Package 'SFSI'

June 25, 2024
Title Sparse Family and Selection Index
Version 1.4
Date 2024-06-19
Description Here we provide tools for the estimation of coefficients in penalized regres-
sions when the (co)variance matrix of predictors and the covariance vector between predic-
tors and response, are provided. These methods are extended to the context of a Selection In-
dex (commonly used for breeding value prediction). The approaches offer opportuni-
ties such as the integration of high-throughput traits in genetic evaluations ('Lopez-
Cruz et al., 2020') doi:10.1038/s41598-020-65011-2 and solutions for training set optimiza-
tion in Genomic Prediction ('Lopez-Cruz \& de los Cam-
pos, 2021') doi:10.1093/genetics/iyab030.
URL https://github.com/MarcooLopez/SFSI
LazyLoad true
Depends R (>= 3.6.0)
Imports stats, scales, tensorEVD (>=0.1.3), parallel, reshape2, viridis, igraph, stringr, ggplot2

Suggests BGLR, knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
License GPL-3
NeedsCompilation yes
Author Marco Lopez-Cruz [aut, cre], Gustavo de los Campos [aut],
Paulino Perez-Rodriguez [ctb]
Maintainer Marco Lopez-Cruz maraloc@gmail.com
Repository CRAN
Date/Publication 2024-06-25 14:50:09 UTC

Contents

1. Save/read binary files 2
2. Covariance matrix transformations 4
3. Solve an Elastic-Net problem 5
4. Least Angle Regression (LARS) 9
5. Sparse Genomic Prediction (SGP) 11
6. BLUP estimation from Linear Mixed Model 17
7. Genetic covariances computation 20
8. SGP accuracy vs penalization plot 23
Create partitions 24
Graphical Network from a numeric matrix 24
Graphical network plot 26
Multi-trait SGP accuracy vs penalization plot 28
R-squared pruning 29
Reading and combining SGP outputs 30
Regression coefficients and predicted values in LASSO-type problems 31
Regression coefficients path 32
Regression coefficients, predicted values and summary in SGP problems 34
Wheat data set 35
Index 38
9. Save/read binary files

Save/read binary files

Description

Save/read a numeric data as a fortran-formatted binary file at a defined precision (single or double).

Usage

```
    saveBinary(X, file = paste0(tempdir(), "/file.bin"),
                        precision.format = c("double","single"),
                        verbose = TRUE)
    readBinary(file = paste0(tempdir(), "/file.bin"),
        rows = NULL, cols = NULL,
        drop = TRUE, verbose = TRUE)
```


Arguments

$X \quad$ (numeric matrix) Data to save
file (character) Name of the binary file to save/read
precision.format
(character) Either 'single' or 'double' for numeric precision and memory occupancy (4 bytes/32-bit or 8 bytes/64-bit, respectively) of the matrix to save

rows	(integer vector) Which rows are to be read from the file. Default rows=NULL will read all the rows
cols	(integer vector) Which columns are to be read from the file. Default cols=NULL will read all the columns
drop	Either TRUE or FALSE to whether return a uni-dimensional vector when data is a matrix with either 1 row or 1 column
verbose	TRUE or FALSE to whether printing file information

Value

Function 'saveBinary' does not return any value but print a description of the file saved.
Function 'readBinary' returns the data that was read.

Examples

```
    require(SFSI)
    # A numeric matrix
    X = matrix(rnorm(500*100), ncol=100)
    # Save matrix as double-precision
    filename1 = paste0(tempdir(),"/Matrix1.bin")
    saveBinary(X, filename1, precision.format="double")
    # Save matrix as single-precision
    filename2 = paste0(tempdir(),"/Matrix2.bin")
    saveBinary(X, filename2, precision.format="single")
    # Read the double-precision matrix
    X2 = readBinary(filename1)
    max(abs(X-X2)) # No loss of precision
    file.info(filename1)$size # Size of the file
    # Read the single-precision matrix
    X3 = readBinary(filename2)
    max(abs(X-X3)) # Loss of precision
    file.info(filename2)$size # But smaller-size file
    # Read specific rows and columns
    rows = c(2,4,5,8,10)
    cols = c(1,2,5)
    (X2 = readBinary(filename1, rows=rows, cols=cols))
    # Equal to:
    X[rows,cols]
```


2. Covariance matrix transformations
 Conversion of a covariance matrix to a distance/correlation matrix

Description

Transformation into correlation matrix or distance matrix from a covariance matrix

Usage

cov2dist(A, a $=1$, inplace $=$ FALSE)
$\operatorname{cov} 2 \operatorname{cor} 2(\mathrm{~A}, \mathrm{a}=1$, inplace $=$ FALSE $)$

Arguments

A
(numeric matrix) Variance-covariance matrix
inplace
a

TRUE or FALSE to whether operate directly on the input matrix. When TRUE no result is produced but the input A is modified. Default inplace=FALSE

Details

For any variables X_{i} and X_{j} with mean zero and with sample vectors $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)^{\prime}$ and $\mathbf{x}_{j}=\left(x_{j 1}, \ldots, x_{j n}\right)^{\prime}$, their (sample) variances are equal (up-to a constant) to their cross-products, this is, $\operatorname{var}\left(X_{i}\right)=\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}$ and $\operatorname{var}\left(X_{j}\right)=\mathbf{x}_{j}^{\prime} \mathbf{x}_{j}$. Likewise, the covariance is $\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathbf{x}_{i}^{\prime} \mathbf{x}_{j}$.
Distance. The Euclidean distance $d\left(X_{i}, X_{j}\right)$ between the variables expressed in terms of crossproducts is

$$
d\left(X_{i}, X_{j}\right)=\sqrt{\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}+\mathbf{x}_{j}^{\prime} \mathbf{x}_{j}-2 \mathbf{x}_{i}^{\prime} \mathbf{x}_{j}}
$$

Therefore, the output distance matrix will contain as off-diagonal entries

$$
d\left(X_{i}, X_{j}\right)=\sqrt{\operatorname{var}\left(X_{i}\right)+\operatorname{var}\left(X_{j}\right)-2 \operatorname{cov}\left(X_{i}, X_{j}\right)}
$$

while in the diagonal, the distance between one variable with itself is $d\left(X_{i}, X_{i}\right)=0$
Correlation. The correlation between the variables is obtained from variances and covariances as

$$
\operatorname{cor}\left(X_{i}, X_{j}\right)=\operatorname{cov}\left(X_{i}, X_{j}\right) /\left(\operatorname{sd}\left(X_{i}\right) \operatorname{sd}\left(X_{j}\right)\right)
$$

where $\operatorname{sd}\left(X_{i}\right)=\sqrt{\operatorname{var}\left(X_{i}\right)}$; while in the diagonal, the correlation between one variable with itself is $\operatorname{cor}\left(X_{i}, X_{i}\right)=1$
Variances are obtained from the diagonal values while covariances are obtained from the outdiagonal.

Value

Function 'cov2dist' returns a matrix containing the Euclidean distances. Function 'cov2cor2' returns a correlation matrix

Examples

```
    require(SFSI)
    data(wheatHTP)
    X = scale(M)[1:100,]/sqrt(ncol(M))
    A = tcrossprod(X) # A 100x100 covariance matrix
    # Covariance matrix to distance matrix
    D = cov2dist(A)
    # (it must equal (but faster) to:)
    D0 = as.matrix(dist(X))
max(D-D0)
# Covariance to a correlation matrix
R = cov2cor2(A)
# (it must equal (but faster) to:)
R0 = cov2cor(A)
max(R-R0)
# Inplace calculation
A[1:5,1:5]
cov2dist(A, inplace=TRUE)
A[1:5,1:5] # notice that A was modified
```


3. Solve an Elastic-Net problem

Coordinate Descent algorithm to solve Elastic-Net-type problems

Description

Computes the entire Elastic-Net solution for the regression coefficients for all values of the penalization parameter, via the Coordinate Descent (CD) algorithm (Friedman, 2007). It uses as inputs a variance matrix among predictors and a covariance vector between response and predictors

Usage

solveEN(Sigma, Gamma, alpha = 1, lambda = NULL, nlambda = 100,
lambda.min = .Machine\$double.eps^0.5, lambda.max = NULL,
common.lambda $=$ TRUE, beta0 $=$ NULL, nsup.max $=$ NULL,
scale $=$ TRUE, sdx $=$ NULL, tol $=1 E-5$, maxiter $=1000$,
mc.cores $=1 \mathrm{~L}$, save.at $=$ NULL, fileID $=$ NULL,
precision.format $=c(" d o u b l e ", " s i n g l e "), ~ v e r b o s e=F A L S E)$

Arguments

\(\left.\begin{array}{ll}Sigma \& (numeric matrix) Variance-covariance matrix of predictors

