How to use RSDA 3.2.1

RSDA Package version 3.3

Oldemar RodrĂ­guez R.

Installing the package

CRAN

install.packages("RSDA", dependencies=TRUE)

Github

devtools::install_github("PROMiDAT/RSDA")

How to read a Symbolic Table from a CSV file with RSDA?

ex3 <- read.sym.table(file = 'tsym1.csv', header=TRUE, sep=';',dec='.', row.names=1)
ex3
#> # A tibble: 7 Ă— 7
#>      F1              F2      F3    F4        F5               F6              F7
#>   <dbl>      <symblc_n> <symbl> <dbl> <symblc_>       <symblc_n>      <symblc_n>
#> 1   2.8   [1.00 : 2.00]  <hist>   6       {a,d}   [0.00 : 90.00]  [9.00 : 24.00]
#> 2   1.4   [3.00 : 9.00]  <hist>   8     {b,c,d} [-90.00 : 98.00]  [-9.00 : 9.00]
#> 3   3.2  [-1.00 : 4.00]  <hist>  -7       {a,b}  [65.00 : 90.00] [65.00 : 70.00]
#> 4  -2.1   [0.00 : 2.00]  <hist>   0   {a,b,c,d}  [45.00 : 89.00] [25.00 : 67.00]
#> 5  -3   [-4.00 : -2.00]  <hist>  -9.5       {b}  [20.00 : 40.00]  [9.00 : 40.00]
#> 6   0.1 [10.00 : 21.00]  <hist>  -1       {a,d}    [5.00 : 8.00]   [5.00 : 8.00]
#> 7   9    [4.00 : 21.00]  <hist>   0.5       {a}    [3.14 : 6.76]   [4.00 : 6.00]

##How to save a Symbolic Table in a CSV file with RSDA?

write.sym.table(ex3, file = 'tsymtemp.csv', sep = ';',dec = '.',
                row.names = TRUE, col.names = TRUE)

Symbolic Data Frame Example in RSDA

data(example3)
example3
#> # A tibble: 7 Ă— 7
#>      F1              F2                      F3    F4        F5               F6
#>   <dbl>      <symblc_n>              <symblc_m> <dbl> <symblc_>       <symblc_n>
#> 1   2.8   [1.00 : 2.00] M1:0.10 M2:0.70 M3:0.20   6   {e,g,i,k}   [0.00 : 90.00]
#> 2   1.4   [3.00 : 9.00] M1:0.60 M2:0.30 M3:0.10   8   {a,b,c,d} [-90.00 : 98.00]
#> 3   3.2  [-1.00 : 4.00] M1:0.20 M2:0.20 M3:0.60  -7   {2,b,1,c}  [65.00 : 90.00]
#> 4  -2.1   [0.00 : 2.00] M1:0.90 M2:0.00 M3:0.10   0   {a,3,4,c}  [45.00 : 89.00]
#> 5  -3   [-4.00 : -2.00] M1:0.60 M2:0.00 M3:0.40  -9.5 {e,g,i,k}  [20.00 : 40.00]
#> 6   0.1 [10.00 : 21.00] M1:0.00 M2:0.70 M3:0.30  -1     {e,1,i}    [5.00 : 8.00]
#> 7   9    [4.00 : 21.00] M1:0.20 M2:0.20 M3:0.60   0.5   {e,a,2}    [3.14 : 6.76]
#> # â„ą 1 more variable: F7 <symblc_n>
example3[2,]
#> # A tibble: 1 Ă— 7
#>      F1            F2                      F3    F4         F5               F6
#>   <dbl>    <symblc_n>              <symblc_m> <dbl> <symblc_s>       <symblc_n>
#> 1   1.4 [3.00 : 9.00] M1:0.60 M2:0.30 M3:0.10     8  {a,b,c,d} [-90.00 : 98.00]
#> # â„ą 1 more variable: F7 <symblc_n>
example3[,3]
#> # A tibble: 7 Ă— 1
#>                        F3
#>                <symblc_m>
#> 1 M1:0.10 M2:0.70 M3:0.20
#> 2 M1:0.60 M2:0.30 M3:0.10
#> 3 M1:0.20 M2:0.20 M3:0.60
#> 4 M1:0.90 M2:0.00 M3:0.10
#> 5 M1:0.60 M2:0.00 M3:0.40
#> 6 M1:0.00 M2:0.70 M3:0.30
#> 7 M1:0.20 M2:0.20 M3:0.60
example3[2:3,5]
#> # A tibble: 2 Ă— 1
#>           F5
#>   <symblc_s>
#> 1  {a,b,c,d}
#> 2  {2,b,1,c}
example3$F1
#> [1]  2.8  1.4  3.2 -2.1 -3.0  0.1  9.0

How to generated a symbolic data table from a classic data table in RSDA?

data(ex1_db2so)
ex1_db2so
#>         state sex county group age
#> 1     Florida   M      2     6   3
#> 2  California   F      4     3   4
#> 3       Texas   M     12     3   4
#> 4     Florida   F      2     3   4
#> 5       Texas   M      4     6   4
#> 6       Texas   F      2     3   3
#> 7     Florida   M      6     3   4
#> 8     Florida   F      2     6   4
#> 9  California   M      2     3   6
#> 10 California   F     21     3   4
#> 11 California   M      2     3   4
#> 12 California   M      2     6   7
#> 13      Texas   F     23     3   4
#> 14    Florida   M      2     3   4
#> 15    Florida   F     12     7   4
#> 16      Texas   M      2     3   8
#> 17 California   F      3     7   9
#> 18 California   M      2     3  11
#> 19 California   M      1     3  11

The classic.to.sym function allows to convert a traditional table into a symbolic one, to this we must indicate the following parameters.

Example 1

result <- classic.to.sym(x = ex1_db2so, 
                         concept = c(state, sex),
                         variables = c(county, group, age))
result
#> # A tibble: 6 Ă— 3
#>           county         group            age
#>       <symblc_n>    <symblc_n>     <symblc_n>
#> 1 [3.00 : 21.00] [3.00 : 7.00]  [4.00 : 9.00]
#> 2  [1.00 : 2.00] [3.00 : 6.00] [4.00 : 11.00]
#> 3 [2.00 : 12.00] [3.00 : 7.00]  [4.00 : 4.00]
#> 4  [2.00 : 6.00] [3.00 : 6.00]  [3.00 : 4.00]
#> 5 [2.00 : 23.00] [3.00 : 3.00]  [3.00 : 4.00]
#> 6 [2.00 : 12.00] [3.00 : 6.00]  [4.00 : 8.00]

We can add new variables indicating the type we want them to be.

result <- classic.to.sym(x = ex1_db2so, 
                         concept = c("state", "sex"),
                         variables = c(county, group, age),
                         age_hist = sym.histogram(age, breaks = pretty(ex1_db2so$age, 5)))
result
#> # A tibble: 6 Ă— 4
#>     age_hist         county         group            age
#>   <symblc_h>     <symblc_n>    <symblc_n>     <symblc_n>
#> 1     <hist> [3.00 : 21.00] [3.00 : 7.00]  [4.00 : 9.00]
#> 2     <hist>  [1.00 : 2.00] [3.00 : 6.00] [4.00 : 11.00]
#> 3     <hist> [2.00 : 12.00] [3.00 : 7.00]  [4.00 : 4.00]
#> 4     <hist>  [2.00 : 6.00] [3.00 : 6.00]  [3.00 : 4.00]
#> 5     <hist> [2.00 : 23.00] [3.00 : 3.00]  [3.00 : 4.00]
#> 6     <hist> [2.00 : 12.00] [3.00 : 6.00]  [4.00 : 8.00]

