Ultimixt: Bayesian Analysis of Location-Scale Mixture Models using a Weakly Informative Prior

A generic reference Bayesian analysis of unidimensional mixture distributions obtained by a location-scale parameterisation of the model is implemented. The including functions simulate and summarize posterior samples for location-scale mixture models using a weakly informative prior. There is no need to define priors for scale-location parameters except two hyperparameters in which are associated with a Dirichlet prior for weights and a simplex.

Version: 2.1
Depends: coda, gtools, graphics, grDevices, stats
Published: 2017-03-09
DOI: 10.32614/CRAN.package.Ultimixt
Author: Kaniav Kamary, Kate Lee
Maintainer: Kaniav Kamary <kamary at ceremade.dauphine.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)]
NeedsCompilation: no
CRAN checks: Ultimixt results

Documentation:

Reference manual: Ultimixt.pdf

Downloads:

Package source: Ultimixt_2.1.tar.gz
Windows binaries: r-devel: Ultimixt_2.1.zip, r-release: Ultimixt_2.1.zip, r-oldrel: Ultimixt_2.1.zip
macOS binaries: r-release (arm64): Ultimixt_2.1.tgz, r-oldrel (arm64): Ultimixt_2.1.tgz, r-release (x86_64): Ultimixt_2.1.tgz, r-oldrel (x86_64): Ultimixt_2.1.tgz
Old sources: Ultimixt archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Ultimixt to link to this page.