MIRES: Measurement Invariance Assessment Using Random Effects Models
and Shrinkage
Estimates random effect latent measurement models, wherein the loadings, residual variances, intercepts, latent means, and latent variances all vary across groups. The random effect variances of the measurement parameters are then modeled using a hierarchical inclusion model, wherein the inclusion of the variances (i.e., whether it is effectively zero or non-zero) is informed by similar parameters (of the same type, or of the same item). This additional hierarchical structure allows the evidence in favor of partial invariance to accumulate more quickly, and yields more certain decisions about measurement invariance. Martin, Williams, and Rast (2020) <doi:10.31234/osf.io/qbdjt>.
Version: |
0.1.0 |
Depends: |
R (≥ 4.0.0) |
Imports: |
methods, Rcpp (≥ 0.12.0), rstan (≥ 2.18.1), rstantools (≥
2.0.0), Formula (≥ 1.2-1), stats (≥ 3.4.0), parallel (≥
3.4.0), mvtnorm (≥ 1.0), dirichletprocess (≥ 0.4.0), truncnorm (≥ 1.0), pracma (≥ 2.2.9), cubature (≥ 2.0.0), logspline (≥ 2.1.0), nlme (≥ 3.1), HDInterval (≥ 0.2.2) |
LinkingTo: |
BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), rstan (≥ 2.18.1), StanHeaders (≥ 2.18.0) |
Suggests: |
testthat |
Published: |
2021-02-22 |
DOI: |
10.32614/CRAN.package.MIRES |
Author: |
Stephen Martin
[aut, cre],
Philippe Rast
[aut] |
Maintainer: |
Stephen Martin <stephenSRMMartin at gmail.com> |
BugReports: |
https://github.com/stephenSRMMartin/MIRES/issues |
License: |
MIT + file LICENSE |
NeedsCompilation: |
yes |
SystemRequirements: |
GNU make |
Materials: |
README NEWS |
CRAN checks: |
MIRES results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=MIRES
to link to this page.