to be smaller
than the original and there is obviously no guarantee that the marginal totals are actually
distributed in the specified way!
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Polishing the Vázquez pollination networks: All species in these 8 networks are now con-
sistently named (rather than numbered).

Polish to specieslevel: Requesting Fisher’s alpha sometimes causes convergence problems
in the underlying function. This is now caught by a try, returning NA.

Rescale in nested gave wrong scaling for NODF: Fixed.

• 1.09 (release date: 22-Mar-2010)

Bug fix in degreedistr: Degree distributions for the higher trophic level were calculated
incorrectly. The main problem was that the scaling constant was omitted, leading to
ridiculous fits. (Thanks to Roberto Molowny for reporting, correction proposal and dis-
cussion!) On improving this, I also ventured to provide multiple starting values and hence
the function returns a fit for all three curves more often (but not always).

• 1.08 (release date: 16-Mar-2010)

Bug fix in ND: Rows and columns were mixed up and a +1 was missing- oh dear. (Thanks to
Marco Mello for reporting!)

• 1.07 (release date: 18-Feb-2010)

New function vaznull: Null model with constrained totals and connectance proposed by
Diego Vázquez, similar to swap.web, but “better”. See notes in swap.web-help for justi-
fication of this statement. We recommend this null model for constraining both marginal
totals and connectance.

Added a new option to calculate extinction slopes: So far, random extinction sequences and
the rarest-to-commenest sequence were implemented. Now, second.extinct also in-
cludes the option ‘method="degree"’ to build a sequence from the best-to-least con-
nected species. This is the most extreme case, where the most generalist species goes
extinct first (see Memmott et al. 1998). (In response to request by Simone Bazarian.)

Adaptations of nullmodel: Now includes the new vaznull as a method (3). This leads to
changes in the sequence of methods! Old code may hence have to be adapted accordingly!

• 1.06 (release date: 18-Dec-2009)

New functions ND, BC and CC: Simple functions to calculate normalised degree, betweenness
centrality and closeness centrality. These functions and the example allows a reproduction
of the type of analysis carried out in Martín González et al. (2009).

Changes to specieslevel , which now calls ND, BC and CC, too.
Bug fix in as.one.mode: now allows also data.frames to be turned into one-mode-style rep-

resentations. Previously, only matrices could be used.
Suppression of errors and warnings in networklevel: When used on a full network (i.e.

one without zeros), some indices in networklevel are undefined (e.g. extinction slopes).
This led to a long output of warning and error messages, although internally I used the
try-function to capture errors. Now, these messages are suppressed.

• 1.05 (release date: 05-Dec-2009)

Help description for PAC was convoluted and its suggestions for the interpretation down-
right wrong. Thanks to Matthew Wainhouse for reporting and simplifying it!

Resolved a long-standing issue of a warning message. This occurred when detaching the
package (detach(package:bipartite)) and was caused by somehow wrongly using
.Last.lib. Deleting it solved the problem.

Fixed bug in specieslevel: Calling this function with only one index caused it to return
empty lists. Simple mistake, but better without it.
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• 1.03 (release date: 06-Nov-2009)
Bug fix in V.ratio: A small mistake for a human, but a huge bug for mankind. Sorry. (De-

tail: I forgot to square sigma.i, leading to strange results.) Thanks to Giorgio Mancinelli
for reporting!

Error message for non-existent indices in networklevel: So far, networklevel returned
NULL when an index was selected that does not exist (e.g. "shannon diversity" instead
of "diversity"). Now, a helpful (?) error message is returned.

Change in defaults to index "interaction evenness" in networklevel: After a fruitful dis-
cussion with Becky Morris and Jason Tylianakis, I changed the default to "sum". I also
reproduce some of our communication in the help to this function, under details, to make
the ecological assumptions behind either option a bit more transparent. There are good
reasons for either option.

• 1.02 (release date: 11-Sep-2009)
Function plotweb: Now more trophic networks can be plotted by staggering bipartite net-

works on top of each other. See multitrophic examples in plotweb.
Minor corrections to dfun: This function did not return exactly the values of the website-

version. Jochen Fründ corrected this. Please read the help of the function (final para-
graph) for details.

New function nested: This convenience function collects the various ways to calculate nest-
edness of a network in order to facilitate comparison of nestedness analyses. To do so, it
heavily borrows from vegan.