(numeric matrix) Covariance between response variable and predictors. If it con-

tains more than one column, the algorithm is applied to each column separately

as different response variables\end{array}\right\}\)| (numeric vector) Penalization parameter sequence. Default is lambda = NULL, |
| :--- |
| in this case a decreasing grid of ' nlambda' lambdas will be generated starting |
| from a maximum equal to |

$$
\max (a b s(G a m m a) / a l p h a)
$$

to a minimum equal to zero. If alpha $=0$ the grid is generated starting from a maximum equal to 5
nlambda (integer) Number of lambdas generated when lambda = NULL
lambda.min, lambda.max
(numeric) Minimum and maximum value of lambda that are generated when lambda = NULL
common. lambda TRUE or FALSE to whether computing the coefficients for a grid of lambdas common to all columns of Gamma or for a grid of lambdas specific to each column of Gamma. Default is common.lambda = TRUE
beta0 (numeric vector) Initial value for the regression coefficients that the algorithm will update for maxiter iterations. If beta $0=$ NULL a vector of zeros will be considered. These values will be used as starting values for the first lambda value
alpha (numeric) Value between 0 and 1 for the weights given to the L1 and L2penalties
scale TRUE or FALSE to scale matrix Sigma for variables with unit variance and scale Gamma by the standard deviation (sdx) of the corresponding predictor taken from the diagonal of Sigma
sdx (numeric vector) Scaling factor that will be used to scale the regression coefficients. When scale $=$ TRUE this scaling factor vector is set to the squared root of the diagonal of Sigma, otherwise a provided value is used assuming that Sigma and Gamma are scaled
tol (numeric) Maximum error between two consecutive solutions of the CD algorithm to declare convergence
maxiter (integer) Maximum number of iterations to run the CD algorithm at each lambda step before convergence is reached
nsup.max (integer) Maximum number of non-zero coefficients in the last solution. Default nsup. max $=$ NULL will calculate solutions for the entire lambda grid
mc.cores (integer) Number of cores used. When mc.cores >1, the analysis is run in parallel for each column of Gamma. Default is mc. cores $=1$
save.at (character) Path where regression coefficients are to be saved (this may include a prefix added to the files). Default save. at = NULL will no save the regression coefficients and they are returned in the output object

```
fileID (character) Suffix added to the file name where regression coefficients are to be
    saved. Default fileID = NULL will automatically add sequential integers from 1
    to the number of columns of Gamma
precision.format
    (character) Either 'single' or 'double' for numeric precision and memory occu-
    pancy (4 or }8\mathrm{ bytes, respectively) of the regression coefficients. This is only
    used when save.at is not NULL
verbose TRUE or FALSE to whether printing progress
```


Details

Finds solutions for the regression coefficients in a linear model

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+e_{i}
$$

where y_{i} is the response for the $i^{t h}$ observation, $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime}$ is a vector of p predictors assumed to have unit variance, $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ is a vector of regression coefficients, and e_{i} is a residual.

The regression coefficients $\boldsymbol{\beta}$ are estimated as function of the variance matrix among predictors ($\boldsymbol{\Sigma}$) and the covariance vector between response and predictors $(\boldsymbol{\Gamma})$ by minimizing the penalized mean squared error function

$$
-\boldsymbol{\Gamma}^{\prime} \boldsymbol{\beta}+1 / 2 \boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma} \boldsymbol{\beta}+\lambda J(\boldsymbol{\beta})
$$

where λ is the penalization parameter and $J(\boldsymbol{\beta})$ is a penalty function given by

$$
1 / 2(1-\alpha)\|\boldsymbol{\beta}\|_{2}^{2}+\alpha\|\boldsymbol{\beta}\|_{1}
$$

where $0 \leq \alpha \leq 1$, and $\|\boldsymbol{\beta}\|_{1}=\sum_{j=1}^{p}\left|\beta_{j}\right|$ and $\|\boldsymbol{\beta}\|_{2}^{2}=\sum_{j=1}^{p} \beta_{j}^{2}$ are the L1 and (squared) L2-norms, respectively.

The "partial residual" excluding the contribution of the predictor $x_{i j}$ is

$$
e_{i}^{(j)}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+x_{i j} \beta_{j}
$$

then the ordinary least-squares (OLS) coefficient of $x_{i j}$ on this residual is (up-to a constant)

$$
\beta_{j}^{(o l s)}=\Gamma_{j}-\boldsymbol{\Sigma}_{j}^{\prime} \boldsymbol{\beta}+\beta_{j}
$$

where Γ_{j} is the $j^{t h}$ element of $\boldsymbol{\Gamma}$ and $\boldsymbol{\Sigma}_{j}$ is the $j^{t h}$ column of the matrix $\boldsymbol{\Sigma}$.
Coefficients are updated for each $j=1, \ldots, p$ from their current value β_{j} to a new value $\beta_{j}(\alpha, \lambda)$, given α and λ, by "soft-thresholding" their OLS estimate until convergence as fully described in Friedman (2007).

Value

Returns a list object containing the elements:

- lambda: (vector) all the sequence of values of the penalty.
- beta: (matrix) regression coefficients for each predictor (in rows) associated to each value of the penalization parameter lambda (in columns).
- nsup: (vector) number of non-zero predictors associated to each value of lambda.

The returned object is of the class 'LASSO' for which methods coef and fitted exist. Function 'path.plot' can be also used

References

Friedman J, Hastie T, Höfling H, Tibshirani R (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302-332.

Examples

```
require(SFSI)
data(wheatHTP)
y = as.vector(Y[,"E1"]) # Response variable
X = scale(X_E1) # Predictors
# Training and testing sets
tst = which(Y$trial %in% 1:10)
trn = seq_along(y)[-tst]
# Calculate covariances in training set
XtX = var(X[trn,])
Xty = cov(X[trn,],y[trn])
# Run the penalized regression
fm = solveEN(XtX,Xty,alpha=0.5,nlambda=100)
# Regression coefficients
dim(coef(fm))
dim(coef(fm, ilambda=50)) # Coefficients associated to the 50th lambda
dim(coef(fm, nsup=25)) # Coefficients with around nsup=25 are non-zero
# Predicted values
yHat1 = predict(fm, X=X[trn,]) # training data
yHat2 = predict(fm, X=X[tst,]) # testing data
# Penalization vs correlation
plot(-log(fm$lambda[-1]),cor(y[trn],yHat1[,-1]), main="training", type="l")
plot(-log(fm$lambda[-1]),cor(y[tst],yHat2[,-1]), main="testing", type="l")
```

4. Least Angle Regression (LARS)

Least Angle Regression to solve LASSO-type problems

Description

Computes the entire LASSO solution for the regression coefficients, starting from zero, to the leastsquares estimates, via the Least Angle Regression (LARS) algorithm (Efron, 2004). It uses as inputs a variance matrix among predictors and a covariance vector between response and predictors.

Usage

LARS(Sigma, Gamma, method = c("LAR","LASSO"), nsup.max $=$ NULL, eps $=$.Machine\$double.eps*100, scale $=$ TRUE, $s d x=$ NULL, mc.cores $=1 \mathrm{~L}$, save. at $=$ NULL, precision.format $=c(" d o u b l e ", " s i n g l e ")$, fileID $=$ NULL, verbose $=$ FALSE)

Arguments

Sigma	(numeric matrix) Variance-covariance matrix of predictors
Gamma	(numeric matrix) Covariance between response variable and predictors. If it contains more than one column, the algorithm is applied to each column separately as different response variables
method	(character) Either: - 'LAR': Computes the entire sequence of all coefficients. Values of lambdas are calculated at each step. - 'LASSO' : Similar to 'LAR' but solutions when a predictor leaves the solution are also returned.
	Default is method $=$ 'LAR'
nsup.max	(integer) Maximum number of non-zero coefficients in the last LARS solution. Default nsup.max = NULL will calculate solutions for the entire lambda sequence
eps	(numeric) An effective zero. Default is the machine precision
scale	TRUE or FALSE to scale matrix Sigma for variables with unit variance and scale Gamma by the standard deviation (sdx) of the corresponding predictor taken from the diagonal of Sigma
$s d x$	(numeric vector) Scaling factor that will be used to scale the regression coefficients. When scale $=$ TRUE this scaling factor vector is set to the squared root of the diagonal of Sigma, otherwise a provided value is used assuming that Sigma and Gamma are scaled
mc.cores	(integer) Number of cores used. When mc.cores >1, the analysis is run in parallel for each column of Gamma. Default is mc. cores $=1$

```
save.at (character) Path where regression coefficients are to be saved (this may include
        a prefix added to the files). Default save.at = NULL will no save the regression
        coefficients and they are returned in the output object
fileID (character) Suffix added to the file name where regression coefficients are to be
        saved. Default fileID = NULL will automatically add sequential integers from 1
        to the number of columns of Gamma
precision.format
            (character) Either 'single' or 'double' for numeric precision and memory occu-
        pancy (4 or }8\mathrm{ bytes, respectively) of the regression coefficients. This is only
        used when save.at is not NULL
verbose TRUE or FALSE to whether printing each LARS step
```


Details

Finds solutions for the regression coefficients in a linear model

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+e_{i}
$$

where y_{i} is the response for the $i^{t h}$ observation, $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime}$ is a vector of p predictors assumed to have unit variance, $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ is a vector of regression coefficients, and e_{i} is a residual.
The regression coefficients $\boldsymbol{\beta}$ are estimated as function of the variance matrix among predictors ($\boldsymbol{\Sigma}$) and the covariance vector between response and predictors $(\boldsymbol{\Gamma})$ by minimizing the penalized mean squared error function

$$
-\boldsymbol{\Gamma}^{\prime} \boldsymbol{\beta}+1 / 2 \boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma} \boldsymbol{\beta}+1 / 2 \lambda\|\boldsymbol{\beta}\|_{1}
$$

where λ is the penalization parameter and $\|\boldsymbol{\beta}\|_{1}=\sum_{j=1}^{p}\left|\beta_{j}\right|$ is the L1-norm.
The algorithm to find solutions for each β_{j} is fully described in Efron (2004) in which the "current correlation" between the predictor $x_{i j}$ and the residual $e_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ is expressed (up-to a constant) as

$$
r_{j}=\Gamma_{j}-\boldsymbol{\Sigma}_{j}^{\prime} \boldsymbol{\beta}
$$

where Γ_{j} is the $j^{t h}$ element of $\boldsymbol{\Gamma}$ and $\boldsymbol{\Sigma}_{j}$ is the $j^{t h}$ column of the matrix $\boldsymbol{\Sigma}$

Value

Returns a list object with the following elements:

- lambda: (vector) all the sequence of values of the LASSO penalty.
- beta: (matrix) regression coefficients for each predictor (in rows) associated to each value of the penalization parameter lambda (in columns).
- nsup: (vector) number of non-zero predictors associated to each value of lambda.