Example 2

data(USCrime)
head(USCrime)
#>   state fold population householdsize racepctblack racePctWhite racePctAsian
#> 1     8    1       0.19          0.33         0.02         0.90         0.12
#> 2    53    1       0.00          0.16         0.12         0.74         0.45
#> 3    24    1       0.00          0.42         0.49         0.56         0.17
#> 4    34    1       0.04          0.77         1.00         0.08         0.12
#> 5    42    1       0.01          0.55         0.02         0.95         0.09
#> 6     6    1       0.02          0.28         0.06         0.54         1.00
#>   racePctHisp agePct12t21 agePct12t29 agePct16t24 agePct65up numbUrban pctUrban
#> 1        0.17        0.34        0.47        0.29       0.32      0.20      1.0
#> 2        0.07        0.26        0.59        0.35       0.27      0.02      1.0
#> 3        0.04        0.39        0.47        0.28       0.32      0.00      0.0
#> 4        0.10        0.51        0.50        0.34       0.21      0.06      1.0
#> 5        0.05        0.38        0.38        0.23       0.36      0.02      0.9
#> 6        0.25        0.31        0.48        0.27       0.37      0.04      1.0
#>   medIncome pctWWage pctWFarmSelf pctWInvInc pctWSocSec pctWPubAsst pctWRetire
#> 1      0.37     0.72         0.34       0.60       0.29        0.15       0.43
#> 2      0.31     0.72         0.11       0.45       0.25        0.29       0.39
#> 3      0.30     0.58         0.19       0.39       0.38        0.40       0.84
#> 4      0.58     0.89         0.21       0.43       0.36        0.20       0.82
#> 5      0.50     0.72         0.16       0.68       0.44        0.11       0.71
#> 6      0.52     0.68         0.20       0.61       0.28        0.15       0.25
#>   medFamInc perCapInc whitePerCap blackPerCap indianPerCap AsianPerCap
#> 1      0.39      0.40        0.39        0.32         0.27        0.27
#> 2      0.29      0.37        0.38        0.33         0.16        0.30
#> 3      0.28      0.27        0.29        0.27         0.07        0.29
#> 4      0.51      0.36        0.40        0.39         0.16        0.25
#> 5      0.46      0.43        0.41        0.28         0.00        0.74
#> 6      0.62      0.72        0.76        0.77         0.28        0.52
#>   OtherPerCap HispPerCap NumUnderPov PctPopUnderPov PctLess9thGrade
#> 1        0.36       0.41        0.08           0.19            0.10
#> 2        0.22       0.35        0.01           0.24            0.14
#> 3        0.28       0.39        0.01           0.27            0.27
#> 4        0.36       0.44        0.01           0.10            0.09
#> 5        0.51       0.48        0.00           0.06            0.25
#> 6        0.48       0.60        0.01           0.12            0.13
#>   PctNotHSGrad PctBSorMore PctUnemployed PctEmploy PctEmplManu PctEmplProfServ
#> 1         0.18        0.48          0.27      0.68        0.23            0.41
#> 2         0.24        0.30          0.27      0.73        0.57            0.15
#> 3         0.43        0.19          0.36      0.58        0.32            0.29
#> 4         0.25        0.31          0.33      0.71        0.36            0.45
#> 5         0.30        0.33          0.12      0.65        0.67            0.38
#> 6         0.12        0.80          0.10      0.65        0.19            0.77
#>   PctOccupManu PctOccupMgmtProf MalePctDivorce MalePctNevMarr FemalePctDiv
#> 1         0.25             0.52           0.68           0.40         0.75
#> 2         0.42             0.36           1.00           0.63         0.91
#> 3         0.49             0.32           0.63           0.41         0.71
#> 4         0.37             0.39           0.34           0.45         0.49
#> 5         0.42             0.46           0.22           0.27         0.20
#> 6         0.06             0.91           0.49           0.57         0.61
#>   TotalPctDiv PersPerFam PctFam2Par PctKids2Par PctYoungKids2Par PctTeen2Par
#> 1        0.75       0.35       0.55        0.59             0.61        0.56
#> 2        1.00       0.29       0.43        0.47             0.60        0.39
#> 3        0.70       0.45       0.42        0.44             0.43        0.43
#> 4        0.44       0.75       0.65        0.54             0.83        0.65
#> 5        0.21       0.51       0.91        0.91             0.89        0.85
#> 6        0.58       0.44       0.62        0.69             0.87        0.53
#>   PctWorkMomYoungKids PctWorkMom NumIlleg PctIlleg NumImmig PctImmigRecent
#> 1                0.74       0.76     0.04     0.14     0.03           0.24
#> 2                0.46       0.53     0.00     0.24     0.01           0.52
#> 3                0.71       0.67     0.01     0.46     0.00           0.07
#> 4                0.85       0.86     0.03     0.33     0.02           0.11
#> 5                0.40       0.60     0.00     0.06     0.00           0.03
#> 6                0.30       0.43     0.00     0.11     0.04           0.30
#>   PctImmigRec5 PctImmigRec8 PctImmigRec10 PctRecentImmig PctRecImmig5
#> 1         0.27         0.37          0.39           0.07         0.07
#> 2         0.62         0.64          0.63           0.25         0.27
#> 3         0.06         0.15          0.19           0.02         0.02
#> 4         0.20         0.30          0.31           0.05         0.08
#> 5         0.07         0.20          0.27           0.01         0.02
#> 6         0.35         0.43          0.47           0.50         0.50
#>   PctRecImmig8 PctRecImmig10 PctSpeakEnglOnly PctNotSpeakEnglWell
#> 1         0.08          0.08             0.89                0.06
#> 2         0.25          0.23             0.84                0.10
#> 3         0.04          0.05             0.88                0.04
#> 4         0.11          0.11             0.81                0.08
#> 5         0.04          0.05             0.88                0.05
#> 6         0.56          0.57             0.45                0.28
#>   PctLargHouseFam PctLargHouseOccup PersPerOccupHous PersPerOwnOccHous
#> 1            0.14              0.13             0.33              0.39
#> 2            0.16              0.10             0.17              0.29
#> 3            0.20              0.20             0.46              0.52
#> 4            0.56              0.62             0.85              0.77
#> 5            0.16              0.19             0.59              0.60
#> 6            0.25              0.19             0.29              0.53
#>   PersPerRentOccHous PctPersOwnOccup PctPersDenseHous PctHousLess3BR MedNumBR
#> 1               0.28            0.55             0.09           0.51      0.5
#> 2               0.17            0.26             0.20           0.82      0.0
#> 3               0.43            0.42             0.15           0.51      0.5
#> 4               1.00            0.94             0.12           0.01      0.5
#> 5               0.37            0.89             0.02           0.19      0.5
#> 6               0.18            0.39             0.26           0.73      0.0
#>   HousVacant PctHousOccup PctHousOwnOcc PctVacantBoarded PctVacMore6Mos
#> 1       0.21         0.71          0.52             0.05           0.26
#> 2       0.02         0.79          0.24             0.02           0.25
#> 3       0.01         0.86          0.41             0.29           0.30
#> 4       0.01         0.97          0.96             0.60           0.47
#> 5       0.01         0.89          0.87             0.04           0.55
#> 6       0.02         0.84          0.30             0.16           0.28
#>   MedYrHousBuilt PctHousNoPhone PctWOFullPlumb OwnOccLowQuart OwnOccMedVal
#> 1           0.65           0.14           0.06           0.22         0.19
#> 2           0.65           0.16           0.00           0.21         0.20
#> 3           0.52           0.47           0.45           0.18         0.17
#> 4           0.52           0.11           0.11           0.24         0.21
#> 5           0.73           0.05           0.14           0.31         0.31
#> 6           0.25           0.02           0.05           0.94         1.00
#>   OwnOccHiQuart RentLowQ RentMedian RentHighQ MedRent MedRentPctHousInc
#> 1          0.18     0.36       0.35      0.38    0.34              0.38
#> 2          0.21     0.42       0.38      0.40    0.37              0.29
#> 3          0.16     0.27       0.29      0.27    0.31              0.48
#> 4          0.19     0.75       0.70      0.77    0.89              0.63
#> 5          0.30     0.40       0.36      0.38    0.38              0.22
#> 6          1.00     0.67       0.63      0.68    0.62              0.47
#>   MedOwnCostPctInc MedOwnCostPctIncNoMtg NumInShelters NumStreet PctForeignBorn
#> 1             0.46                  0.25          0.04         0           0.12
#> 2             0.32                  0.18          0.00         0           0.21
#> 3             0.39                  0.28          0.00         0           0.14
#> 4             0.51                  0.47          0.00         0           0.19
#> 5             0.51                  0.21          0.00         0           0.11
#> 6             0.59                  0.11          0.00         0           0.70
#>   PctBornSameState PctSameHouse85 PctSameCity85 PctSameState85 LandArea PopDens
#> 1             0.42           0.50          0.51           0.64     0.12    0.26
#> 2             0.50           0.34          0.60           0.52     0.02    0.12
#> 3             0.49           0.54          0.67           0.56     0.01    0.21
#> 4             0.30           0.73          0.64           0.65     0.02    0.39
#> 5             0.72           0.64          0.61           0.53     0.04    0.09
#> 6             0.42           0.49          0.73           0.64     0.01    0.58
#>   PctUsePubTrans LemasPctOfficDrugUn ViolentCrimesPerPop
#> 1           0.20                0.32                0.20
#> 2           0.45                0.00                0.67
#> 3           0.02                0.00                0.43
#> 4           0.28                0.00                0.12
#> 5           0.02                0.00                0.03
#> 6           0.10                0.00                0.14
result  <- classic.to.sym(x = USCrime,
                          concept = state, 
                          variables= c(NumInShelters,
                                       NumImmig,
                                       ViolentCrimesPerPop),
                          ViolentCrimesPerPop_hist = sym.histogram(ViolentCrimesPerPop,
                                                                   breaks = pretty(USCrime$ViolentCrimesPerPop,5)))
result
#> # A tibble: 46 Ă— 4
#>    ViolentCrimesPerPop_hist NumInShelters      NumImmig ViolentCrimesPerPop
#>                  <symblc_h>    <symblc_n>    <symblc_n>          <symblc_n>
#>  1                   <hist> [0.00 : 0.32] [0.00 : 0.04]       [0.01 : 1.00]
#>  2                   <hist> [0.01 : 0.18] [0.01 : 0.09]       [0.05 : 0.36]
#>  3                   <hist> [0.00 : 1.00] [0.00 : 0.57]       [0.05 : 0.57]
#>  4                   <hist> [0.00 : 0.08] [0.00 : 0.02]       [0.02 : 1.00]
#>  5                   <hist> [0.00 : 1.00] [0.00 : 1.00]       [0.01 : 1.00]
#>  6                   <hist> [0.00 : 0.68] [0.00 : 0.23]       [0.07 : 0.75]
#>  7                   <hist> [0.00 : 0.79] [0.00 : 0.14]       [0.00 : 0.94]
#>  8                   <hist> [0.01 : 0.01] [0.01 : 0.01]       [0.37 : 0.37]
#>  9                   <hist> [1.00 : 1.00] [0.39 : 0.39]       [1.00 : 1.00]
#> 10                   <hist> [0.00 : 0.52] [0.00 : 1.00]       [0.06 : 1.00]
#> # â„ą 36 more rows

