Using principal component analysis as a base model, 'SCOUTer' offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, 'SCOUTer' returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).
Version: | 1.0.0 |
Depends: | R (≥ 3.5.0), ggplot2, ggpubr, stats |
Suggests: | knitr, rmarkdown |
Published: | 2020-06-30 |
DOI: | 10.32614/CRAN.package.SCOUTer |
Author: | Alba Gonzalez Cebrian [aut, cre], Abel Folch-Fortuny [aut], Francisco Arteaga [aut], Alberto Ferrer [aut] |
Maintainer: | Alba Gonzalez Cebrian <algonceb at upv.es> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | SCOUTer results |
Reference manual: | SCOUTer.pdf |
Vignettes: |
SCOUTer demo |
Package source: | SCOUTer_1.0.0.tar.gz |
Windows binaries: | r-devel: SCOUTer_1.0.0.zip, r-release: SCOUTer_1.0.0.zip, r-oldrel: SCOUTer_1.0.0.zip |
macOS binaries: | r-release (arm64): SCOUTer_1.0.0.tgz, r-oldrel (arm64): SCOUTer_1.0.0.tgz, r-release (x86_64): SCOUTer_1.0.0.tgz, r-oldrel (x86_64): SCOUTer_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=SCOUTer to link to this page.