Bug fix to discrepancy: Would return a silly value (half of the number of rows) for empty
matrices. This had no effect when called by networklevel, since the matrix would have
been emptied. Thanks to Roberto Molowny for reporting!

Bug fix to networklevel: Due to a missing space, the option ‘ALLBUTDD’ did not work prop-
erly. Thanks to Etienne Laliberte for reporting!

• 1.00 (release date: 06-Aug-2009)
Complete overhaul of networklevel: After a workshop on bipartite networks in ecology, a

few more indices were added (Fisher’s alpha diversity of interactions, mean interaction
diversity, mean number of predators) and the whole output reorganised. It now follows
a gradient from less to more interesting (in our view) indices, and from indices for bi-
nary to those for quantitative networks. Also, I added several options for which indices
to report (‘index="info", "binary", "quantitative", "topology"’). Most interest-
ingly, perhaps, there is now a quantitative, Shannon-based series of indices. Starting with
the “mean interaction diversity” (i.e. the Shannon-diversity of interactions of a species,
averaged across all species in that trophic level), over “Shannon diversity” of interac-
tions, to H2 (i.e. Shannon diversity scaled between max and min possible for this web
characteristics).

Additions to, and overhaul of specieslevel: Similar to the above item, some indices were
added, and the output simplified when calling the option ‘index="ALLBUTD"’ (only one
D here!): a list with two matrices is now returned. Fisher’s alpha for each species, vul-
nerability/generality and effective number of species for each target species are also now
included. Index sequence has changed.

New function PAC: Calculates the Potential for Apparent Competition following the formula
in Müller et al. (1999) and Morris et al. (2005) and the suggestion by Becky Morris and
Owen Lewis. More than a theoretical concept, it was experimentally shown to be relevant
(Morris et al. 2004).
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Bug fix in H2fun and dfun: A line of code went missing at some point, so the maximum
packing density was not optimal (but still good) in these functions. As a result, reported
H2- and d-values were sometimes 0 when they should be only very close to 0.

Switch for error reporting in degreedistr: By default now suppresses error reporting when
nls fails to fit a degree distribution due to too few data points. This leaves the user of
networklevel somewhat less confused. Warning message now also indicates for which
trophic level there were too few data points.

Bug fix in C.score: Failed when the web was very dense or very sparse, because the maxi-
mum number of checkerboard patterns was 0 then.

• 0.94 (release date: 01-Aug-2009)

New function nullmodel: A convenience wrapper function to generate different types of
null models.

Small changes to networklevel: This function returns a list of indices. If we exclude the
computation of degree distribution fits, this would be coerced to a vector. We added
the option ‘index="ALLBUTDD"’ to calculate all indices BUT degree distributions. The
output is then returned as vector. This is much more convenient when using networklevel
on many data sets (using sapply).

• 0.93 (release date: 30-Jun-2009)

bug fix in slope.bipartite and robustness: The function always selected column 3 of
the object, instead of 2 for lower and 3 for higher trophic level; thanks to Antonio
Rivera for spotting and reporting this error! Notice that this error must have slipped
in somewhere around version 0.90/0.91, because I checked and the results reported in
the Open Ecology Journal paper are valid! I seem to remember that I (CFD) modified
slope.bipartite when robustness was added: never change a wining team!

• 0.92 (release date: 02-Jun-2009)

more colour options in visweb: the arguments ‘box.border’ and ‘box.col’ now allow a
specification of the colour of the boxes and their borders.

bug fix empty: the function returned 0 for a 1x1 matrix. Although not written for such a case,
it should still do what it says on the tin. Thanks to Mariano Devoto for spotting and
reporting!

bug fix wine: returned NA for square matrices.
bug fix plot.wine: gave decimal places for row and column names for very small networks.

• 0.91 (release date: 06-May-2009)

new function wine: This function replaces the (now deprecated) function nestedness.corso
in calculating a (weighted) nestedness for bipartite networks. It was developed and im-
plemented by Marcelino de la Cruz, Juan M. Pastor, Javier Galeano and Jose Iriondo.
It is also called by networklevel. A plotting function is also available, depicting the
contributions of each observed link to the web’s nestedness. - nestedness.corso is now
removed from the package. The main reason is that it served as an interim solution for
wine, and the Corso-way of calculating nestedness is just one more of already too many.
If you intend to use wine on binary data and interpret that as a Corso-equivalent, beware
of the following two main differences (thanks to Jose Iriondo for summarising them):
First, the nestedness of Corso et al. varies between 0 and 1, with the highest nestedness
is reached at 0 and 1 corresponds to random, whereas in wine is just the opposite (this
is because the Manhattan distances are calculated with regard to opposite sides of the
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matrix). Secondly, the ‘d’ in the nestedness of Corso is the sums of the ‘dij’s whereas
in wine, the ‘d’ (= ‘win’ value of the object produced by wine) is the average of the
‘dij’s above 0. So, we recommend NOT to use wine for calculating Corso’s nestedness,
but rather download the source code for nestedness.corso from an older version of
bipartite.

