This vignette shows how to use SignacFast to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We start with raw counts from this publication.
Read the CEL-seq2 data.
<- function(counts.file, meta.file) {
ReadCelseq = suppressWarnings(readr::read_tsv(counts.file))
E <- E$gene
gns = E[, -1]
E = Matrix::Matrix(as.matrix(E), sparse = TRUE)
E rownames(E) <- gns
E
}
= "./fls/celseq_matrix_ru10_molecules.tsv.gz"
counts.file = "./fls/celseq_meta.immport.723957.tsv"
meta.file
= ReadCelseq(counts.file = counts.file, meta.file = meta.file)
E = suppressWarnings(readr::read_tsv(meta.file))
M
# filter data based on depth and number of genes detected
= Matrix::colSums(E != 0)
kmu = Matrix::colSums(E)
kmu2 = E[, kmu > 200 & kmu2 > 500]
E
# filter by mitochondrial percentage
= grepl("^MT-", rownames(E))
logik = Matrix::colSums(E[logik, ])/Matrix::colSums(E) * 100
MitoFrac = E[, MitoFrac < 20] E
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Create a Seurat object, and then perform SCTransform normalization. Note:
# load data
<- CreateSeuratObject(counts = E, project = "FACs")
synovium
# run sctransform
<- SCTransform(synovium) synovium
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering
<- RunPCA(synovium, verbose = FALSE)
synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE)
synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE) synovium
library(SignacX)
Generate Signac labels for the Seurat object. Note:
<- Signac(synovium, num.cores = 4)
labels = GenerateLabels(labels, E = synovium) celltypes
Sometimes, training the neural networks takes a lot of time. The above classification took 27 minutes. To make a faster method, we implemented SignacFast which uses pre-trained models. Note:
# Run SignacFast
<- SignacFast(synovium, num.cores = 4)
labels_fast = GenerateLabels(labels_fast, E = synovium) celltypes_fast
Compare results:
Celltypes:B | MPh | NonImmune | Plasma.cells | TNK | Unclassified | |
---|---|---|---|---|---|---|
B | 681 | 0 | 0 | 0 | 0 | 0 |
MPh | 0 | 835 | 0 | 0 | 0 | 68 |
NonImmune | 0 | 0 | 2487 | 0 | 0 | 0 |
Plasma.cells | 0 | 0 | 0 | 263 | 0 | 6 |
TNK | 0 | 0 | 0 | 0 | 1768 | 0 |
Unclassified | 0 | 13 | 7 | 0 | 0 | 174 |
B.memory | B.naive | Fibroblasts | Macrophages | Mon.Classical | NonImmune | Plasma.cells | T.CD4.memory | T.CD4.naive | T.CD8.em | T.CD8.naive | T.regs | Unclassified | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B.memory | 489 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
B.naive | 4 | 184 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DC | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Fibroblasts | 0 | 0 | 2110 | 0 | 0 | 136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Macrophages | 0 | 0 | 0 | 662 | 33 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 73 |
Mon.Classical | 0 | 0 | 0 | 23 | 93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
NonImmune | 0 | 0 | 74 | 0 | 0 | 166 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Plasma.cells | 0 | 0 | 0 | 0 | 0 | 1 | 259 | 0 | 0 | 0 | 0 | 0 | 8 |
T.CD4.memory | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 504 | 112 | 17 | 29 | 15 | 0 |
T.CD4.naive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 309 | 4 | 18 | 0 | 1 |
T.CD8.em | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 4 | 574 | 1 | 0 | 2 |
T.CD8.naive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 26 | 2 | 0 |
T.regs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 1 | 2 | 106 | 0 |
Unclassified | 0 | 0 | 1 | 12 | 3 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 179 |
Save results
saveRDS(synovium, file = "fls/seurat_obj_amp_synovium.rds")
saveRDS(celltypes, file = "fls/celltypes_amp_synovium.rds")
saveRDS(celltypes_fast, file = "fls/celltypes_fast_amp_synovium_celltypes.rds")
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 formatR_1.7 htmltools_0.5.1.1
## [5] tools_4.0.3 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] highr_0.8 knitr_1.30 stringr_1.4.0 digest_0.6.27
## [13] xfun_0.20 rlang_0.4.10 evaluate_0.14