Algorithms for ordinal causal discovery. This package aims to enable users to discover causality for observational ordinal categorical data with greedy and exhaustive search. See Ni, Y., & Mallick, B. (2022) <https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> "Ordinal Causal Discovery. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, (UAI 2022), PMLR 180:1530–1540".
Version: | 1.1.2 |
Imports: | gRbase, MASS, bnlearn, igraph, stats, Matrix |
Published: | 2023-05-17 |
DOI: | 10.32614/CRAN.package.OrdCD |
Author: | Yang Ni [aut, cre] |
Maintainer: | Yang Ni <yni at stat.tamu.edu> |
BugReports: | https://github.com/nySTAT/OrdCD/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/nySTAT/OrdCD |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | OrdCD results |
Reference manual: | OrdCD.pdf |
Package source: | OrdCD_1.1.2.tar.gz |
Windows binaries: | r-devel: OrdCD_1.1.2.zip, r-release: OrdCD_1.1.2.zip, r-oldrel: OrdCD_1.1.2.zip |
macOS binaries: | r-release (arm64): OrdCD_1.1.2.tgz, r-oldrel (arm64): OrdCD_1.1.2.tgz, r-release (x86_64): OrdCD_1.1.2.tgz, r-oldrel (x86_64): OrdCD_1.1.2.tgz |
Old sources: | OrdCD archive |
Please use the canonical form https://CRAN.R-project.org/package=OrdCD to link to this page.