The returned object is of the class 'LASSO' for which methods coef and predict exist. Function 'path.plot' can be also used

Author(s)

Adapted from the 'lars' function in package 'lars' (Hastie \& Efron, 2013)

References

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). Least angle regression. The Annals of Statistics, 32(2), 407-499.

Hastie T, Efron B (2013). lars: least angle regression, Lasso and forward stagewise. https:// cran.r-project.org/package=lars.

Examples

```
require(SFSI)
data(wheatHTP)
y = as.vector(Y[,"E1"]) # Response variable
X = scale(X_E1) # Predictors
# Training and testing sets
tst = which(Y$trial %in% 1:10)
trn = seq_along(y)[-tst]
# Calculate covariances in training set
XtX = var(X[trn,])
Xty = cov(X[trn,],y[trn])
# Run the penalized regression
fm = LARS(XtX, Xty, method="LASSO")
# Regression coefficients
dim(coef(fm))
dim(coef(fm, ilambda=50)) # Coefficients associated to the 50th lambda
dim(coef(fm, nsup=25)) # Coefficients with around nsup=25 are non-zero
# Predicted values
yHat1 = predict(fm, X=X[trn,]) # training data
yHat2 = predict(fm, X=X[tst,]) # testing data
# Penalization vs correlation
plot(-log(fm$lambda[-1]),cor(y[trn],yHat1[,-1]), main="Training", type="l")
plot(-log(fm$lambda[-1]),cor(y[tst],yHat2[,-1]), main="Testing", type="l")
```

```
5. Sparse Genomic Prediction (SGP)
    Sparse Genomic Prediction
```


Description

Computes the entire Elastic-Net solution for the regression coefficients of a Selection Index for a grid of values of the penalization parameter.
An optimal penalization can be chosen using cross-validation (CV) within a specific training set.

Usage

```
SGP (y = NULL, \(X=\) NULL, \(b=N U L L, ~ Z ~=~ N U L L, ~ K ~=~ N U L L, ~\)
    trn \(=\) NULL, tst \(=\) NULL, varU \(=\) NULL, varE \(=\) NULL,
    ID_geno = NULL, ID_trait = NULL, intercept = TRUE,
    alpha = 1, lambda = NULL, nlambda = 100,
    lambda.min = .Machine\$double.eps^0.5,
    common.lambda \(=\) TRUE, subset \(=\) NULL, tol \(=1 \mathrm{E}-4\),
    maxiter \(=500\), method \(=c(" R E M L ", " M L ")\), tag \(=\) NULL,
    save.at \(=\) NULL, precision.format \(=c(" s i n g l e ", " d o u b l e ")\),
    mc . cores \(=1 \mathrm{~L}\), verbose \(=2\) )
SGP.CV(y, X = NULL, b = NULL, Z = NULL, K,
        trn = NULL, varU = NULL, varE = NULL,
        ID_geno = NULL, ID_trait = NULL,
        intercept \(=\) TRUE, alpha = 1, lambda = NULL,
        nlambda = 100, lambda.min = .Machine\$double.eps^0.5,
        common.lambda = TRUE, nfolds = 5, nCV = 1L,
        folds \(=\) NULL, seed \(=\) NULL, subset \(=\) NULL, tol \(=1 \mathrm{E}-4\),
        maxiter \(=500\), method \(=c(" R E M L ", " M L ")\), tag \(=\) NULL,
        save.at \(=\) NULL, mc.cores \(=1 \mathrm{~L}\), verbose \(=\) TRUE)
```


Arguments

y

X
b

K (numeric matrix) Kinship relationship matrix
Z (numeric matrix) Design matrix for random effects. When $Z=$ NULL an identity matrix is considered (default) thus $\mathbf{G}=\mathbf{K}$; otherwise $\mathbf{G}=\mathbf{Z} \mathbf{K} \mathbf{Z}$ ' is used
varU, varE (numeric) Genetic and residual variances. When either varU = NULL or varE = NULL (default), they are calculated from training data using the function 'fitBLUP' (see help(fitBLUP)) for single-trait analysis or using the function 'getGenCov' for multi-trait analysis
ID_geno (character/integer) For multi-trait analysis only, vector with either names or indices mapping entries of the vector y to rows/columns of matrix G

ID_trait	(character/integer) For multi-trait analysis only, vector with either names or indices mapping entries of the vector y to rows/columns of matrices varU and varE
intercept	TRUE or FALSE to whether fit an intercept. When FALSE, the model assumes a null intercept
trn, tst	(integer vector) Which elements from vector y are in training and testing sets, respectively. When both $\operatorname{trn}=$ NULL and $t s t=$ NULL, non-NA entries in vector y will be used as training set
subset	(integer vector) $c(m, M)$ to fit the model only for the $m^{t h}$ subset out of M subsets that the testing set will be divided into. Results can be automatically saved as per the save. at argument and can be retrieved later using function 'read_SGP' (see help(read_SGP)). In cross-validation, it should has format $c($ fold,$C V)$ to fit the model for a given fold within partition
alpha	(numeric) Value between 0 and 1 for the weights given to the L1 and L2penalties
lambda	(numeric vector) Penalization parameter sequence. Default is lambda $=$ NULL, in this case a decreasing grid of nlambda lambdas will be generated starting from a maximum equal to
	$\max (\mathrm{abs}(\mathrm{G}[\mathrm{trn}$, tst])/alpha)
	to a minimum equal to zero. If alpha $=0$ the grid is generated starting from a maximum equal to 5
nlambda	(integer) Number of lambdas generated when lambda = NULL
lambda.min	(numeric) Minimum value of lambda in the generated grid when lambda = NULL
nfolds	(integer/character) Either 2,3,5,10 or 'n' indicating the number of non-overlapping folds in which the data is split into to do cross-validation. When nfolds = ' n ' a leave-one-out CV is performed
seed	(numeric vector) Seed to fix randomization when creating folds for cross-validation. If it is a vector, a number equal to its length of CV repetitions are performed
nCV	(integer) Number of CV repetitions to be performed. Default is $\mathrm{nCV}=1$
folds	(integer matrix) A matrix with nTRN rows and nCV columns where each column represents a different partition with nfolds folds. It can be created using the function 'get_folds'
common.lambda	TRUE or FALSE to whether computing the coefficients for a grid of lambdas common to all individuals in testing set or for a grid of lambdas specific to each individual in testing set. Default is common. lambda = TRUE
mc.cores	(integer) Number of cores used. When mc.cores >1, the analysis is run in parallel for each testing set individual. Default is mc.cores $=1$
tol	(numeric) Maximum error between two consecutive solutions of the CD algorithm to declare convergence
maxiter	(integer) Maximum number of iterations to run the CD algorithm at each lambda step before convergence is reached

```
save.at (character) Path where files (regression coefficients and output object) are to be
        saved (this may include a prefix added to the files). Default save.at = NULL
        will no save any results and they are returned in the output object. No regression
        coefficients are saved for function 'SGP.CV'
precision.format
    (character) Either 'single' or 'double' for numeric precision and memory occu-
    pancy (4 or }8\mathrm{ bytes, respectively) of the regression coefficients. This is only
    used when save.at is not NULL
method (character) Either 'REML' (Restricted Maximum Likelihood) or 'ML' (Max-
        imum Likelihood) to calculate variance components as per the function 'fit-
        BLUP'
tag (character) Name given to the output for tagging purposes. Default tag = NULL
        will give the name of the method used
verbose (integer) If greater than zero analysis details will be printed
```