Example 3

data("ex_mcfa1") 
head(ex_mcfa1)
#>   suspect age     hair    eyes    region
#> 1       1  42    h_red e_brown     Bronx
#> 2       2  20  h_black e_green     Bronx
#> 3       3  64  h_brown e_brown  Brooklyn
#> 4       4  55 h_blonde e_brown     Bronx
#> 5       5   4  h_brown e_green Manhattan
#> 6       6  61 h_blonde e_green     Bronx
sym.table <- classic.to.sym(x = ex_mcfa1, 
                            concept = suspect, 
                            variables=c(hair,
                                        eyes,
                                        region),
                            default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 3
#>                  hair              eyes               region
#>            <symblc_s>        <symblc_s>           <symblc_s>
#>  1            {h_red} {e_brown,e_black}              {Bronx}
#>  2 {h_black,h_blonde} {e_green,e_black}    {Bronx,Manhattan}
#>  3  {h_brown,h_white} {e_brown,e_green}    {Brooklyn,Queens}
#>  4         {h_blonde} {e_brown,e_black}    {Bronx,Manhattan}
#>  5    {h_brown,h_red}         {e_green}    {Manhattan,Bronx}
#>  6 {h_blonde,h_white}  {e_green,e_blue}       {Bronx,Queens}
#>  7    {h_white,h_red}  {e_black,e_blue}       {Queens,Bronx}
#>  8 {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#>  9 {h_blonde,h_white} {e_black,e_brown}     {Brooklyn,Bronx}
#> 10  {h_brown,h_black} {e_brown,e_green}    {Manhattan,Bronx}
#> # â„ą 90 more rows

Example 4

We can modify the function that will be applied by default to the categorical variables

sym.table <- classic.to.sym(x = ex_mcfa1, 
                            concept = suspect,
                            default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 4
#>                age               hair              eyes               region
#>         <symblc_n>         <symblc_s>        <symblc_s>           <symblc_s>
#>  1 [22.00 : 42.00]            {h_red} {e_brown,e_black}              {Bronx}
#>  2 [20.00 : 57.00] {h_black,h_blonde} {e_green,e_black}    {Bronx,Manhattan}
#>  3 [29.00 : 64.00]  {h_brown,h_white} {e_brown,e_green}    {Brooklyn,Queens}
#>  4 [14.00 : 55.00]         {h_blonde} {e_brown,e_black}    {Bronx,Manhattan}
#>  5  [4.00 : 47.00]    {h_brown,h_red}         {e_green}    {Manhattan,Bronx}
#>  6 [32.00 : 61.00] {h_blonde,h_white}  {e_green,e_blue}       {Bronx,Queens}
#>  7 [49.00 : 61.00]    {h_white,h_red}  {e_black,e_blue}       {Queens,Bronx}
#>  8  [8.00 : 32.00] {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#>  9 [39.00 : 67.00] {h_blonde,h_white} {e_black,e_brown}     {Brooklyn,Bronx}
#> 10 [50.00 : 68.00]  {h_brown,h_black} {e_brown,e_green}    {Manhattan,Bronx}
#> # â„ą 90 more rows

Converting a SODAS 1.0 *.SDS files to RSDA files

hani3101 <- SDS.to.RSDA(file.path = "hani3101.sds")
#> Preprocessing file
#> Converting data to JSON format
#> Processing variable 1: R3101
#> Processing variable 2: RNINO12
#> Processing variable 3: RNINO3
#> Processing variable 4: RNINO4
#> Processing variable 5: RNINO34
#> Processing variable 6: RSOI
hani3101
#> # A tibble: 32 Ă— 6
#>                             R3101                 RNINO12
#>                        <symblc_m>              <symblc_m>
#>  1 X2:0.21 X4:0.18 X3:0.15 X5:... X1:0.17 X2:0.83 X3:0.00
#>  2 X2:0.30 X4:0.14 X3:0.19 X5:... X1:0.00 X2:0.25 X3:0.75
#>  3 X2:0.16 X4:0.12 X3:0.20 X5:... X1:0.67 X2:0.33 X3:0.00
#>  4 X2:0.13 X4:0.15 X3:0.22 X5:... X1:0.17 X2:0.83 X3:0.00
#>  5 X2:0.14 X4:0.14 X3:0.18 X5:... X1:0.42 X2:0.58 X3:0.00
#>  6 X2:0.26 X4:0.06 X3:0.23 X5:... X1:0.00 X2:0.67 X3:0.33
#>  7 X2:0.28 X4:0.14 X3:0.10 X5:... X1:0.00 X2:1.00 X3:0.00
#>  8 X2:0.25 X4:0.15 X3:0.19 X5:... X1:0.00 X2:1.00 X3:0.00
#>  9 X2:0.20 X4:0.15 X3:0.19 X5:... X1:0.00 X2:1.00 X3:0.00
#> 10 X2:0.21 X4:0.16 X3:0.31 X5:... X1:0.08 X2:0.92 X3:0.00
#> # â„ą 22 more rows
#> # â„ą 4 more variables: RNINO3 <symblc_m>, RNINO4 <symblc_m>, RNINO34 <symblc_m>,
#> #   RSOI <symblc_m>
# We can save the file in CSV to RSDA format as follows:
write.sym.table(hani3101,
                file='hani3101.csv',
                sep=';',
                dec='.',
                row.names=TRUE,
                col.names=TRUE)

Converting a SODAS 2.0 *.XML files to RSDA files

abalone <- SODAS.to.RSDA("abalone.xml")
#> Processing variable 1: LENGTH
#> Processing variable 2: DIAMETER
#> Processing variable 3: HEIGHT
#> Processing variable 4: WHOLE_WEIGHT
#> Processing variable 5: SHUCKED_WEIGHT
#> Processing variable 6: VISCERA_WEIGHT
#> Processing variable 7: SHELL_WEIGHT
abalone
#> # A tibble: 24 Ă— 7
#>           LENGTH      DIAMETER        HEIGHT  WHOLE_WEIGHT SHUCKED_WEIGHT
#>       <symblc_n>    <symblc_n>    <symblc_n>    <symblc_n>     <symblc_n>
#>  1 [0.28 : 0.66] [0.20 : 0.48] [0.07 : 0.18] [0.08 : 1.37]  [0.03 : 0.64]
#>  2 [0.30 : 0.74] [0.22 : 0.58] [0.02 : 1.13] [0.15 : 2.25]  [0.06 : 1.16]
#>  3 [0.34 : 0.78] [0.26 : 0.63] [0.06 : 0.23] [0.20 : 2.66]  [0.07 : 1.49]
#>  4 [0.39 : 0.82] [0.30 : 0.65] [0.10 : 0.25] [0.26 : 2.51]  [0.11 : 1.23]
#>  5 [0.40 : 0.74] [0.32 : 0.60] [0.10 : 0.24] [0.35 : 2.20]  [0.12 : 0.84]
#>  6 [0.45 : 0.80] [0.38 : 0.63] [0.14 : 0.22] [0.64 : 2.53]  [0.16 : 0.93]
#>  7 [0.49 : 0.72] [0.36 : 0.58] [0.12 : 0.21] [0.68 : 2.12]  [0.16 : 0.82]
#>  8 [0.55 : 0.70] [0.46 : 0.58] [0.18 : 0.22] [1.21 : 1.81]  [0.32 : 0.71]
#>  9 [0.08 : 0.24] [0.06 : 0.18] [0.01 : 0.06] [0.00 : 0.07]  [0.00 : 0.03]
#> 10 [0.13 : 0.58] [0.10 : 0.45] [0.00 : 0.15] [0.01 : 0.89]  [0.00 : 0.50]
#> # â„ą 14 more rows
#> # â„ą 2 more variables: VISCERA_WEIGHT <symblc_n>, SHELL_WEIGHT <symblc_n>
write.sym.table(abalone,
                file='abalone.csv',
                sep=';',
                dec='.',
                row.names = TRUE,
                col.names = TRUE)