new function robustness: A better way to quantify the effect of species loss on the extinc-
tions in the other trophic level; kindly provided by Mariano Devoto. This index is also
part of networklevel.

new data set ollerton2003: Another quantitative pollination network from the NCEAS database
(see ollerton2003).

• 0.90 (release date: 24-Mar-2009)

example vazquez.example: We added several new functionalities mainly to be able to anal-
ysis data and use network statistics as suggested by Vázquez et al. 2009. You can access
this example by typing ?vazquez.example.

new feature in visweb: Can now plot different sized circles to represent interactions, as pro-
posed by Vázquez et al. (2009).

new feature in networklevel: We added an option to calculate interaction evenness either
based on all possible links or just on realized links.

new function sortweb: Can be used to sort webs in different ways.
data set inouye1988: Another pollination network from the NCEAS database (see inouye1988).
Function compart: We replaced the CA-based approach to detecting compartments by a

comprehensive and recursive approach. The latter is not affected by ties in the data set
(i.e. species with the same number of links). In quantitative webs and for the networks
included in bipartite, the old function was working fine, but in more recent trials it failed
to detect 2-species compartments. In turn, we had to adapt networklevel and plotweb.

• 0.85 (release date: 10-Mar-2009)

Function plotweb New feature: text labels can now be printed in different colours. All
colours can be passed as vectors and vectors are recycled if not of appropriate length

• 0.84 (release date: 25-Feb-2009)

Function plotweb New feature: arrow=“center.up”, arrow=“center.down”, arrow=“center.both”:
this results in the standard presentation of bipartite networks, where interactions are dis-
played as centered triangles.

• 0.83 (release date: 9-Feb-2009) pdf of OEJ-paper added as vignette

• 0.82 (release date: 27-Jan-2009)

Function plotweb Two new features: 1. colors of borders of boxes and interactions can be
specified via setting bor.col. 2. Labels can now be rotated by specifying text.rot=90.

• 0.81 (release date: 06-Jan-2009)

Function nodespec replaces the now obsolete function functspec. The inventor of func-
tional specialisation, Bo Dalsgaard, understands the term ‘functional specialisation’ to be
restricted to the way in which plants are specialised to pollinators. Although I disagree
(and think that ‘functional’ actually means very little until defined for a given problem), I
renamed the ‘functional specialisation index’ into ‘node specialisation index’. This is not
a particularly clever name, but at least it indicates that the position of nodes in a network
is important when it is calculated.
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Bug in networklevel: Call to nestedness.corso overwrote results of nestedness.
Various changes related to the analysis of very small webs. Very small webs should prob-

ably not be used at all for testing theories! Indices are usually VERY sensitive to the exact
number of species, number of observations etc. Still, sometimes we simply want to cal-
culate some index, and then bipartite should handle such small networks, too. So, when
going through several dozens of very small webs (sometimes only containing one species
in one of the two trophic levels), several functions did not perform correctly (usually to
such minor programming issues such as matrices being converted to vectors when [ was
used with ‘drop=TRUE’, i.e. the default). Changes affected the functions discrepancy,
nestedness.corso, shuffle.web, compart and empty. Their output remains identical,
only they now also work for small webs.

Changes to nestedness.corso with ‘weighted=TRUE’ Galeano et al. do not describe how
to deal with ties, nor do they make clear if the packed matrix should be sorted by marginal
sum of links or marginal sum of interactions! Previously, we used marginal sum of in-
teractions (because it is a weighted index), but now we moved to marginal sum of links,
because that is how I interpret their paper after a third (or forth) re-reading. Furthermore,
because the real maximum chaos cannot be derived (to my knowledge) algorithmically,
we use the 95% quantile of 500 randomisations as maximum. This will lead to a consis-
tently overestimated nestedness, but it is less sensitive to the number of replicates than
the max. (Also, there was an error in the description of the value returned: 0 is nested, 1
is chaos!)