Details

The basic linear mixed model that relates phenotypes with genetic values is of the form

$$
\mathbf{y}=\mathbf{X} \mathbf{b}+\mathbf{Z g}+\mathbf{e}
$$

where \mathbf{y} is a vector with the response, \mathbf{b} is the vector of fixed effects, \mathbf{g} is the vector of the genetic values of the genotypes, \mathbf{e} is the vector of environmental residuals, and \mathbf{X} and \mathbf{Z} are design matrices for the fixed and genetic effects, respectively. Genetic effects are assumed to follow a Normal distribution as $\mathbf{g} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{K}\right)$, and environmental terms are assumed $\mathbf{e} \sim N\left(\mathbf{0}, \sigma_{e}^{2} \mathbf{I}\right)$.
The resulting vector of genetic values $\mathbf{u}=\mathbf{Z g}$ will therefore follow $\mathbf{u} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{G}\right)$ where $\mathbf{G}=$ $\mathbf{Z K} \mathbf{Z}^{\prime}$. In the un-replicated case, $\mathbf{Z}=\mathbf{I}$ is an identity matrix, and hence $\mathbf{u}=\mathbf{g}$ and $\mathbf{G}=\mathbf{K}$.
The values $\mathbf{u}_{t s t}=\left\{u_{i}\right\}, i=1,2, \ldots, n_{t s t}$, for a testing set are estimated individual-wise using (as predictors) all available observations in a training set as

$$
u_{i}=\boldsymbol{\beta}_{i}^{\prime}\left(\mathbf{y}_{t r n}-\mathbf{X}_{t r n} \mathbf{b}\right)
$$

where $\boldsymbol{\beta}_{i}$ is a vector of weights that are found separately for each individual in the testing set, by minimizing the penalized mean squared error function

$$
-\sigma_{u}^{2} \mathbf{G}_{t r n, t s t(i)}^{\prime} \boldsymbol{\beta}_{i}+1 / 2 \boldsymbol{\beta}_{i}^{\prime}\left(\sigma_{u}^{2} \mathbf{G}_{t r n}+\sigma_{e}^{2} \mathbf{I}\right) \boldsymbol{\beta}_{i}+\lambda J\left(\boldsymbol{\beta}_{i}\right)
$$

where $\mathbf{G}_{t r n, t s t(i)}$ is the $i^{t h}$ column of the sub-matrix of \mathbf{G} whose rows correspond to the training set and columns to the testing set; $\mathbf{G}_{t r n}$ is the sub-matrix corresponding to the training set; λ is the penalization parameter; and $J\left(\boldsymbol{\beta}_{i}\right)$ is a penalty function given by

$$
1 / 2(1-\alpha)\left\|\boldsymbol{\beta}_{i}\right\|_{2}^{2}+\alpha\left\|\boldsymbol{\beta}_{i}\right\|_{1}
$$

where $0 \leq \alpha \leq 1$, and $\left\|\boldsymbol{\beta}_{i}\right\|_{1}=\sum_{j=1}^{n_{\text {trn }}}\left|\beta_{i j}\right|$ and $\left\|\boldsymbol{\beta}_{i}\right\|_{2}^{2}=\sum_{j=1}^{n_{\text {trn }}} \beta_{i j}^{2}$ are the L1 and (squared) L2-norms, respectively.

Function 'SGP' calculates each individual solution using the function 'solveEN' (via the Coordinate Descent algorithm, see help(solveEN)) by setting the argument Sigma equal to $\sigma_{u}^{2} \mathbf{G}_{t r n}+\sigma_{e}^{2} \mathbf{I}$ and Gamma equal to $\sigma_{u}^{2} \mathbf{G}_{t r n, t s t(i)}$.
Function 'SGP.CV' performs cross-validation within the training data specified in argument trn. Training data is divided into k folds and the SGP is sequentially derived for (all individuals in) one fold (as testing set) using information from the remaining folds (as training set).

Value

Function 'SGP' returns a list object of the class 'SGP' for which methods coef, predict, plot, and summary exist. Functions 'net.plot' and 'path.plot' can be also used. It contains the elements:

- b: (vector) fixed effects solutions (including the intercept).
- Xb: (vector) total fixed values (Xb).
- u: (matrix) total genetic values ($\mathbf{u}=\mathbf{Z g}$) for testing individuals (in rows) associated to each value of lambda (in columns).
- varU, varE, h2: variance components solutions.
- alpha: value for the elastic-net weights used.
- lambda: (matrix) sequence of values of lambda used (in columns) for each testing individual (in rows).
- nsup: (matrix) number of non-zero predictors at each solution given by lambda for each testing individual (in rows).
- file_beta: path where regression coefficients are saved.

Function 'SGP.CV' returns a list object of length nCV of the class 'SGP'. Optimal cross-validated penalization values can be obtained using thesummary method. Method plot is also available.

Examples

```
require(SFSI)
data(wheatHTP)
index = which(Y$trial %in% 1:12) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
Y0 = scale(as.matrix(Y[,4:6])) # Response variable
#----------------------------------------------------
# Single-trait model
#-------------------------------------------------------
y = Y0[,1]
# Training and testing sets
tst = which(Y$trial %in% 2:3)
trn = seq_along(y)[-tst]
# Sparse genomic prediction
fm1 = SGP(y, K=G, trn=trn, tst=tst)
```

```
uHat = predict(fm1) # Predicted values for each testing element
out = summary(fm1) # Useful function to get results
corTST = out$accuracy # Testing set accuracy (correlation cor(y,yHat))
out$optCOR
B = coef(fm1) # Regression coefficients for all tst
    # SGP with maximum accuracy
B = coef(fm1, iy=1) # Coefficients for first tst (tst[1])
B = coef(fm1, ilambda=10) # Coefficients associated to the 10th lambda
B = coef(fm1, nsup=10) # Coefficients for which nsup=10
plot(fm1) # Penalization vs accuracy plot
plot(fm1, y.stat="MSE", ylab='Mean Square Error', xlab='Sparsity')
varU = fm1$varU
varE = fm1$varE
b = fm1 $b
#--------------------------------------------------
# Predicting a testing set using a value of lambda
# obtained from cross-validation in a traning set
#---------------------------------------------------
# Run a cross validation in training set
fm2 = SGP.CV(y, K=G, varU=varU, varE=varE, b=b, trn=trn, nfolds=5, tag="1 5CV")
lambda = summary(fm2)$optCOR["lambda"]
# Fit the index with the obtained lambda
fm3 = SGP(y, K=G, varU=varU, varE=varE, b=b, trn=trn, tst=tst, lambda=lambda)
summary(fm3)$accuracy # Testing set accuracy
# Compare the accuracy with that of the non-sparse index (G-BLUP)
summary(fm1)$accuracy[fm1$nlambda,1] # we take the last one
#------------------------------------------------------
# Multi-trait SGP
#-----------------------------------------------------
ID_geno = as.vector(row(Y0))
ID_trait = as.vector(col(Y0))
y = as.vector(Y0)
# Training and testing sets
tst = c(which(ID_trait==1)[Y$trial %in% 2:3],
    which(ID_trait==2)[Y$trial %in% 2],
    which(ID_trait==3)[Y$trial %in% 3])
trn = seq_along(y)[-tst]
fmMT = SGP(y=y, K=G, ID_geno=ID_geno, ID_trait=ID_trait,
        trn=trn, tst=tst)
multitrait.plot(fmMT)
```


6. BLUP estimation from Linear Mixed Model
 Fitting a Linear Mixed model to calculate BLUP

Description

Solves the Linear Mixed Model and calculates the Best Linear Unbiased Predictor (BLUP)

Usage

fitBLUP (y, $\mathrm{X}=\mathrm{NULL}, \mathrm{Z}=\mathrm{NULL}, \mathrm{K}=\mathrm{NULL}, \operatorname{trn}=\mathrm{NULL}$, EVD $=$ NULL, varU $=$ NULL, varE $=$ NULL, ID_geno = NULL, ID_trait = NULL, intercept = TRUE, BLUP = TRUE, method = c("REML","ML"), interval $=c(1 \mathrm{E}-9,1 \mathrm{E} 9)$, tol $=1 \mathrm{E}-8$, maxiter $=1000$, n. regions $=10$, verbose $=$ TRUE)

Arguments

y (numeric vector) Response variable. It can be a matrix with each column representing a different response variable

X (numeric matrix) Design matrix for fixed effects. When X=NULL a vector of ones is constructed only for the intercept (default)
Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity matrix is considered (default) thus $\mathbf{G}=\mathbf{K}$; otherwise $\mathbf{G}=\mathbf{Z} \mathbf{K} \mathbf{Z}$ ' is used

K
(numeric matrix) Kinship relationship matrix
trn (integer vector) Which elements from vector y are to be used for training. When trn = NULL, non-NA entries in vector y will be used as training set
EVD (list) Eigenvectors and eigenvalues from eigenvalue decomposition (EVD) of \mathbf{G} corresponding to training data
ID_geno (character/integer) For within-trait analysis only, vector with either names or indices mapping entries of the vector y to rows/columns of matrix G
ID_trait (character/integer) For within-trait analysis only, vector with either names or indices mapping entries of the vector y to different traits
varU, varE (numeric) Genetic and residual variances. When both varU and varE are not NULL they are not calculated; otherwise, the likelihood function (REML or ML) is optimized to search for the genetic/residual variances ratio
intercept TRUE or FALSE to whether fit an intercept. When FALSE, the model assumes a null intercept
BLUP TRUE or FALSE to whether return the random effects estimates
method (character) Either 'REML' (Restricted Maximum Likelihood) or 'ML' (Maximum Likelihood)

tol	(numeric) Maximum error between two consecutive solutions (convergence tol- erance) when finding the root of the log-likelihood's first derivative
maxiter	(integer) Maximum number of iterations to run before convergence is reached (numeric vector) Range of values in which the root is searched
n. regions	(numeric) Number of regions in which the searched 'interval' is divided for local optimization
verbose	TRUE or FALSE to whether show progress