Basic statistics

Symbolic Mean

data(example3)
mean(example3$F1)
#> [1] 1.628571
mean(example3[,1])
#> [1] 1.628571
mean(example3$F2)
#> [1] 5
mean(example3[,2])
#> [1] 5
mean(example3$F2,method = "interval")
#> <symbolic_interval[1]>
#> [1] [1.86 : 8.14]
mean(example3[,2],method = "interval")
#> <symbolic_interval[1]>
#> [1] [1.86 : 8.14]

Symbolic median

median(example3$F1)
#> [1] 1.4
median(example3[,1])
#> [1] 1.4
median(example3$F2)
#> [1] 1.5
median(example3[,2])
#> [1] 1.5
median(example3$F6, method = 'interval')
#> <symbolic_interval[1]>
#> [1] [5.00 : 89.00]
median(example3[,6], method = 'interval')
#> <symbolic_interval[1]>
#> [1] [5.00 : 89.00]

Variance and standard deviation

var(example3[,1])
#> [1] 15.98238
var(example3[,2])
#> [1] 90.66667
var(example3$F6)
#> [1] 1872.358
var(example3$F6, method = 'interval')
#> <symbolic_interval[1]>
#> [1] [2,408.97 : 1,670.51]
var(example3$F6, method = 'billard')
#> [1] 1355.143
sd(example3$F1)
#> [1] 3.997797
sd(example3$F2)
#> [1] 6.733003
sd(example3$F6)
#> [1] 30.59704
sd(example3$F6, method = 'interval')
#> <symbolic_interval[1]>
#> [1] [49.08 : 40.87]
sd(example3$F6, method = 'billard')
#> [1] 36.81226

Symbolic correlation

cor(example3$F1, example3$F4)
#> [1] 0.2864553
cor(example3[,1], example3[,4])
#>           [,1]
#> [1,] 0.2864553
cor(example3$F2, example3$F6, method = 'centers')
#> [1] -0.6693648
cor(example3$F2, example3$F6, method = 'billard')
#> [1] -0.6020041

Radar plot for intervals

library(ggpolypath)
#> Loading required package: ggplot2

data(oils)
oils <- RSDA:::to.v3(RSDA:::to.v2(oils))
sym.radar.plot(oils[2:3,])
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE

#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE

#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE

#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
#> font family not found in Windows font database

sym.radar.plot(oils[2:5,])
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE

#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE

#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
#> font family not found in Windows font database


res <- interval.histogram.plot(oils[,2],
                               n.bins = 4,
                               col = c(2,3,4,5))

res
#> $frequency
#> [1] 25 49  1 25
#> 
#> $histogram
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1
#> [4,]  4.3

res <- interval.histogram.plot(oils[,3],
                               n.bins = 3,
                               main = "Histogram",
                               col = c(2, 3, 4))

res
#> $frequency
#> [1] 50 25 25
#> 
#> $histogram
#>      [,1]
#> [1,]  0.7
#> [2,]  1.9
#> [3,]  3.1

Distances for intervals

Gowda-Diday

data("oils")
DM <- sym.dist.interval(sym.data = oils[,1:4],
                        method = "Gowda.Diday")
model <- hclust(DM)
plot(model, hang = -1)

Ichino

DM <- sym.dist.interval(sym.data= oils[,1:4],
                        method = "Ichino")
model <- hclust(DM)
plot(model, hang = -1)

Hausdorff

DM <- sym.dist.interval(sym.data = oils[,c(1,2,4)],
                        gamma = 0.5,
                        method = "Hausdorff",
                        normalize = FALSE,
                        SpanNormalize = TRUE,
                        euclidea = TRUE,
                        q = 2)
model <- hclust(DM)
plot(model, hang = -1)

Linear regression for intervals

Training

data(int_prost_train)
data(int_prost_test)
res.cm <- sym.lm(formula = lpsa~., sym.data = int_prost_train, method = 'cm')
res.cm
#> 
#> Call:
#> stats::lm(formula = formula, data = centers)
#> 
#> Coefficients:
#> (Intercept)       lcavol      lweight          age         lbph          svi  
#>    0.411537     0.579327     0.614128    -0.018659     0.143918     0.730937  
#>         lcp      gleason        pgg45  
#>   -0.205536    -0.030924     0.009507

Prediction

pred.cm <- sym.predict(model = res.cm, new.sym.data = int_prost_test)

Testing

RMSE.L(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.7229999
RMSE.U(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.7192467
R2.L(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.501419
R2.U(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.5058389
deter.coefficient(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.4962964

LASSO regression for intervals

data(int_prost_train)
data(int_prost_test)

Training

res.cm.lasso <- sym.glm(sym.data = int_prost_train,
                        response = 9,
                        method = 'cm',
                        alpha = 1,
                        nfolds = 10,
                        grouped = TRUE)

Prediction

pred.cm.lasso <- sym.predict(res.cm.lasso,
                             response = 9,
                             int_prost_test,
                             method = 'cm')

Testing

plot(res.cm.lasso)

plot(res.cm.lasso$glmnet.fit, "lambda", label=TRUE)

RMSE.L(int_prost_test$lpsa,pred.cm.lasso)
#> [1] 0.720172
RMSE.U(int_prost_test$lpsa,pred.cm.lasso) 
#> [1] 0.7164858
R2.L(int_prost_test$lpsa,pred.cm.lasso) 
#> [1] 0.5051789
R2.U(int_prost_test$lpsa,pred.cm.lasso) 
#> [1] 0.509534
deter.coefficient(int_prost_test$lpsa, pred.cm.lasso)
#> [1] 0.4965907

RIDGE regression for intervals

Training

data(int_prost_train)
data(int_prost_test)

res.cm.ridge <- sym.glm(sym.data = int_prost_train,
                        response = 9,
                        method = 'cm',
                        alpha = 0,
                        nfolds = 10,
                        grouped = TRUE)

Prediction

pred.cm.ridge <- sym.predict(res.cm.ridge,
                             response = 9,
                             int_prost_test,
                             method = 'cm')

Testing

plot(res.cm.ridge)

plot(res.cm.ridge$glmnet.fit, "lambda", label=TRUE)

RMSE.L(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.703543
RMSE.U(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.7004145
R2.L(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.5286114
R2.U(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.5322683
deter.coefficient(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.4808652

PCA for intervals

Example 1

data("oils")
res <- sym.pca(oils,'centers')
plot(res, choix = "ind")

plot(res, choix = "var")

Example 2

res <- sym.pca(oils,'tops')
plot(res, choix = "ind")

Example 3

res <- sym.pca(oils, 'principal.curves')
plot(res, choix = "ind")

Example 4

res <- sym.pca(oils,'optimized.distance')
plot(res, choix = "ind")

plot(res, choix = "var")

Example 5

res <- sym.pca(oils,'optimized.variance')
plot(res, choix = "ind")

plot(res, choix = "var")