• 0.8 (release date: 21-Dec-2008)

bug fix in shuffle.web Function didn’t work correctly when the web contained more rows
than columns. (Thanks to Anna Traveset for spotting and reporting!)

minor modifications in networklevel Sometimes additional information is available and species
can be included in a network, although they have no interactions with other species. In this
case, one might want to use these species in the network, too. A new option (empty.web),
allows to keep empty rows and columns, although for some functions an emptied web
must be used (e.g. degree distributions).

bug fix in H2fun As in the last H2fun bug fix, sometimes H2 became negative.
bug (?) fix in networklevel Shannon diversity is based on the log of interactions. If this

value is 0, as it is for most network entries, an NA is produced. As a consequence,
Shannon’s H (now also given in output) is based not on all interactions, but only those >
0. In consequence, Shannon evenness should also only be SH divided by the number of
realised interactions (log(sum(web>0))). That is now the case.

• 0.74 (release date: 24-Oct-2008)

functional specialisation (functspec) bug fix Paths were double the true length, hence min-
imum was 2, rather than 1.

H2fun bug fix Since the search for H2min is heuristic, H2uncorr can sometimes be lower than
H2min; in that case, H2fun returned a value greater 1, while it should be one exactly.

new function nestedness.corso Calculates (weighted) nestedness according to Corso et
al. (2008) and Galeano et al. (2008).

new function discrepancy Calculates discrepancy according to Brualdi & Sanderson (1999),
deemed to be best ever measure of nestedness; also gives an example for a binary null
model analysis based on vegan’s commsimulator.
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other Correction of several minor typos on the help pages; removal of "~" in help files; same
citation style throughout; new cross references (especially for the nestedness functions);
in networklevel, nestedness is now calculated using vegan’s nestedtemp due to matrix
inversion problems reported for binmatnest.

• 0.73 (release date: 1-Sept-2008)

new feature plotweb: Named abundance-vector for each level can be used.

new function plotweb2: (not debugged!) For plotting tripartite networks.

• 0.72 (release date: 12-June-2008)

new function: functional specialisation with functspec See Dalgaard et al. (2008).

new function: interface to sna through as.one.mode Allows calculation of path lengths,
centrality, betweenness and other indices developed for one-mode networks.

bug-fix Error in plotweb when no species labels were given.

Note

This function is only invoked for its side effect of opening the help page. I simply didn’t know how
to do it any other way ...

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

visweb Plotting function to visualize a bipartite food web

Description

This function draws a food web as a grid using a matrix. Colnames and rownames are used as labels
and entries in the matrix are visualized by text and colours. It can also be used to plot bipartite webs
in the style of Vázquez et al. (2009).

Usage

visweb(web, type="nested", prednames=TRUE, preynames=TRUE, labsize=1,
plotsize=12, square="interaction", text="no", frame=NULL, textsize=1,
textcol="red", pred.lablength=NULL, prey.lablength=NULL, clear=TRUE,
xlabel="", ylabel="", boxes=TRUE, circles=FALSE, circle.col="black",
circle.min=0.2, circle.max=2, outerbox.border="white",
outerbox.col="white", box.border="black", box.col="black", def.col="blue",
max.digits=4, NA.col="red")
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Arguments

web A matrix representing the interactions observed between higher trophic level
species (columns) and lower trophic level species (rows). Usually this will be
number of pollinators on each species of plants or number of parasitoids on each
species of prey.

type type changes the sorting of rows and coloumns of the web and can be
nested : (sorted by row/colSums)
diagonal: (highest number of interactions appear along the diagonal, good for
showing compartments)
none : (as is)

prednames labels can be switched of by prednames=F

preynames labels can be switched of by preynames=F

labsize factor for size of labels

plotsize size of plot (length of width or height), depending on the dimension of the web
in cm, default is 12 cm.

