OrdCD: Ordinal Causal Discovery

Algorithms for ordinal causal discovery. This package aims to enable users to discover causality for observational ordinal categorical data with greedy and exhaustive search. See Ni, Y., & Mallick, B. (2022) <https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> "Ordinal Causal Discovery. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, (UAI 2022), PMLR 180:1530–1540".

Version: 1.1.2
Imports: gRbase, MASS, bnlearn, igraph, stats, Matrix
Published: 2023-05-17
DOI: 10.32614/CRAN.package.OrdCD
Author: Yang Ni ORCID iD [aut, cre]
Maintainer: Yang Ni <yni at stat.tamu.edu>
BugReports: https://github.com/nySTAT/OrdCD/issues
License: MIT + file LICENSE
URL: https://github.com/nySTAT/OrdCD
NeedsCompilation: no
Materials: README
CRAN checks: OrdCD results

Documentation:

Reference manual: OrdCD.pdf

Downloads:

Package source: OrdCD_1.1.2.tar.gz
Windows binaries: r-devel: OrdCD_1.1.2.zip, r-release: OrdCD_1.1.2.zip, r-oldrel: OrdCD_1.1.2.zip
macOS binaries: r-release (arm64): OrdCD_1.1.2.tgz, r-oldrel (arm64): OrdCD_1.1.2.tgz, r-release (x86_64): OrdCD_1.1.2.tgz, r-oldrel (x86_64): OrdCD_1.1.2.tgz
Old sources: OrdCD archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=OrdCD to link to this page.