Symbolic Multiple Correspondence Analysis

Example 1

data("ex_mcfa1") 
ex_mcfa1
#>     suspect age     hair    eyes    region
#> 1         1  42    h_red e_brown     Bronx
#> 2         2  20  h_black e_green     Bronx
#> 3         3  64  h_brown e_brown  Brooklyn
#> 4         4  55 h_blonde e_brown     Bronx
#> 5         5   4  h_brown e_green Manhattan
#> 6         6  61 h_blonde e_green     Bronx
#> 7         7  61  h_white e_black    Queens
#> 8         8  32 h_blonde e_brown Manhattan
#> 9         9  39 h_blonde e_black  Brooklyn
#> 10       10  50  h_brown e_brown Manhattan
#> 11       11  41    h_red  e_blue Manhattan
#> 12       12  35 h_blonde e_green  Brooklyn
#> 13       13  56 h_blonde e_brown     Bronx
#> 14       14  52    h_red e_brown    Queens
#> 15       15  55    h_red e_green  Brooklyn
#> 16       16  25  h_brown e_brown    Queens
#> 17       17  52 h_blonde e_brown  Brooklyn
#> 18       18  28    h_red e_brown Manhattan
#> 19       19  21  h_white  e_blue Manhattan
#> 20       20  66  h_black e_black  Brooklyn
#> 21       21  67 h_blonde e_brown    Queens
#> 22       22  13  h_white  e_blue  Brooklyn
#> 23       23  39  h_brown e_green Manhattan
#> 24       24  47  h_black e_green  Brooklyn
#> 25       25  54 h_blonde e_brown     Bronx
#> 26       26  75  h_brown  e_blue  Brooklyn
#> 27       27   3  h_white e_green Manhattan
#> 28       28  40  h_white e_green Manhattan
#> 29       29  58    h_red  e_blue    Queens
#> 30       30  41  h_brown e_green     Bronx
#> 31       31  25  h_white e_black  Brooklyn
#> 32       32  75 h_blonde  e_blue Manhattan
#> 33       33  58  h_white e_brown     Bronx
#> 34       34  61  h_white e_brown Manhattan
#> 35       35  52  h_white  e_blue     Bronx
#> 36       36  19    h_red e_black    Queens
#> 37       37  58    h_red e_black     Bronx
#> 38       38  46  h_black e_green Manhattan
#> 39       39  74  h_brown e_black Manhattan
#> 40       40  26 h_blonde e_brown  Brooklyn
#> 41       41  63 h_blonde  e_blue    Queens
#> 42       42  40  h_brown e_black    Queens
#> 43       43  65  h_black e_brown  Brooklyn
#> 44       44  51 h_blonde e_brown  Brooklyn
#> 45       45  15  h_white e_black  Brooklyn
#> 46       46  32 h_blonde e_brown     Bronx
#> 47       47  68  h_white e_black Manhattan
#> 48       48  51  h_white e_black    Queens
#> 49       49  14    h_red e_green    Queens
#> 50       50  72  h_white e_brown  Brooklyn
#> 51       51   7    h_red  e_blue  Brooklyn
#> 52       52  22    h_red e_brown     Bronx
#> 53       53  52    h_red e_brown  Brooklyn
#> 54       54  62  h_brown e_green     Bronx
#> 55       55  41  h_black e_brown    Queens
#> 56       56  32  h_black e_black Manhattan
#> 57       57  58  h_brown e_brown    Queens
#> 58       58  25  h_black e_brown    Queens
#> 59       59  70 h_blonde e_green  Brooklyn
#> 60       60  64  h_brown  e_blue    Queens
#> 61       61  25  h_white  e_blue     Bronx
#> 62       62  42  h_black e_black  Brooklyn
#> 63       63  56    h_red e_black  Brooklyn
#> 64       64  41 h_blonde e_black  Brooklyn
#> 65       65   8  h_white e_black Manhattan
#> 66       66   7  h_black e_green  Brooklyn
#> 67       67  42  h_white e_brown    Queens
#> 68       68  10  h_white  e_blue Manhattan
#> 69       69  60  h_brown e_black     Bronx
#> 70       70  52 h_blonde e_brown  Brooklyn
#> 71       71  39  h_brown  e_blue Manhattan
#> 72       72  69  h_brown e_green    Queens
#> 73       73  67 h_blonde e_green Manhattan
#> 74       74  46    h_red e_black  Brooklyn
#> 75       75  72  h_black e_black    Queens
#> 76       76  66    h_red  e_blue    Queens
#> 77       77   4  h_black  e_blue Manhattan
#> 78       78  62  h_black e_green  Brooklyn
#> 79       79  10 h_blonde  e_blue     Bronx
#> 80       80  16 h_blonde e_black Manhattan
#> 81       81  59 h_blonde e_brown     Bronx
#> 82       82  63 h_blonde  e_blue Manhattan
#> 83       83  54    h_red  e_blue    Queens
#> 84       84  14  h_brown  e_blue  Brooklyn
#> 85       85  48  h_black e_green Manhattan
#> 86       86  59 h_blonde e_black     Bronx
#> 87       87  73 h_blonde e_black     Bronx
#> 88       88  51  h_brown e_brown     Bronx
#> 89       89  14  h_white e_black     Bronx
#> 90       90  58 h_blonde e_black    Queens
#> 91       91  56    h_red e_green Manhattan
#> 92       92  26    h_red  e_blue  Brooklyn
#> 93       93  59  h_brown e_black Manhattan
#> 94       94  27  h_white e_green Manhattan
#> 95       95  38  h_black e_green Manhattan
#> 96       96   5 h_blonde e_green     Bronx
#> 97       97  14  h_black  e_blue    Queens
#> 98       98  13  h_black e_brown Manhattan
#> 99       99  54  h_white  e_blue  Brooklyn
#> 100     100  66  h_white e_green Manhattan
#> 101       1  22    h_red e_black     Bronx
#> 102       2  57 h_blonde e_black Manhattan
#> 103       3  29  h_white e_green    Queens
#> 104       4  14 h_blonde e_black Manhattan
#> 105       5  47    h_red e_green     Bronx
#> 106       6  32  h_white  e_blue    Queens
#> 107       7  49    h_red  e_blue     Bronx
#> 108       8   8  h_white e_black  Brooklyn
#> 109       9  67  h_white e_brown     Bronx
#> 110      10  68  h_black e_green     Bronx
#> 111      11  15  h_black e_brown Manhattan
#> 112      12  46  h_white e_brown     Bronx
#> 113      13  68  h_white e_black Manhattan
#> 114      14  55 h_blonde  e_blue Manhattan
#> 115      15   7  h_white e_green     Bronx
#> 116      16  10  h_black e_brown  Brooklyn
#> 117      17  49    h_red  e_blue Manhattan
#> 118      18  12  h_brown  e_blue  Brooklyn
#> 119      19  41  h_white  e_blue     Bronx
#> 120      20  10  h_brown  e_blue     Bronx
#> 121      21  12  h_white e_green Manhattan
#> 122      22  53  h_white  e_blue Manhattan
#> 123      23   5  h_black e_black Manhattan
#> 124      24  46  h_brown e_black    Queens
#> 125      25  14  h_brown e_black    Queens
#> 126      26  55  h_white e_green  Brooklyn
#> 127      27  53    h_red e_brown Manhattan
#> 128      28  31  h_black e_brown Manhattan
#> 129      29  31 h_blonde e_brown    Queens
#> 130      30  55  h_brown e_black  Brooklyn
sym.table <- classic.to.sym(x = ex_mcfa1, 
                            concept = suspect, 
                            default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 4
#>                age               hair              eyes               region
#>         <symblc_n>         <symblc_s>        <symblc_s>           <symblc_s>
#>  1 [22.00 : 42.00]            {h_red} {e_brown,e_black}              {Bronx}
#>  2 [20.00 : 57.00] {h_black,h_blonde} {e_green,e_black}    {Bronx,Manhattan}
#>  3 [29.00 : 64.00]  {h_brown,h_white} {e_brown,e_green}    {Brooklyn,Queens}
#>  4 [14.00 : 55.00]         {h_blonde} {e_brown,e_black}    {Bronx,Manhattan}
#>  5  [4.00 : 47.00]    {h_brown,h_red}         {e_green}    {Manhattan,Bronx}
#>  6 [32.00 : 61.00] {h_blonde,h_white}  {e_green,e_blue}       {Bronx,Queens}
#>  7 [49.00 : 61.00]    {h_white,h_red}  {e_black,e_blue}       {Queens,Bronx}
#>  8  [8.00 : 32.00] {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#>  9 [39.00 : 67.00] {h_blonde,h_white} {e_black,e_brown}     {Brooklyn,Bronx}
#> 10 [50.00 : 68.00]  {h_brown,h_black} {e_brown,e_green}    {Manhattan,Bronx}
#> # â„ą 90 more rows
res <- sym.mcfa(sym.table, c(2,3))
mcfa.scatterplot(res[,2], res[,3], sym.data = sym.table, pos.var = c(2,3))

res <- sym.mcfa(sym.table, c(2,3,4))
mcfa.scatterplot(res[,2], res[,3], sym.data = sym.table, pos.var = c(2,3,4))