Details

The basic linear mixed model that relates phenotypes with genetic values is of the form

$$
\mathbf{y}=\mathbf{X} \mathbf{b}+\mathbf{Z g}+\mathbf{e}
$$

where \mathbf{y} is a vector with the response, \mathbf{b} is the vector of fixed effects, \mathbf{u} is the vector of the (random) genetic effects of the genotypes, \mathbf{e} is the vector of environmental residuals (random error), and \mathbf{X} and \mathbf{Z} are design matrices for the fixed and genetic effects, respectively. Genetic effects are assumed to follow a Normal distribution as $\mathbf{g} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{K}\right)$, and the error terms are assumed $\mathbf{e} \sim N\left(\mathbf{0}, \sigma_{e}^{2} \mathbf{I}\right)$.
The vector of total genetic values $\mathbf{u}=\mathbf{Z g}$ will therefore follow $\mathbf{u} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{G}\right)$ where $\mathbf{G}=\mathbf{Z K Z}$. In the un-replicated case, $\mathbf{Z}=\mathbf{I}$ is an identity matrix, and hence $\mathbf{u}=\mathbf{g}$ and $\mathbf{G}=\mathbf{K}$.
The predicted values $\mathbf{u}_{\text {trn }}=\left\{u_{i}\right\}, i=1,2, \ldots, n_{t r n}$, corresponding to observed data (training set) are derived as

$$
\mathbf{u}_{t r n}=\mathbf{B}\left(\mathbf{y}_{t r n}-\mathbf{X}_{t r n} \mathbf{b}\right)
$$

where B is a matrix of weights given by

$$
\mathbf{B}=\sigma_{u}^{2} \mathbf{G}_{t r n}\left(\sigma_{u}^{2} \mathbf{G}_{t r n}+\sigma_{e}^{2} \mathbf{I}\right)^{-1}
$$

where $\mathbf{G}_{t r n}$ is the sub-matrix corresponding to the training set. This matrix can be rewritten as

$$
\mathbf{B}=\mathbf{G}_{t r n}\left(\mathbf{G}_{t r n}+\theta \mathbf{I}\right)^{-1}
$$

where $\theta=\sigma_{e}^{2} / \sigma_{u}^{2}$ is the residual/genetic variances ratio representing a ridge-like shrinkage parameter.
The matrix $\mathbf{H}=\mathbf{G}_{t r n}+\theta \mathbf{I}$ in the above equation can be used to obtain predictions corresponding to un-observed data (testing set), $\mathbf{u}_{t s t}=\left\{u_{i}\right\}, i=1,2, \ldots, n_{t s t}$, by

$$
\mathbf{B}=\mathbf{G}_{t s t, t r n}\left(\mathbf{G}_{t r n}+\theta \mathbf{I}\right)^{-1}
$$

where $\mathbf{G}_{t s t, t r n}$ is the sub-matrix of \mathbf{G} corresponding to the testing set (in rows) and training set (in columns).
Solutions are found using the GEMMA (Genome-wide Efficient Mixed Model Analysis) approach (Zhou \& Stephens, 2012). First, the Brent's method is implemented to solve for the genetic/residual variances ratio (i.e., $1 / \theta$) from the first derivative of the log-likelihood (either REML or ML). Then, variances σ_{u}^{2} and σ_{e}^{2} are calculated. Finally, \mathbf{b} is obtained using Generalized Least Squares.

Value

Returns a list object that contains the elements:

- b: (vector) fixed effects solutions (including the intercept).
- u: (vector) total genetic values $(\mathbf{u}=\mathbf{Z g})$.
- g: (vector) genetic effects solutions.
- varU: random effect variance.
- varE: residual variance.
- h2: heritability.
- convergence: (logical) whether Brent's method converged.
- method: either 'REML' or 'ML' method used.

References

Zhou X, Stephens M (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821-824

Examples

```
    require(SFSI)
    data(wheatHTP)
    index = which(Y$trial %in% 1:20) # Use only a subset of data
    Y = Y[index,]
    M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
    G = tcrossprod(M) # Genomic relationship matrix
    Y0 = scale(as.matrix(Y[,4:6])) # Response variable
    #-----------------------------------------------------
    # Single-trait model
    #------------------------------------------------------
    y = Y0[,1]
    # Training and testing sets
    tst = which(Y$trial %in% 1:3)
    trn = seq_along(y)[-tst]
    # Kinship-based model
    fm1 = fitBLUP(y, K=G, trn=trn)
    head(fm1$g) 
    cor(y[tst],fm1$yHat[tst]) # Prediction accuracy in testing set
    cor(y[trn],fm1$yHat[trn]) # Prediction accuracy in training set
    fm1$varU # Genetic variance
    fm1$varE # Residual variance
    fm1$h2 # Heritability
    fm1$b # Fixed effects
```

```
# Markers-based model
fm2 = fitBLUP(y, Z=M, trn=trn)
head(fm2$g) # Marker effects
all.equal(fm1$yHat, fm2$yHat)
fm2$varU # Genetic variance
fm2$varU*sum(apply(M, 2,var))
#-----------------------------------------------------
# Multiple response variables
#---------------------------------------------------
ID_geno = as.vector(row(Y0))
ID_trait = as.vector(col(Y0))
y = as.vector(Y0)
# Training and testing sets
tst = c(which(ID_trait==1)[Y$trial %in% 1:3],
    which(ID_trait==2)[Y$trial %in% 1:3],
    which(ID_trait==3)[Y$trial %in% 1:3])
trn = seq_along(y)[-tst]
# Across traits model
fm3 = fitBLUP(y, K=G, ID_geno=ID_geno, trn=trn)
plot(fm1$yHat,fm3$yHat[ID_trait==1]) # different from the single-trait model
# Within traits model: pass an index for traits
fm4 = fitBLUP(y, K=G, ID_geno=ID_geno, ID_trait=ID_trait, trn=trn)
plot(fm1$yHat,fm4$yHat[ID_trait==1]) # equal to the single-trait model
```


7. Genetic covariances computation
 Pairwise Genetic Covariance

Description

Pairwise genetic covariances for variables with the same experimental design

Usage

getGenCov ($\mathrm{y}, \mathrm{X}=\mathrm{NULL}, \mathrm{Z}=\mathrm{NULL}, \mathrm{K}=\mathrm{NULL}, \operatorname{trn}=\mathrm{NULL}$, EVD $=$ NULL, ID_geno, ID_trait, scale = TRUE, pairwise = TRUE, verbose = TRUE, ...)

Arguments

y (numeric matrix) Response variable vector. It can be a matrix with each column representing a different response variable
X
(numeric matrix) Design matrix for fixed effects. When X=NULL a vector of ones is constructed only for the intercept (default)

Z

K
trn

EVD (list) Eigenvectors and eigenvalues from eigenvalue decomposition (EVD) of \mathbf{G} corresponding to training data
ID_geno (character/integer) Vector with either names or indices mapping entries of the vector y to rows/columns of matrix G
ID_trait (character/integer) Vector with either names or indices mapping entries of the vector y to different traits
scale TRUE or FALSE to scale each column of y by their corresponding standard deviations so the resulting variables will have unit variance
pairwise TRUE or FALSE to calculate pairwise genetic covariances for all columns in y. When pairwise $=$ FALSE $($ default $)$ covariances of the first column in y with the remaining columns ($2, \ldots, \mathrm{ncol}(\mathrm{y})$) are calculated
verbose TRUE or FALSE to whether show progress
... Other arguments passed to the function 'fitBLUP'

Details

Assumes that both \mathbf{y}_{1} and \mathbf{y}_{2} follow the basic linear mixed model that relates phenotypes with genetic values of the form

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{X} \mathbf{b}_{1}+\mathbf{Z} \mathbf{g}_{1}+\mathbf{e}_{1} \\
& \mathbf{y}_{2}=\mathbf{X} \mathbf{b}_{2}+\mathbf{Z} \mathbf{g}_{2}+\mathbf{e}_{2}
\end{aligned}
$$

where \mathbf{b}_{1} and \mathbf{b}_{2} are the specific fixed effects, \mathbf{g}_{1} and \mathbf{g}_{2} are the specific genetic effects of the genotypes, \mathbf{e}_{1} and \mathbf{e}_{2} are the vectors of specific environmental residuals, and \mathbf{X} and \mathbf{Z} are common design matrices for the fixed and genetic effects, respectively. Genetic effects are assumed to follow a Normal distribution as $\mathbf{g}_{1} \sim N\left(\mathbf{0}, \sigma_{u_{1}}^{2} \mathbf{K}\right)$ and $\mathbf{g}_{2} \sim N\left(\mathbf{0}, \sigma_{u_{2}}^{2} \mathbf{K}\right)$, and environmental terms are assumed $\mathbf{e}_{1} \sim N\left(\mathbf{0}, \sigma_{e_{1}}^{2} \mathbf{I}\right)$ and $\mathbf{e}_{2} \sim N\left(\mathbf{0}, \sigma_{e_{2}}^{2} \mathbf{I}\right)$.
The genetic covariance $\sigma_{u_{1} u_{2}}^{2}$ is estimated from the formula for the variance for the sum of two variables as

$$
\sigma_{u_{1} u_{2}}^{2}=\frac{1}{2}\left(\sigma_{u_{3}}^{2}-\sigma_{u_{1}}^{2}-\sigma_{u_{2}}^{2}\right)
$$

where $\sigma_{u_{3}}^{2}$ is the genetic variance of the variable $\mathbf{y}_{3}=\mathbf{y}_{1}+\mathbf{y}_{2}$ that also follows the same model as for \mathbf{y}_{1} and \mathbf{y}_{2}.
Likewise, the environmental covariance $\sigma_{e_{1} e_{2}}^{2}$ is estimated as

$$
\sigma_{e_{1} e_{2}}^{2}=\frac{1}{2}\left(\sigma_{e_{3}}^{2}-\sigma_{e_{1}}^{2}-\sigma_{e_{2}}^{2}\right)
$$

where $\sigma_{e_{3}}^{2}$ is the error variance of the variable \mathbf{y}_{3}.
Solutions are found using the function 'fitBLUP' (see help(fitBLUP)) to sequentialy fit mixed models for all the variables $\mathbf{y}_{1}, \mathbf{y}_{2}$ and \mathbf{y}_{3}.

