The goal of SSOSVM is to use R to allow batch and online training of soft-margin support vector machines (SVMs). The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead http://doi.org/10.1007/s42081-018-0001-y. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss, functions.
You can install SSOSVM from github with:
# install.packages("devtools")
::install_github("andrewthomasjones/SSOSVM") devtools
Here is a very simple example using simulated data:
#setup
library(SSOSVM)
library(ggplot2)
#simulations
<- generateSim(100, DELTA=3)
sims
#fit using various loss functions
<-SVMFit(sims$YMAT,"square")
sq1<-SVMFit(sims$YMAT,"hinge")
h1<-SVMFit(sims$YMAT,"logistic")
l1
#plot results
<-ggplot(data.frame(sims$YMAT), aes(colour=factor(YY), x=V2, y=V3))
plot<-plot+geom_point()+theme_bw()+xlab("X")+ylab("Y")+guides(colour=FALSE)
plot<-plot+geom_abline(intercept=sq1$THETA[1],
plotslope=sq1$THETA[2]/sq1$THETA[3], colour="blue")
<-plot+geom_abline(intercept=h1$THETA[1],
plotslope=h1$THETA[2]/h1$THETA[3], colour="green")
<-plot+geom_abline(intercept=l1$THETA[1],
plotslope=l1$THETA[2]/l1$THETA[3], colour="red")
plot
Here is an animated example to demostrate the online nature of of the SSOSVM method:
library(ggplot2)
library(gganimate)
#set up
<- generateSim(10^2, DELTA=1.5)
sims
#fit using various loss functions
<-SVMFit(sims$YMAT,"square", returnAll = TRUE)
sq1<-SVMFit(sims$YMAT,"hinge", returnAll = TRUE)
h1<-SVMFit(sims$YMAT,"logistic", returnAll = TRUE)
l1
#dataframe
<-data.frame(sample=1:10^2,
data$YMAT,
simslogistic_int=l1$THETA_list[,1],
square_int=sq1$THETA_list[,1],
hinge_int=h1$THETA_list[,1],
logistic_sl=l1$THETA_list[,2]/l1$THETA_list[,3],
square_sl=sq1$THETA_list[,2]/sq1$THETA_list[,3],
hinge_sl=h1$THETA_list[,2]/h1$THETA_list[,3])
#base plot
<-ggplot(data, aes(colour=factor(YY), x=V2, y=V3))+
plotgeom_point(size=2)+theme_bw()+xlab("X")+ylab("Y")+
guides(colour=FALSE)+geom_abline(size=1.6,alpha=.5, aes(intercept=square_int, slope=square_sl))
#animate
<- plot + transition_time(sample)+
example labs(title = "Sample: {frame_time}")+
shadow_mark(alpha = 1, size = 1, exclude_layer = 2)
#save animation
anim_save("./inst/example.gif", example, fps=2.5)