Symbolic UMAP

Ejemplo Oils

datos <- oils
datos
#> # A tibble: 8 Ă— 4
#>             GRA               FRE               IOD               SAP
#> *    <symblc_n>        <symblc_n>        <symblc_n>        <symblc_n>
#> 1 [0.93 : 0.94] [-27.00 : -18.00] [170.00 : 204.00] [118.00 : 196.00]
#> 2 [0.93 : 0.94]   [-5.00 : -4.00] [192.00 : 208.00] [188.00 : 197.00]
#> 3 [0.92 : 0.92]   [-6.00 : -1.00]  [99.00 : 113.00] [189.00 : 198.00]
#> 4 [0.92 : 0.93]   [-6.00 : -4.00] [104.00 : 116.00] [187.00 : 193.00]
#> 5 [0.92 : 0.92] [-25.00 : -15.00]   [80.00 : 82.00] [189.00 : 193.00]
#> 6 [0.91 : 0.92]     [0.00 : 6.00]   [79.00 : 90.00] [187.00 : 196.00]
#> 7 [0.86 : 0.87]   [30.00 : 38.00]   [40.00 : 48.00] [190.00 : 199.00]
#> 8 [0.86 : 0.86]   [22.00 : 32.00]   [53.00 : 77.00] [190.00 : 202.00]
x <- sym.umap(datos)
x
#>            V1         V2          V3         V4
#> 1   -7.967483  0.4510986  5.94668122 -4.8137597
#> 2   -8.028035  0.3904655  6.00733569 -4.8746364
#> 3   -8.237274  0.1813035  6.21652904 -5.0836479
#> 4   -8.172762  0.2459126  6.15202580 -5.0191184
#> 5   -7.913355  0.5054541  5.89253275 -4.7594613
#> 6   -8.125431  0.2933379  6.10470700 -4.9717851
#> 7   -8.011277  0.4074293  5.99049405 -4.8575418
#> 8   -8.103881  0.3149676  6.08314584 -4.9501697
#> 9   -1.805195 -1.8917917  1.31913788 -8.0010935
#> 10  -1.678942 -1.9483986  1.36385683 -8.0910259
#> 11  -1.587655 -2.1032726  1.35326901 -8.1469993
#> 12  -1.566832 -2.1323193  1.39175011 -8.2456135
#> 13  -1.646638 -1.8494120  1.26858705 -8.0767032
#> 14  -1.712329 -2.0211617  1.28860207 -8.1174816
#> 15  -1.780926 -2.2911358  1.15199899 -8.2169150
#> 16  -1.911850 -2.3592962  1.20451952 -8.1283393
#> 17  -1.466492 -2.5146612  1.34473811 -8.8731962
#> 18  -1.218782 -2.5996568  1.26371169 -9.0497921
#> 19  -1.388145 -2.6863355  1.21569349 -8.8192836
#> 20  -1.194093 -2.6799165  1.14941644 -8.9914660
#> 21  -1.217809 -2.8500319  1.24522329 -9.0658717
#> 22  -1.322182 -2.9361514  1.17439871 -9.1063324
#> 23  -1.314561 -2.8742064  1.35066733 -9.1991264
#> 24  -1.370686 -2.9527136  1.13553613 -9.0961782
#> 25  -1.582569 -2.7971805  1.25115006 -8.4561667
#> 26  -1.694805 -2.7117160  1.25928454 -8.6334470
#> 27  -1.535053 -2.8332277  1.38565740 -8.2969746
#> 28  -1.773890 -2.7311835  1.41110061 -8.5616000
#> 29  -1.682314 -2.9922006  1.35281765 -8.5219439
#> 30  -1.786032 -2.9632380  1.04810617 -8.6423287
#> 31  -1.653315 -3.1710643  1.01511103 -8.5201075
#> 32  -1.612150 -2.9748343  1.31073481 -8.7222735
#> 33  -6.717803 -2.9083146 -0.21212948  5.1692778
#> 34  -6.756492 -2.9158534 -0.28674773  5.1721903
#> 35  -6.806103 -2.9531229  0.08156531  5.4739054
#> 36  -6.704555 -2.8408251 -0.01234968  5.6146460
#> 37  -6.653133 -2.7967996 -0.52833368  4.8636963
#> 38  -6.714500 -2.7885832 -0.57722654  4.8934553
#> 39  -6.734808 -2.6457226 -0.19899971  5.0504433
#> 40  -6.931631 -2.5039883 -0.27591572  4.9234009
#> 41  -5.144370 -2.4886873  0.07064419  5.7367324
#> 42  -5.320797 -2.2422474 -0.13426838  5.6892966
#> 43  -5.112933 -2.2371063  0.24889856  5.9970936
#> 44  -5.098570 -2.2096698  0.22287124  6.0020515
#> 45  -5.416797 -2.3027763 -0.18619438  5.5008398
#> 46  -5.373669 -2.4299355 -0.17229175  5.3948271
#> 47  -5.222543 -2.3691927  0.01246330  5.6358689
#> 48  -5.026899 -2.2060927  0.08595103  5.4178271
#> 49  -6.925198 -2.9517097 -0.60206158  4.9303977
#> 50  -6.906343 -2.4612395 -0.94784822  4.9804011
#> 51  -7.031558 -2.7116618 -0.52829189  4.9639686
#> 52  -6.946520 -2.5199867 -0.86317333  5.0601156
#> 53  -7.079767 -2.5895081 -0.74320224  4.7829232
#> 54  -6.800828 -2.4166985 -0.92733948  4.7953117
#> 55  -7.011016 -2.5436094 -0.56578779  4.6297227
#> 56  -6.893563 -2.2995455 -1.05802216  4.8893674
#> 57  -5.957951 -2.5846576 -0.51510049  5.2386803
#> 58  -6.096998 -2.5070002 -0.82114773  5.2885015
#> 59  -6.100991 -2.5674012 -0.42007977  5.3608859
#> 60  -6.210843 -2.4102332 -0.81366384  5.2597813
#> 61  -6.024734 -2.6725835 -0.59578402  4.9202001
#> 62  -6.122398 -2.4055254 -0.87660051  5.0822469
#> 63  -5.952639 -2.5630013 -0.40070591  5.0218016
#> 64  -6.133337 -2.3392720 -0.85875791  4.9993444
#> 65  -3.297226 19.1888553 -1.16485752  2.1423338
#> 66  -3.091160 18.9442883 -1.18559457  2.3806752
#> 67  -4.866365 20.6643823 -1.58203812  0.4823961
#> 68  -4.729097 20.7691997 -1.45118854  0.5193830
#> 69  -3.064767 18.9804673 -1.25913439  2.3577967
#> 70  -3.042283 18.9046427 -1.31368324  2.4267730
#> 71  -4.769598 20.7641817 -1.48674888  0.5609698
#> 72  -4.878169 21.0140586 -1.49903710  0.8302592
#> 73  -3.248225 19.0967313 -1.37872430  2.2221877
#> 74  -3.183215 18.9191099 -1.13831296  2.3913904
#> 75  -4.649426 20.8531489 -1.37626228  0.6229531
#> 76  -4.600770 20.9266413 -1.30891790  0.6965887
#> 77  -3.226362 19.0575997 -1.34630438  2.2595550
#> 78  -3.263013 19.1141760 -1.27937963  2.2152385
#> 79  -4.662032 20.8948288 -1.34356259  0.6672912
#> 80  -4.658907 20.8492121 -1.37850998  0.6196017
#> 81  -6.805215 -3.3415949  0.73557319  6.0968042
#> 82  -6.861550 -3.2913726  0.71095162  6.0334052
#> 83  -6.778697 -3.3756748  0.81347387  6.2084207
#> 84  -6.866593 -3.4359282  0.88802644  6.3148630
#> 85  -6.859183 -3.3654194  0.62003949  6.0204200
#> 86  -6.951438 -3.2475168  0.59304978  5.9018256
#> 87  -6.809558 -3.5135659  0.94896395  6.3543862
#> 88  -7.082623 -3.6737970  0.88617186  6.4309226
#> 89  -5.076653 -2.1600460  0.52594625  6.5429598
#> 90  -5.179215 -2.0702494  0.42115322  6.4078223
#> 91  -5.272714 -2.2078012  0.81665428  6.8871971
#> 92  -5.266539 -2.2150885  0.71569806  6.7923125
#> 93  -5.119892 -2.1145228  0.35345321  6.3127337
#> 94  -5.056540 -2.0456551  0.30181378  6.2803490
#> 95  -5.322986 -2.2414322  0.80136192  6.8720252
#> 96  -5.342114 -2.2687408  0.78318144  6.8562090
#> 97  13.984547 -4.1174269 -1.95995903 -1.2431888
#> 98  14.103892 -3.9960753 -1.72394195 -1.1881971
#> 99  14.067595 -4.3038747 -1.69220780 -1.1149053
#> 100 13.775635 -4.5639327 -1.77031873 -1.1904808
#> 101 14.013491 -4.0416453 -2.04664030 -1.2331637
#> 102 14.132585 -3.7986168 -1.74380286 -1.0714359
#> 103 13.861897 -4.3021779 -2.01055328 -1.0942512
#> 104 13.937210 -4.2777470 -1.78084684 -1.0270041
#> 105 14.668567 -4.2739441 -1.43985905 -1.5502609
#> 106 14.504905 -4.2917462 -1.28585515 -1.3831390
#> 107 14.554062 -4.5310433 -1.32483045 -1.2867892
#> 108 14.463000 -4.5575050 -1.29467396 -1.2286007
#> 109 14.980934 -4.3615601 -1.50374969 -1.4740216
#> 110 14.688093 -4.1514170 -1.08841205 -1.5919015
#> 111 14.761586 -4.5622738 -1.15331216 -1.3659777
#> 112 14.405745 -4.5341110 -1.30891287 -1.1897839
#> 113 14.450789 -3.6976678 -1.93201450 -1.7234921
#> 114 14.325061 -3.8061266 -2.01130137 -1.6282745
#> 115 13.990112 -3.9139617 -1.97402199 -1.3388218
#> 116 13.760885 -3.9367767 -1.86950528 -0.9743938
#> 117 14.273340 -3.8832354 -2.22620235 -1.7191440
#> 118 14.487924 -3.8548411 -2.24266134 -1.9169256
#> 119 14.347125 -3.9963191 -2.30746762 -1.7599444
#> 120 14.161896 -4.1320569 -2.37366837 -1.5711289
#> 121 14.764561 -4.0932978 -1.69663372 -1.7878142
#> 122 14.801267 -4.1092262 -1.60356119 -1.7511039
#> 123 15.032943 -4.4401596 -1.33081988 -1.6225212
#> 124 14.915130 -4.4001213 -1.20336834 -1.4672480
#> 125 14.846425 -4.0717084 -1.91051117 -2.1462473
#> 126 14.959242 -4.1801255 -1.75871422 -2.0107801
#> 127 14.961765 -4.4036615 -1.59900088 -1.9305159
#> 128 14.892939 -4.3310476 -1.50481759 -1.9554142
plot(x)