square square is used to indicate number of interactions and belonging to compartments
by coloured grid cells
interaction: (level of grey indicates the number of intercation, white means no
interaction)
compartment: (level of grey indicates belonging to the same compartment)
black : (black grid cells if number of interaction is bigger than one)
none : (no coloured squares are drawn)

text number of interactions or belonging are plotted into each grid cell
interaction: (number of interactions are drawn)
compartment: (belonging to same compartment indicated by capitel Letters)
none : (no text is shown)

frame a frame is drawn around each compartment (frame=TRUE), best used with
type=“diagonal”

textsize factor for size of text in squares, default=1

textcol color of text in grid cells, default =“red”

pred.lablength length of predators (upper) labels that should be displayed

prey.lablength length of prey (lower) labels that should be displayed

clear delete species with no interactions (compulsory done for “nested” and “diago-
nal”)

xlabel label on the x-axis, make sure prey.lablength is set accordingly, default is empty

ylabel label on the y-axis, make sure pred.lablength is set accordingly, default is empty

boxes logical, if boxes should be drawn. Default is set to TRUE

circles logical, if circles in a Vazquez et al. style should be drawn. Default is set to
FALSE, size and colours of circles and background can be set by the following
arguments
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circle.col Colour of circles, works only if circles=TRUE
circle.min minimal size of circles, use to rescale circles appropriately, default is 0.2
circle.max maximal size of circle, , use to rescale circles appropriately, default is 2
outerbox.border

Colour of outerbox border if option circles=TRUE
outerbox.col Colour of background if option circles=TRUE
box.border Colour of border of boxes, if option square=“b” is set
box.col Colour of boxes, if option square=“b” is set
def.col A user defined color vector for all ranks (starting from low to high) of occurring

values in the network
max.digits defaults to 4.
NA.col Which colour should be used for missing data (NAs)? Defaults to red.

Value

A plot window with appropriate size according to the dimensions of the web.

Note

If labels don’t fit, resize window by hand!

Author(s)

Bernd Gruber

References

Vázquez, P.D., Chacoff, N.,P. and Cagnolo, L. (2009) Evaluating multiple determinants of the struc-
ture of plant-animal mutualistic networks. Ecology

See Also

For a different plot on food web see plotweb.

Examples

data(Safariland)
visweb(Safariland)
visweb(Safariland, type="diagonal", square="compartment", text="none",
frame=TRUE)
visweb(Safariland, type="nested", text="compartment")
visweb(Safariland, circles=TRUE, boxes=FALSE, labsize=1, circle.max=3,
text="no")
visweb(Safariland,square="b",box.col="green",box.border="red")

#define your colors here,length has to be the numbers of different entries
cols <-0:(length(table(Safariland))-1)
visweb(Safariland, square="defined", def.col=cols)
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web2edges Conversion of a network matrix into a (weighted) edge list

Description

This helper function converts a bipartite matrix into an edge list, optionally weighted, as used by
other packages and software, and writes this to the hard drive (optionally)

Usage

web2edges(web, webName=NULL, weight.column=TRUE, both.directions=FALSE,
is.one.mode=FALSE, out.files=c("edges", "names", "groups")[1:2],
return=TRUE, verbose=FALSE)

Arguments

web A matrix with lower trophic level species as rows, higher trophic level species
as columns and number of interactions as entries.

webName An optional name for the data file generated by the function.

weight.column Logical; is the web quantitative and should hence a weighted edge list be pro-
duced? Defaults to TRUE.

both.directions

Logical; shall each link be represented twice, i.e. once from A to B and also
from B to A? Defaults to FALSE.

is.one.mode Logical; if TRUE, labels for species will be used as they currently are in the
web; otherwise, species will be re-labelled so that the first column will have
number NROW(web) + 1. This is also the default.

out.files String indicating which files to produce: "edges" writes an edge list, "names"
writes a list with names belonging to the edges and "groups" writes a file assign-
ing the species to higher and lower trophic levels. The default produces the edge
list and the names file.

return Logical; shall the edge list be returned by this function (for future use in R)?
Defaults to TRUE. Setting ‘return’ to FALSE will cause writing of files to the
hard drive!

verbose Logical; shall some feedback tell you that the files have been generated? De-
faults to FALSE.

Details

Many network programs (e.g. Pajek) require input in the form of an edge list. Here each species is a
number. The edge list has two column, one with the target and one with the origin of the connection.
That means an interaction between 1 and 6 would be written (in one line) as: 1 6. In a weighted
edge list, a third column represents the strength of the interaction: 1 6 4.77.

All this function does is to transform the typical interaction matrix used in bipartite into an edge
list. Within R this could be used e.g. in the package tnet; outside R by Pajek or others.
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Similar to as.one.mode this function is there to increase interchange between different coding
standards and packages.