Value

Returns a list object that contains the elements:

- varU: (vector) genetic variances.
- varE: (vector) error variances.
- covU: (vector) genetic covariances between response variable 1 and the rest.
- covE: (vector) environmental covariances between response variable 1 and the rest.

When pairwise = TRUE, varU and varE are matrices containing all variances (diagonal) and pairwise covariances (off diagonal)

Examples

```
require(SFSI)
data(wheatHTP)
index = which(Y$trial %in% 1:10) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
Y0 = scale(as.matrix(Y[,4:7])) # Response variable
ID_geno = as.vector(row(Y0))
ID_trait = as.vector(col(Y0))
y = as.vector(Y0)
# Pairwise covariance for all columns in y
fm = getGenCov(y=y, K=G, ID_geno=ID_geno, ID_trait=ID_trait)
fm$varU # Genetic variances
fm$varE # Residual variances
fm$varU+fm$varE # Phenotypic covariance
var(Y0) # Sample phenotypic covariance
# Covariances between the first and the rest: y[,1] and y[,2:4]
fm = getGenCov(y=y, K=G, ID_geno=ID_geno, ID_trait=ID_trait, pairwise=FALSE)
fm$covU # Genetic covariance between y[,1] and y[,2:4]
# Containing some missing values:
# The model is estimated from common training data
YNA = Y0
YNA[Y$trial %in% 1:2, 1] = NA
YNA[Y$trial %in% 2:3, 3] = NA
y = as.vector(YNA)
fm = getGenCov(y=y, K=G, ID_geno=ID_geno, ID_trait=ID_trait)
fm$varU
```

fm\$varE
8. SGP accuracy vs penalization plot

Accuracy vs penalization plot

Description

Accuracy as a function of the penalization plot for an object of the class 'SGP'

Usage

> \#\# S3 method for class 'SGP'
plot(..., x.stat = c("nsup","lambda"), y.stat = c("accuracy","MSE"),
label = x.stat, nbreaks. $x=6$)

Arguments

$\ldots \quad$ Other arguments to be passed:

- One or more objects of the class 'SGP'
- Optional arguments for method plot: 'xlab', 'ylab', 'main', 'lwd', 'xlim', 'ylim'
- For multi-trait SGP, optional argument 'trait' to plot results for a specific trait
x.stat (character) Either 'nsup' (number of non-zero regression coefficients entering in the prediction of a given testing individual) or 'lambda' (penalization parameter in \log scale) to plot in the x -axis
y.stat (character) Either 'accuracy' (correlation between observed and predicted values) or 'MSE' (mean squared error) to plot in the y-axis
label (character) Similar to x. stat but to show the value in x-axis for which the y-axis is maximum
nbreaks. x (integer) Number of breaks in the x-axis

Value

Creates a plot of either accuracy or MSE versus either the support set size (average number of predictors with non-zero regression coefficient) or versus lambda.

Examples

```
# See examples in
# help(SGP, package="SFSI")
```

Create partitions Data partition into folds of the same size

Description

Create a random data partition of size n into k non-overlapping folds of approximately the same size

Usage

get_folds(n, $k=5 L, n C V=1 L$, seed = NULL)

Arguments

n
k (integer) Number of folds
nCV (integer) Number of different partitions to be created
seed (integer vector) Optional seed for randomization (see help(set.seed)). It has to be of length equal to nCV

Value

Returns a matrix with n rows and nCV columns. Each column contains a partition with k folds.

Examples

```
require(SFSI)
# Create 5 different partitions into 10 folds
# for a sample size equal to 115
out = get_folds(n=115, k=10, nCV=5)
# Size of folds at first partition
table(out[,1])
```

```
Graphical Network from a numeric matrix
                    Graphical Network
```


Description

Obtain a Graphical Network representation from a matrix where nodes are subjects in the rows and columns, and edges are obtained from the matrix entries

Usage

```
net(object, K = NULL,
    nsup = NULL, p.radius = 1.7,
    delta = .Machine$double.eps)
```


Arguments

object Either a numeric matrix X or an object of the 'SGP' class. When the object is of the 'SGP' class the regression coefficients are used as X

K
(numeric matrix) Kinship relationship matrix among nodes
nsup (numeric) For a SGP, average number of training individuals contributing to the prediction (with non-zero regression coefficient) of testing individuals. Default nsup $=$ NULL will use the value of nsup that yielded the optimal accuracy
p.radius (numeric) For a multi-trait SGP, a factor (x-folds radius) to separate each trait from the origin
delta (numeric) Minumum value to determine nodes to be connected. Default is the machine precision (numerical zero)

Details

For a numeric matrix $\mathbf{X}=\left\{x_{i j}\right\}$ with m rows and n columns, a graphical network with $\mathrm{m}+\mathrm{n}$ nodes is obtained by defining edges connecting subjects in rows with those in columns. An edge between subject in row i and subject in column j is determined if the corresponding (absolute) entry matrix is larger than certain value, i.e., $\left|x_{i j}\right|>\delta$.
For a symmetric matrix, only $\mathrm{m}=\mathrm{n}$ nodes are considered with edges determined by the above diagonal entries of the matrix.
Nodes and edges are plotted in the cartesian plane according to the Fruchterman-Reingold algorithm. When a matrix \mathbf{K} is provided, nodes are plotted according to the top 2 eigenvectors from the spectral value decomposition of $\mathbf{K}=\mathbf{U} \mathbf{D} \mathbf{U}^{\prime}$.

When the object is a 'SGP' class object the edges are taken from the regression coefficients (associated to a specific nsup value) are used as matrix \mathbf{X} with testing subjects in rows and training subjects in columns.

Value

Returns a plottable object of the class 'net' that can be visualized using 'plot' method

Examples

```
    require(SFSI)
    data(wheatHTP)
    #---------------------------------------
    # Net for an SGP object
    #-------------------------------------
    index = which(Y$trial %in% 1:6) # Use only a subset of data
    Y = Y[index,]
```

```
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable
# Training and testing sets
tst = which(Y$trial %in% 2)
trn = seq_along(y)[-tst]
fm= SGP(y, K=G, trn=trn, tst=tst)
nt = net(fm) # Get the net
plot(nt) # Plot the net
plot(nt, i=c(1,5)) # Show the first and fifth tst elements
plot(net(fm, nsup=10), show.names=c(TRUE,TRUE,FALSE))
#----------------------------------------
# Net for a numeric matrix
#----------------------------------------
B = as.matrix(coef(fm, nsup=10))
plot(net(B), curve=TRUE, set.size=c(3.5,1.5,1))
#-------------------------------------
# Net for a symmetric numeric matrix
#---------------------------------------
X = X_E1[,seq(1,ncol(X_E1),by=5)]
R2 = cor(X)^2 # An R2 matrix
plot(net(R2, delta=0.9))
```

Graphical network plot

Plotting a network

Description

Plot a Graphical Network obtained from a numeric matrix

Usage

```
## S3 method for class 'net'
plot(x, i = NULL, show.names = FALSE,
    group = NULL, group.shape = NULL,
    set.color = NULL, set.size = NULL,
    axis.labels = TRUE, curve = FALSE,
    bg.color = "white", unified = TRUE, ni = 36,
    line.color = "gray70", line.tick = 0.3,
    legend.pos = "right", point.color = "gray20",
    sets = c("Testing","Supporting", "Non-active"),
    circle = FALSE, ...)
```


Arguments

circle TRUE or FALSE to whether draw a circle for each trait in a multi-trait 'SGP'

X
i
show. names
group
group. shape
bg.color
line.color
line.tick
curve
set.color
set.size
axis.label
unified
point.color
ni
legend.pos
sets

An object of the 'net' class as per the net function
(integer vector) Index subjects in rows to be shown in plot. Default $\mathrm{i}=$ NULL will consider all elements in rows