Ejemplo Cardiological

datos <- Cardiological
datos
#> # A tibble: 11 Ă— 3
#>               Pulse              Syst             Diast
#>          <symblc_n>        <symblc_n>        <symblc_n>
#>  1  [44.00 : 68.00]  [90.00 : 100.00]   [50.00 : 70.00]
#>  2  [60.00 : 72.00]  [90.00 : 130.00]   [70.00 : 90.00]
#>  3  [56.00 : 90.00] [140.00 : 180.00]  [90.00 : 100.00]
#>  4 [70.00 : 112.00] [110.00 : 142.00]  [80.00 : 108.00]
#>  5  [54.00 : 72.00]  [90.00 : 100.00]   [50.00 : 70.00]
#>  6 [70.00 : 100.00] [130.00 : 160.00]  [80.00 : 110.00]
#>  7  [63.00 : 75.00]  [60.00 : 100.00] [140.00 : 150.00]
#>  8 [72.00 : 100.00] [130.00 : 160.00]   [76.00 : 90.00]
#>  9  [76.00 : 98.00] [110.00 : 190.00]  [70.00 : 110.00]
#> 10  [86.00 : 96.00] [138.00 : 180.00]  [90.00 : 110.00]
#> 11 [86.00 : 100.00] [110.00 : 150.00]  [78.00 : 100.00]
x <- sym.umap(datos)
x
#>             V1          V2          V3
#> 1   0.21724105  2.94925284  3.22889866
#> 2  -0.44206773  3.16318990  2.64898920
#> 3   0.01860979  3.21833999  3.17634240
#> 4  -0.55380605  3.26853285  2.61337554
#> 5   0.42879816  2.97853692  2.91747681
#> 6  -0.47874492  2.67585861  2.36761706
#> 7   0.48801760  2.88955984  2.99255924
#> 8  -0.48413811  2.40285402  2.10152592
#> 9   0.15235772  2.61474548  2.57499535
#> 10 -0.64173681  2.78751806  2.10873583
#> 11 -0.94939335  0.96746913  1.38279218
#> 12 -1.08177797  1.00126710  1.53795445
#> 13  0.04232471  2.42842247  2.21436818
#> 14 -0.40535219  2.39060470  1.83594340
#> 15 -1.10458408  0.54097422  0.92936785
#> 16 -1.13497779  0.67484244  0.74367682
#> 17 -1.03246906  0.26372246  1.10392981
#> 18  0.83665884 -2.09459674 -1.66060236
#> 19 -1.00142706 -0.23902854  1.23349727
#> 20  1.89734245 -1.95284643 -0.66049961
#> 21 -1.05435659  0.08297394  0.68884618
#> 22  0.62174759 -1.63491789 -1.67799050
#> 23 -1.10101931 -0.37750040  1.28421325
#> 24  1.99331422 -1.67249120 -0.70789242
#> 25 -0.74780227  2.09935666  1.73150030
#> 26  1.09751755 -2.94064949 -2.50083487
#> 27 -1.31535273  0.47645612  1.34905988
#> 28  1.52563480 -2.80400477 -1.89773458
#> 29 -1.28539443  0.53265076 -0.41981659
#> 30  0.66217193 -1.77375000 -2.70263209
#> 31 -1.22434074  0.22800540  0.04644605
#> 32  1.09483671 -1.57080414 -2.32130156
#> 33  0.06646002  3.12058231  3.02344893
#> 34 -0.58639891  3.37939171  2.48122467
#> 35 -0.05863395  3.01601586  2.99078711
#> 36 -0.64081356  3.34874598  2.39370864
#> 37  0.30745139  2.71070207  2.82535553
#> 38 -0.73484785  2.89964618  2.00380494
#> 39  0.14796039  2.76489417  2.68943641
#> 40 -0.83471289  2.50653093  1.92800447
#> 41 -1.18121315  0.97901433  1.11417961
#> 42  1.30394670 -2.92744440 -2.35235274
#> 43 -1.22016618  0.10649402  1.57772929
#> 44  1.70553754 -2.57719682 -1.43320081
#> 45 -1.29755802  0.39764335 -0.10839710
#> 46  0.85730789 -1.57314255 -2.42414371
#> 47 -1.07405698 -0.22152759  0.41439507
#> 48  1.54474469 -1.40621523 -1.68861856
#> 49 -1.97410893  0.80254566 -1.37301581
#> 50 -1.88586834  0.69494952 -1.45970458
#> 51 -1.90682498  0.82195673 -1.19233125
#> 52 -1.70071378  0.92883118 -1.44106769
#> 53 -2.03800267  0.92568199 -1.56985473
#> 54 -1.99907085  0.93623893 -1.64832292
#> 55 -2.02354892  0.65344269 -1.30150639
#> 56 -1.84328280  0.60737990 -1.22373510
#> 57 -1.03532225  1.01257351  1.25168525
#> 58  1.34439195 -2.89219222 -2.26665523
#> 59 -1.17429813  0.00638271  1.81703329
#> 60  1.71395363 -2.68316456 -1.33164974
#> 61 -1.37857285  0.89785818  0.86328689
#> 62  1.24486900 -2.35105288 -2.28576911
#> 63 -1.45139330 -0.06808024  1.32516542
#> 64  1.63628282 -2.18658595 -1.60257347
#> 65 -0.99973541  2.30959780  1.83973877
#> 66  0.96323423 -2.90515880 -2.20572649
#> 67 -1.02455563 -0.34264523  1.80340248
#> 68  1.86612675 -2.33455079 -0.86848796
#> 69 -1.16246158  0.43550973 -0.60433653
#> 70  0.44038827 -1.61283895 -2.62762292
#> 71  1.84363743 -1.36253165 -0.52164018
#> 72  2.14167836 -1.45322379 -1.01570845
#> 73  0.38473072 -1.94256507 -1.69437173
#> 74  1.21740196 -2.21970184 -1.94798076
#> 75  1.74587710 -1.78380222 -0.40483663
#> 76  2.03298379 -2.11213229 -0.58094982
#> 77  0.45648481 -1.26850567 -1.74572034
#> 78  0.86611771 -1.42735572 -2.14620021
#> 79  1.99291141 -1.41991289 -0.64782032
#> 80  2.11194098 -1.34230453 -0.91685906
#> 81  0.47272121 -2.83978331 -2.20727315
#> 82  0.91211216 -3.05288155 -2.41333355
#> 83  0.68755330 -2.14425694 -1.34382383
#> 84  1.58824874 -2.80149580 -1.77247330
#> 85 -0.01600501 -1.35928889 -2.17923129
#> 86  0.57636661 -1.99319553 -2.70855951
#> 87  0.60955690 -1.56663410 -1.38172277
#> 88  1.42135649 -1.66578576 -1.96761607
plot(x)