Value

A matrix (“edge list”) with two (unweighted) or three (weighted) columns.

If return=FALSE, this matrix (and possibly names and groups) are written to a text-file in the work-
ing directory.

Note

The function is used as export helper (default) or as link to tnet (with return=TRUE).

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de>

Examples

data(Safariland)
web2edges(Safariland)
web2edges(as.one.mode(Safariland, project="lower"), is.one.mode=TRUE)

webs2array Puts two or more webs into one array of webs

Description

Function to put several webs into an array, blowing the dimensions up to the union of species

Usage

webs2array(x, ...)

Arguments

x either a matrix containing a web, or a list of webs.
... further optional matrices provided, if x is not a list (see example). Note that this

input will be ignored if x is a list!

Details

Some analyses may require a direct comparison of two webs, e.g. computing their similarity in
number of interactions per link (e.g. Poisot et al. 2012). To be able to do that, we first need to blow
the single webs up to have the same dimensions, i.e. padding all species not observed in this web
with 0s. This function produces a new raw matrix based on the union of species for each trophic
level and puts these for all species into one array.

If the function is used on a list of webs that has no names, new names will be created in the format
“web1”, “web2”, etc.
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Value

An array of dimensions (number of species in lower level, number of species in higher level, number
of webs).

Note

When building the webs from a table of observed interactions, function frame2webs allows to build
a web-array when using ‘type.out="array"’. That would be preferable (faster and only one step)!

Combining webs into one array makes sense only for webs featuring overlapping communities!

Author(s)

Carsten F. Dormann <carsten.dormann@biom.uni-freiburg.de> and Jochen Fründ

References

Poisot, T., E. Canard, D. Mouillot, N. Mouquet, D. Gravel, and F. Jordan. 2012. The dissimilarity
of species interaction networks. Ecology Letters 15, 1353—1361. doi: 10.1111/ele.12002

Examples

data(Safariland, vazquenc, vazquec)
allin1 <- webs2array(Safariland, vazquenc, vazquec)
str(allin1)

# alternatively: provide a (named) list as input to web2array:
example <- list(Safariland, vazquenc, vazquec)
str(webs2array(example)) # no names!

# named list as input:
example2 <- list("Saf"=Safariland, "Vquenc"=vazquenc, "Vquec"=vazquec)
str(webs2array(example2)) # with names provided

# now we can compute distance between two webs:
vegdist(t(cbind(as.vector(allin1[,,1]), as.vector(allin1[,,2]), as.vector(allin1[,,3]))),

method="jacc")

wine Weighted-Interaction Nestedness Estimator

Description

Calculates the nestedness of a network taking into account the weight of the interactions, according
to the method proposed by Galeano et al. (2008).
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Usage

wine(web, nreps = 1)
## S3 method for class 'wine'
plot(x, ...)

Arguments

web A matrix with elements of a set (e.g., plants) as rows, elements of a second set
(e.g., pollinators) as columns and number of interactions as entries.

nreps Number of replicates for constructing random networks.
x An object resulting of applying wine function
... Additional graphical parameters to image.plot

Details

Nestedness estimators use presence-absence (binary) adjacency matrices as the basis for calculating
nestedness, as they provide a simple description and characterization of the topology of the network.
However, networks are specified not only by their topology but also by the heterogeneity in the
weight (or the intensity) of the connections (Barrat et al., 2004). Characterizing links just with
presence-absence data does not take into account the possible differences in intensity among links.
WINE (Weighted-Interaction Nestedness Estimator) is a new nestedness estimator that takes into
account the weight or intensity of each interaction (e.g., in a plant-pollinator network, the number
of registered visits of a particular interaction). Thus, instead of using presence-absence matrices,
WINE calculates nestedness from quantitative data matrices that include the number of events of
each interaction.

This was the first estimator that allows for the characterization of weighted nestedness. WINE
calculates a nestedness value that approaches zero when the nestedness pattern of the original data
matrix is close that of equivalent random matrices, and it approaches one as it gets closer to the
nestedness of the maximal nestedness matrix. Thus, this estimator evaluates the relative position of
the data matrix between the corresponding random matrices and the maximal nestedness matrix.

Negatives values for this estimator can be found in some synthetic matrices that have been described
as ‘anti-nestedness’ matrices (Almeida-Neto et al. 2007).