TRUE or FALSE to whether show node names given by the row/column names of the matrix used to make the net (see help(net))
(data.frame) Column grouping for the subjects
(integer vector) Shape of each level of the grouping column provided as group (character) Plot background color
(character) Color of lines connecting nodes in rows with those in columns (numeric) Tick of lines connecting nodes in rows with those in columns TRUE or FALSE to whether draw curve lines connecting nodes in rows with those in columns
(character vector) Color point of each type of node: row, 'active' column, and 'non-active' column, respectively
(numeric vector) Size of each type of node: row, 'active' column, and 'nonactive' column, respectively
TRUE or FALSE to whether show labels in both axes in 'testing'
(character) Color of the points in the plot
(integer) Maximum number of row nodes that are plotted separated as indicated by unified=FALSE
(character) Either "right", topright","bottomleft","bottomright","topleft", or "none" indicating where the legend is positioned in the plot
(character vector) Names of the types of node: row, 'active' column, and 'nonactive' column, respectively
... Other arguments for method plot: 'xlab', 'ylab', 'main'

Details

Plot a Graphical Network from a matrix where nodes are subjects in the rows and columns, and edges are obtained from the matrix entries. This Network is obtained using net function

Examples

```
# See examples in
# help(net, package="SFSI")
```


Multi-trait SGP accuracy vs penalization plot

Accuracy vs penalization from multi-trait SGP

Description

Visualizing results from an object of the class 'SGP'

Usage

```
multitrait.plot(object, trait_names = NULL,
    x.stat = c("nsup","lambda"),
    y.stat = c("accuracy","MSE"), label = x.stat,
    line.color = "orange", point.color = line.color,
    point.size = 1.2, nbreaks.x = 6, ...)
```


Arguments

object An object of the class 'SGP' for a multi-trait case
x.stat (character) Either 'nsup' (number of non-zero regression coefficients entering in the prediction of a given testing individual) or 'lambda' (penalization parameter in \log scale) to plot in the x -axis
y.stat (character) Either 'accuracy' (correlation between observed and predicted values) or 'MSE' (mean squared error) to plot in the y-axis
label (character) Similar to x. stat but to show the value in x-axis for which the y-axis is maximum across traits
point.color, line.color (character) Color of the points and lines
point.size (numeric) Size of the points showing the maximum accuracy
nbreaks.x (integer) Number of breaks in the x -axis
trait_names (character) Names of traits to be shown in the plot
$\ldots \quad$ Other arguments for method plot: 'xlab', 'ylab', 'main', 'lwd', 'xlim', 'ylim'

Value

Creates a plot of either accuracy or MSE versus either the support set size (average number of predictors with non-zero regression coefficient) or versus lambda. This is done separately for each trait

Examples

```
    # See examples in
    # help(SGP, package="SFSI")
```


Description

Pruning features using an R-squared threshold and maximum distance

Usage

```
Prune(X, alpha = 0.95,
        pos \(=\) NULL, d.max \(=\) NULL,
        centered = FALSE, scaled = FALSE,
        verbose = FALSE)
```


Arguments

$X \quad$ (numeric matrix) A matrix with observations in rows and features (e.g., SNPs) in columns
alpha (numeric) R-squared threshold used to determine connected sets
pos (numeric vector) Optional vector with positions (e.g., bp) of features
d.max (numeric) Maximum distance that connected sets are apart
centered TRUE or FALSE whether columns in X are centered with mean zero
scaled TRUE or FALSE whether columns in X are scaled with unit standard deviation
verbose TRUE or FALSE to whether show progress

Details

The algorithm identifies sets of connected features as those that share an $R^{2}>\alpha$ and retains only one feature (first appearance) for each set.

The sets can be limited to lie within a distance less or equal to a d.max value.

Value

Returns a list object that contains the elements:

- prune. in: (vector) indices of selected (unconnected) features.
- prune. out: (vector) indices of dropped out features.

Examples

```
require(SFSI)
data(wheatHTP)
index = c(154:156,201:205,306:312,381:387,540:544)
X = M[,index] # Subset markers
colnames(X) = 1:ncol(X)
```

```
# See connected sets using R^2=0.8
R2thr = 0.8
R2 = cor (X)^2
nw1 = net(R2, delta=R2thr)
plot(nw1, show.names=TRUE)
# Get pruned features
res = Prune(X, alpha=R2thr)
# See selected (unconnected) features
nw2 = net(R2[res$prune.in,res$prune.in], delta=R2thr)
nw2$xy = nw1$xy[res$prune.in,]
plot(nw2, show.names=TRUE)
```

Reading and combining SGP outputs
Read and combine SGP outputs

Description

Read the output generated by the 'SGP' or 'SGP.CV' functions saved at the provided save. at parameter. It merges all partial files when data was splited according to argument subset. Function 'read_summary' reads the output generated after calling the method summary; multiple outputs are read if argument path is a vector and in this case, they are combined by averaging across all outputs.

Usage

```
read_SGP(path = ".", type = NULL,
            file.ext = ".RData", verbose \(=\) TRUE)
    read_summary (path \(=\) ".", type \(=\) NULL,
                file.ext = ".RData", verbose \(=\) TRUE)
```


Arguments

path (character) Path where output files were saved. This may include a prefix
type (character) Either 'SGP' or 'SGP.CV' to collect results generated by either function of the same name
file.ext (character) This is the file extension at which file was saved as per the argument save.at
verbose TRUE or FALSE to whether printing details

Value

An object of the class 'SGP' for which methods predict, plot and summary exist

Examples

```
require(SFSI)
data(wheatHTP)
index = which(Y$trial %in% 1:10) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable
# Training and testing sets
tst = which(Y$trial %in% 1:3)
trn = seq_along(y)[-tst]
path = paste0(tempdir(),"/testSGP_")
# Run the analysis into 4 subsets and save them at a given path
SGP(y, K=G, trn=trn, tst=tst, subset=c(1,4), save.at=path)
SGP(y, K=G, trn=trn, tst=tst, subset=c(2,4), save.at=path)
SGP(y, K=G, trn=trn, tst=tst, subset=c(3,4), save.at=path)
SGP(y, K=G, trn=trn, tst=tst, subset=c(4,4), save.at=path)
# Collect all results after completion
fm = read_SGP(path)
# Generate and save summary
summary(fm, save.at=path)
fm2 = read_summary(path)
```

Regression coefficients and predicted values in LASSO-type problems
LASSO methods

Description

Retrieving regression coefficients and predicted values from the 'solveEN' and 'LARS' functions' outputs

Usage

```
## S3 method for class 'LASSO'
coef(object, ...)
    ## S3 method for class 'LASSO'
    predict(object, ...)
```


Arguments

object An object of the class 'LASSO' returned either by the function 'LARS' or 'solveEN'
$\ldots \quad$ Other arguments:

- X (numeric matrix) scores for as many predictors there are in ncol (object\$beta) (in columns) for a desired number n of observations (in rows)
- iy (integer vector) Optional index of columns of the matrix 'Gamma' to be returned in coef function
- ilambda (integer) Optional to return regression coefficients associated to a specific penalty position
- nsup (numeric) Optional to return regression coefficients associated to a given penalty that yield approximately 'nsup' non-zero coefficients

Value

Method coef returns a matrix that contains the regression coefficients (in rows) associated to each value of lambda (in columns). When the regression was applied to an object Gamma with more than one column, method coef returns a list

Method predict returns a matrix with predicted values $\mathbf{X} \boldsymbol{\beta}$ (in rows) for each value of lambda (in columns).

Examples

\# See examples in
\# help(solveEN, package="SFSI")
\# help(LARS, package="SFSI")

Description

Coefficients evolution path plot from an object of the class 'LASSO' or 'SGP'

Usage

```
path.plot(object, K = NULL, i = NULL,
    prune = FALSE, cor.max = 0.97,
    lambda.min = .Machine$double.eps^0.5,
    nbreaks.x = 6, npaths.max = 5000, ...)
```


Arguments

object An object of the 'LASSO' or 'SGP' class
$\left.\begin{array}{ll}\text { K } & \begin{array}{l}\text { (numeric matrix) Kinship relationships. Only needed for an object of the class } \\ \text { 'SGP' } \\ \text { (integer vector) Index a response variable (columns of matrix Gamma) for an }\end{array} \\ \text { object of the class 'LASSO'. Index testing elements (stored in object\$tst) for } \\ \text { an object of the class 'SGP'. Default i = NULL will consider either all columns } \\ \text { in matrix Gamma or all elements in object\$tst, respectively }\end{array}\right\}$
... Other arguments for method plot: 'xlab', 'ylab', 'main', 'lwd'

Value

Returns the plot of the coefficients' evolution path along the regularization parameter

Examples

```
    require(SFSI)
    data(wheatHTP)
    index = which(Y$trial %in% 1:6) # Use only a subset of data
    Y = Y[index,]
    X = scale(X_E1[index,]) # Reflectance data
    M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
    G = tcrossprod(M) # Genomic relationship matrix
    y = as.vector(scale(Y[,'E1'])) # Subset response variable
    # Sparse phenotypic regression
    fm = LARS(var(X),\operatorname{cov}(X,y))
    path.plot(fm)
    # Sparse Genomic Prediction
    fm = SGP(y, K=G, trn=12:length(y), tst=1:11)
    path.plot(fm, prune=TRUE)
    path.plot(fm, K=G, prune=TRUE, cor.max=0.9)
```