Length of intervals

data(oils)
datos <- oils
interval.length(datos)
#>      GRA FRE IOD SAP
#> L  0.005   9  34  78
#> P  0.007   1  16   9
#> Co 0.002   5  14   9
#> S  0.006   2  12   6
#> Ca 0.001  10   2   4
#> O  0.005   6  11   9
#> B  0.010   8   8   9
#> H  0.006  10  24  12

PCA Histogram

Hardwood Data

data("hardwoodBrito")
Hardwood.histogram<-hardwoodBrito
Hardwood.cols<-colnames(Hardwood.histogram)
Hardwood.names<-row.names(Hardwood.histogram)
Hardwood.histogram
#> # A tibble: 5 Ă— 4
#>         ANNT       JULT       ANNP       MITM
#> * <symblc_h> <symblc_h> <symblc_h> <symblc_h>
#> 1     <hist>     <hist>     <hist>     <hist>
#> 2     <hist>     <hist>     <hist>     <hist>
#> 3     <hist>     <hist>     <hist>     <hist>
#> 4     <hist>     <hist>     <hist>     <hist>
#> 5     <hist>     <hist>     <hist>     <hist>

Hardwood.histogram[[1]][[1]]
#> $breaks
#> [1] -3.9  4.2 10.3 20.6
#> 
#> $props
#> [1] 0.5 0.4 0.1

Weighted Center Matrix

weighted.center<-weighted.center.Hist.RSDA(Hardwood.histogram)

Bin Matrix

BIN.Matrix<-matrix(rep(3,length(Hardwood.cols)*length(Hardwood.names)),nrow = length(Hardwood.names))

PCA

pca.hist<-sym.histogram.pca(Hardwood.histogram,BIN.Matrix)
#> Warning: Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
pca.hist$classic.PCA
#> **Results for the Principal Component Analysis (PCA)**
#> The analysis was performed on 85 individuals, described by 4 variables
#> *The results are available in the following objects:
#> 
#>    name               description                                
#> 1  "$eig"             "eigenvalues"                              
#> 2  "$var"             "results for the variables"                
#> 3  "$var$coord"       "coord. for the variables"                 
#> 4  "$var$cor"         "correlations variables - dimensions"      
#> 5  "$var$cos2"        "cos2 for the variables"                   
#> 6  "$var$contrib"     "contributions of the variables"           
#> 7  "$ind"             "results for the individuals"              
#> 8  "$ind$coord"       "coord. for the individuals"               
#> 9  "$ind$cos2"        "cos2 for the individuals"                 
#> 10 "$ind$contrib"     "contributions of the individuals"         
#> 11 "$ind.sup"         "results for the supplementary individuals"
#> 12 "$ind.sup$coord"   "coord. for the supplementary individuals" 
#> 13 "$ind.sup$cos2"    "cos2 for the supplementary individuals"   
#> 14 "$call"            "summary statistics"                       
#> 15 "$call$centre"     "mean of the variables"                    
#> 16 "$call$ecart.type" "standard error of the variables"          
#> 17 "$call$row.w"      "weights for the individuals"              
#> 18 "$call$col.w"      "weights for the variables"
pca.hist$sym.hist.matrix.PCA
#> # A tibble: 5 Ă— 4
#>         PC.1       PC.2       PC.3       PC.4
#> * <symblc_h> <symblc_h> <symblc_h> <symblc_h>
#> 1     <hist>     <hist>     <hist>     <hist>
#> 2     <hist>     <hist>     <hist>     <hist>
#> 3     <hist>     <hist>     <hist>     <hist>
#> 4     <hist>     <hist>     <hist>     <hist>
#> 5     <hist>     <hist>     <hist>     <hist>

Plots

ACER.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
                             title.graph = " ",
                             concepts.name = c("ACER"),
                             title.x = "First Principal Component (84.83%)",
                             title.y = "Frequency",
                             pca.axes = 1)

ACER.p1

ALL.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
                    title.graph = " ",
                    concepts.name = unique(pca.hist$Bins.df$Object.Name),
                    title.x = "First Principal Component (84.83%)",
                    title.y = "Frequency",
                    pca.axes = 1)

ALL.p1
#> Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
#> increasing max.overlaps

Hardwood.quantiles.PCA<-quantiles.RSDA(pca.hist$sym.hist.matrix.PCA,3)
#> Warning in min(which(props.cum >= percentils.RSDA[i])): no non-missing
#> arguments to min; returning Inf
#> Warning: Setting row names on a tibble is deprecated.

label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "First Principal Component (84.83%)"
axes.y.label<- "Second Principal Component (9.70%)"
concept.names<-c("ACER")
var.names<-c("PC.1","PC.2")

quantile.ACER.plot<-Percentil.Arrow.plot(Hardwood.quantiles.PCA,
                     concept.names,
                     var.names,
                     Title,
                     axes.x.label,
                     axes.y.label,
                     label.name
                     )

quantile.ACER.plot

label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "First Principal Component (84.83%)"
axes.y.label<- "Second Principal Component (9.70%)"
concept.names<-row.names(Hardwood.quantiles.PCA)
var.names<-c("PC.1","PC.2")

quantile.plot<-Percentil.Arrow.plot(Hardwood.quantiles.PCA,
                     concept.names,
                     var.names,
                     Title,
                     axes.x.label,
                     axes.y.label,
                     label.name
                     )

quantile.plot
#> Warning: Removed 1 rows containing missing values (`geom_point()`).
#> Warning: Removed 1 rows containing missing values (`geom_segment()`).

label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "PC 1 (84.83%)"
axes.y.label<- "PC 2 (9.70%)"
concept.names<-c("ACER")
var.names<-c("PC.1","PC.2")

plot.3D.HW<-sym.quantiles.PCA.plot(Hardwood.quantiles.PCA,
                               concept.names,
                               var.names,
                               Title,
                               axes.x.label,
                               axes.y.label,
                               label.name)

plot.3D.HW
concept.names<-row.names(Hardwood.quantiles.PCA)
sym.all.quantiles.plot(Hardwood.quantiles.PCA,
                               concept.names,
                               var.names,
                               Title,
                               axes.x.label,
                               axes.y.label,
                               label.name)
#> Warning: Ignoring 4 observations
sym.all.quantiles.mesh3D.plot(Hardwood.quantiles.PCA,
                               concept.names,
                               var.names,
                               Title,
                               axes.x.label,
                               axes.y.label,
                               label.name)

KS

Hardwood.quantiles.PCA.2<-quantiles.RSDA.KS(pca.hist$sym.hist.matrix.PCA,100)
#> Warning: Setting row names on a tibble is deprecated.
h<-Hardwood.quantiles.PCA.2[[1]][[1]]
tmp<-HistRSDAToEcdf(h)

h2<-Hardwood.quantiles.PCA.2[[1]][[2]]
tmp2<-HistRSDAToEcdf(h2)

h3<-Hardwood.quantiles.PCA.2[[1]][[3]]
tmp3<-HistRSDAToEcdf(h3)

h4<-Hardwood.quantiles.PCA.2[[1]][[4]]
tmp4<-HistRSDAToEcdf(h4)

h5<-Hardwood.quantiles.PCA.2[[1]][[5]]
tmp5<-HistRSDAToEcdf(h5)

breaks.unique<-unique(c(h$breaks,h2$breaks,h3$breaks,h4$breaks,h5$breaks))
tmp.unique<-breaks.unique[order(breaks.unique)]

tmp<-tmp(v = tmp.unique)
tmp2<-tmp2(v = tmp.unique)
tmp3<-tmp3(v = tmp.unique)
tmp4<-tmp4(v = tmp.unique)
tmp5<-tmp5(v = tmp.unique)
abs_dif <-  abs(tmp2 - tmp)
# La distancia Kolmogorov–Smirnov es el máximo de las distancias absolutas.
distancia_ks <- max(abs_dif)
distancia_ks
#> [1] 0.05857869
library(tidyr)
# Se unen los valores calculados en un dataframe.
df.HW <- data.frame(
  PC.1 = tmp.unique,
  ACER = tmp,
  ALNUS = tmp2,
  FRAXINUS = tmp3,
  JUGLANS = tmp4,
  QUERCUS = tmp5
) %>%
  pivot_longer(
    cols = c(ACER, ALNUS,FRAXINUS,JUGLANS,QUERCUS),
    names_to = "HardWood",
    values_to = "ecdf"
  )

grafico_ecdf <- ggplot(data = df.HW,
                       aes(x = PC.1, y = ecdf, color = HardWood)) +
  geom_line(size = 1) +
  labs(
    color = "Hardwood",
    y = "Empirical Cumulative Distribution "
  ) +
  theme_bw() +
  theme(legend.position = "bottom",
        plot.title = element_text(size = 12))+geom_line()

grafico_ecdf