The calculation of the weighted-interaction nestedness estimator starts with the matrix containing
the number of events of each interaction, Mij. The matrix is packed by arranging rows and columns
from top to bottom and from left to right, respectively, in ascending order according to their marginal
totals. Nestedness is related to the proximity of existing links to one another in the packed matrix,
so that the most nested matrix is the one that after packing shows a minimum mixing of filled cells
(links) with empty cells (no links) (Corso et al., 2008, Ulrich et al., 2009).

WINE is based on the concept of estimating nestedness through the calculation of a Manhattan
distance from each of the matrix cells containing a link to the cell corresponding to the intersection
of the row and columns with the lowest marginal totals (number of links). This concept resembles in
a way the one used by Corso et al. (2008), although the distances are measured to the opposite corner
of the packed matrix. Additionally, in WINE, the Manhattan distance is replaced by a weighted
Manhattan distance. The statistical significance of this nestedness index value is tested against a
null model that constrains matrix fill to observed values, retains the distribution of number of events
in the links but does not constrain marginal totals.

Further details can be found in Galeano et al. (2008).
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Value

wine returns an object of class wine, basically a list with the following components:

win Weighted-interaction nestedness of dataset (WIN)

wine Weighted-interaction nestedness estimator (WINE): The weighted-interaction
nestedness estimator value. It will be 0 for random distribution and 1 for maxi-
mal nestedness

zscore z-score of the weighted-interaction nestedness

pvalue probability of having a z-value equal to or greater than Z (from the tabulated
value of the cumulative function). Values of p<0.05 indicate that the dataset is
significantly nested.

dmax Weighted-interaction nestedness of the maximal nestedness matrix.

drnd Average weighted-interaction nestedness of random replicates

dij.w Matrix of dijw values. These values provide a measure of the contribution of
each interaction (link) to total nestedness

dij.max Maximal nestedness matrix

The S3 plot method for wine displays dij.w in a coloured image plot where red cells have high
weights in the network and blue cells have minimum weights.

Note

This is the first approach to a weighted nestedness and a full ecological interpretation of its meaning
is still lacking. It is not possible to perform a systematic comparison between this and other nest-
edness indices because the latter rely just on presence absence data whereas the former feeds on a
quantitative data matrix. For a well-performed comparison of other nestedness indices see Ulrich
& Gotelli (2007).

wine may return NaN for different parameters essentially for two different reasons: a) if ‘nreps’ is
not specified, wine adopts nreps=1 by default and NaN is returned for z-score and p value. This
is due to the fact that with nreps=1 the variance of drnd is zero and z-score becomes infinite. The
same outcome may occur in some cases with very low values of nreps. To ensure proper values
of z-score and p-values nreps=100 or higher is suggested. b) if dw = drnd = dmax wine equals
0/0, and if drnd = dmax wine tends to infinity. In both cases, NaN is returned by wine. This is
more likely to occur in cases where the dimensions of the matrix are very low (e.g, (dim < c(4,4))
because in those cases the number of possible values of dw, drnd and dmax is also reduced.

This is WINE version 3.2, available also in Matlab and C++ at the certificate-blocked site (https://hypatia.agricolas.upm.es/WINE/WINE.html).

Author(s)

Marcelino de la Cruz <marcelino.delacruz@upm.es>, Juan M. Pastor <juanmanuel.pastor@upm.es>,
Javier Galeano <javier.galeano@upm.es> and Jose M. Iriondo <jose.iriondo@urjc.es>

References

Barrat, A., Barthelemy, M., Pastor-Satorras, R., and Vespignani, A. (2004) The architecture of
complex weighted networks. PNAS 101, 3747–3752
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Corso G, de Araujo AIL, de Almeida AM (2008) A new nestedness estimator in community net-
works. arXiv 0803.0007v1 [physics.bio-ph]

Galeano J, Pastor JM, Iriondo JM (2008) Weighted-Interaction Nestedness Estimator (WINE): A
new estimator to calculate over frequency matrices. arXiv 0808.3397v2 [physics.bio-ph]

Ulrich, W., Almeida-Neto, M., and Gotelli, N.J. (2009) A consumer’s guide to nestedness analysis.
Oikos 118, 3-17

Ulrich, W. and Gotelli, N.J. (2007) Null model analysis of species nestedness patterns. Ecology 88,
1824-1831

See Also

nestedness and discrepancy.

Examples

data(Safariland, package="bipartite")
safariland.w <- wine(Safariland, 10)
plot.wine(safariland.w)
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