\# Path plot for the first individual in testing set for the SGP path. $\operatorname{plot}(\mathrm{fm}, \mathrm{K}=\mathrm{G}, \mathrm{i}=1$)

```
Regression coefficients, predicted values and summary in SGP
problems
```


SGP methods

Description

Useful methods for retrieving and summarizing important results from the 'SGP' function's output

Usage

```
## S3 method for class 'SGP'
coef(object, ...)
    ## S3 method for class 'SGP'
    predict(object, ...)
    ## S3 method for class 'SGP'
    summary(object, ...)
```


Arguments

object An object of the class 'SGP'
... Other arguments to be passed to coef method:

- nsup: (numeric) Average (across testing individuals) number of non-zero regression coefficients. Only the coefficients for the lambda associated to nsup are returned as a 'matrix' with testing individuals in rows
- iy: (integer vector) Index testing elements (stored in object\$tst) to be considered. Only coefficients corresponding to the testing individuals object\$tst[iy] are returned
For predict and summary methods:
- y: (numeric vector) An optional response vector

Value

Method predict returns a matrix with the predicted values for each individual in the testing set (in rows) for each value of lambda (in columns).
Method coef (list of matrices) returns the regression coefficients for each testing set individual (elements of the list). Each matrix contains the coefficients for each value of lambda (in rows) associated to each training set individual (in columns).
Method summary returns a list object containing:

- lambda: (vector) sequence of values of lambda used in the coefficients' estimation.
- nsup: (vector) Number of non-zero coefficients (across testing individuals) at each solution associated to each value of lambda.
- accuracy: (vector) correlation between observed and predicted values associated to each value of lambda.
- MSE: (vector) mean squared error associated to each value of lambda.
- optCOR: (vector) summary of the optimal SGP with maximum accuracy.
- optMSE: (vector) summary of the optimal SGP with minimum MSE.

Examples

```
# See examples in
```

\# help(SGP, package="SFSI")

```
Wheat data set Wheat dataset
```


Description

The dataset consists of 1,092 inbred wheat lines grouped into 39 trials and grown during the 20132014 season at the Norman Borlaug experimental research station in Ciudad Obregon, Sonora, Mexico. Each trial consisted of 28 breeding lines that were arranged in an alpha-lattice design with three replicates and six sub-blocks. The trials were grown in four different environments:

- E1: Flat-Drought (sowing in flat with irrigation of 180 mm through drip system)
- E2: Bed-2IR (sowing in bed with 2 irrigations approximately 250 mm)
- E3: Bed-5IR (bed sowing with 5 normal irrigations)
- E4: Bed-EHeat (bed sowing 30 days before optimal planting date with 5 normal irrigations approximately 500 mm)

1. Phenotypic data. Measurements of grain yield (YLD) were reported as the total plot yield after maturity. Records for YLD are reported as adjusted means from which trial, replicate and subblock effects were removed. Measurements for days to heading (DTH), days to maturity (DTM), and plant height (PH) were recorded only in the first replicate at each trial and thus no phenotype adjustment was made.
2. Reflectance data. Reflectance data was collected from the fields using both infrared and hyperspectral cameras mounted on an aircraft on 9 different dates (time-points) between January 10 and March 27th, 2014. During each flight, data from 250 wavelengths ranging from 392 to 850 nm were collected for each pixel in the pictures. The average reflectance of all the pixels for each wavelength was calculated from each of the geo-referenced trial plots and reported as each line reflectance. Data for reflectance and Green NDVI and Red NDVI are reported as adjusted phenotypes from which trial, replicate and sub-block effects were removed. Each data-point matches to each data-point in phenotypic data.
3. Marker data. Lines were sequenced for GBS at 192-plexing on Illumina HiSeq 2000 or HiSeq 2500 with 1×100 bp reads. SNPs were called across all lines anchored to the genome assembly of

Chinese Spring (International Wheat Genome Sequencing Consortium 2014). Next, SNP were extracted and filtered so that lines $>50 \%$ missing data were removed. Markers were recoded as $-1,0$, and 1 , corresponding to homozygous for the minor allele, heterozygous, and homozygous for the major allele, respectively. Next, markers with a minor allele frequency <0.05 and $>15 \%$ of missing data were removed. Remaining SNPs with missing values were imputed using the mean of the observed marker genotypes at a given locus.
Adjusted un-replicated data. The SFSI R-package includes the wheatHTP dataset containing (unreplicated) only YLD from all environments E1,..,E4, and reflectance (latest time-point only) data from the environment E1 only. Marker data is also included in the dataset. The phenotypic and reflectance data are averages (line effects from mixed models) for 776 lines evaluated in 28 trials (with at least 26 lines each) for which marker information on 3,438 SNPs is available.
The full (replicated) data for all four environments, all traits, and all time-points can be found in the repository https://github.com/MarcooLopez/Data_for_Lopez-Cruz_et_al_2020.
Cross-validation partitions. One random partition of 4 -folds was created for the 776 individuals (distributed into 28 trials). Data from 7 entire trials (25% of 28 the trials) were arbitrarily assigned to each of the 4 folds. The partition consist of an array of length 776 with indices $1,2,3$, and 4 denoting the fold.
Genetic covariances. Multi-variate Gaussian mixed models were fitted to phenotypes. Bi-variate models were fitted to YLD with each of the 250 wavelengths from environment E1. Tetra-variate models were fitted for YLD from all environments. All models were fitted within each fold (provided partition) using scaled (null mean and unit variance) phenotypes from the remaining 3 folds as training data. Bayesian models were implemented using the 'Multitrait' function from the BGLR Rpackage with 40,000 iterations discarding 5,000 runs for burning. A marker-derived relationships matrix as in VanRaden (2008) was used to model between-individuals genetic effects. Betweentraits genetic covariances were assumed unstructured, while residual covariances were assumed diagonal.
Genetic covariances between YLD and each wavelength (environment E1) are storaged in a matrix of 250 rows and 4 columns (folds). Genetic and residual covariances matrices among YLD within each environment are storaged in a list with 4 elements (folds).

Usage

data(wheatHTP)

Format

- Y: (matrix) phenotypic data for YLD in environments E1, E2, E3, and E4; and columns 'trial' and 'CV' (indicating the 4-folds partition).
- M: (matrix) marker data with SNPs in columns.
- X_E1: (matrix) reflectance data for time-point 9 in environment E1.
- VI_E1: (matrix) green and red NDVI for time-point 9 in environment E1.
- genCOV_xy: (matrix) genetic covariances between YLD and each reflectance trait, for each fold (in columns).
- genCOV_yy: (4-dimensional list) genetic covariances matrices for YLD among environments, for each fold.
- resCOV_yy: (4-dimensional list) residual covariances matrices for YLD among environments, for each fold.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

Perez-Rodriguez P, de los Campos G (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198, 483-495.
VanRaden PM (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423.

Index

1. Save/read binary files, 2
2. Covariance matrix transformations, 4
3. Solve an Elastic-Net problem, 5
4. Least Angle Regression (LARS), 9
5. Sparse Genomic Prediction (SGP), 11
6. BLUP estimation from Linear Mixed Model, 17
7. Genetic covariances computation, 20
8. SGP accuracy vs penalization plot, 23
coef. LASSO (Regression coefficients and predicted values in LASSO-type problems), 31
coef.SGP (Regression coefficients, predicted values and summary in SGP problems), 34
cov2cor2(2. Covariance matrix transformations), 4
cov2dist (2. Covariance matrix transformations), 4
Create partitions, 24
fitBLUP (6. BLUP estimation from Linear Mixed Model), 17
genCOV_xy (Wheat data set), 35
genCOV_yy (Wheat data set), 35
get_folds (Create partitions), 24
getGenCov (7. Genetic covariances computation), 20
Graphical Network from a numeric matrix, 24
Graphical network plot, 26
LARS (4. Least Angle Regression (LARS)), 9

M (Wheat data set), 35
Multi-trait SGP accuracy vs penalization plot, 28
multitrait.plot (Multi-trait SGP accuracy vs penalization plot), 28
net (Graphical Network from a numeric matrix), 24
path.plot (Regression coefficients path), 32
plot.net (Graphical network plot), 26
plot. SGP (8. SGP accuracy vs penalization plot), 23
predict.LASSO (Regression coefficients and predicted values in LASSO-type problems), 31
predict. SGP (Regression coefficients, predicted values and summary in SGP problems), 34
Prune (R-squared pruning), 29
R-squared pruning, 29
read_SGP (Reading and combining SGP outputs), 30
read_summary (Reading and combining SGP outputs), 30
readBinary (1. Save/read binary files), 2
Reading and combining SGP outputs, 30
Regression coefficients and predicted values in LASSO-type problems, 31
Regression coefficients path, 32
Regression coefficients, predicted values and summary in SGP problems, 34
resCOV_yy (Wheat data set), 35
saveBinary (1. Save/read binary files), 2
SGP (5. Sparse Genomic Prediction (SGP)), 11
solveEN(3. Solve an Elastic-Net problem), 5
summary. SGP (Regression coefficients, predicted values and summary in SGP problems), 34

VI_E1 (Wheat data set), 35
Wheat data set, 35
wheatHTP (Wheat data set), 35
X_E1 (Wheat data set), 35
Y (Wheat data set), 35

