MCMCvis
is an R package used to visualize, manipulate,
and summarize MCMC output. This may be Bayesian model output fit with
Stan, NIMBLE, JAGS, and other software.
The package contains six functions:
MCMCsummary
- summarize MCMC output for particular
parameters of interestMCMCpstr
- summarize MCMC output and extract posterior
chains for particular parameters of interest while preserving parameter
structureMCMCtrace
- create trace and density plots of MCMC
chains for particular parameters of interestMCMCchains
- extract posterior chains from MCMC output
for particular parameters of interestMCMCplot
- create caterpillar plots from MCMC output
for particular parameters of interestMCMCdiag
- create a .txt
file and save
specified objects that summarize model inputs, outputs, and
diagnosticsMCMCvis
was designed to perform key functions for MCMC
analysis using minimal code, in order to free up time/brainpower for
interpretation of analysis results. Functions support simple and
straightforward subsetting of model parameters within the calls, and
produce presentable, ‘publication-ready’ output.
All functions in the package accept stanfit
objects
(created with the rstan
package), CmdStanMCMC
objects (created with the cmdstanr
package),
stanreg
objects (created with the rstanarm
package), brmsfit
objects (created with the
brms
package), mcmc.list
objects (created with
the rjags
or coda
packages), mcmc
objects (created with the coda
or nimble
packages), list
objects (created with the
nimble
package), R2jags
output (created with
the R2jags
package), jagsUI
output (created
with the jagsUI
package), and matrices of MCMC output
(chains combined into a single column per parameter - columns to be
named with parameter names). The functions automatically detect the
object type and proceed accordingly. Model output objects can be
inserted directly into the MCMCvis
functions as an
argument.
library(rstan)
# create Stan model
sm <- "
data {
real y[10];
}
parameters {
real mu;
}
model {
for (i in 1:10) {
y[i] ~ normal(mu, 10);
}
mu ~ normal(0, 10);
}
"
stan_out <- stan(
model_code = sm,
data = data,
iter = 500)
## mean sd 2.5% 50% 97.5% Rhat n.eff
## mu -0.51 2.82 -6.06 -0.36 5.07 1.01 414
## lp__ -0.45 0.61 -2.27 -0.23 -0.01 1.00 508
MCMCsummary
is used to output summary information from
MCMC output as a data.frame. All digits are reported by default.
We’ll use the built in mcmc.list
object for the examples
below, but model output of any of the supported types will behave in the
same way.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.775030 2.087347 -13.873736 -9.747235 -5.718132 1 10406
## alpha[2] -10.954077 4.087058 -18.986880 -10.996852 -2.932785 1 10807
## alpha[3] -12.812863 5.345266 -23.334561 -12.833156 -2.505842 1 10500
## alpha[4] -13.162363 4.549087 -22.002841 -13.131785 -4.270300 1 11160
## alpha[5] -11.683834 8.888936 -28.857696 -11.734387 6.059936 1 10253
## alpha[6] -8.272228 6.200246 -20.263314 -8.218744 3.889713 1 10500
## beta[1] -4.618601 6.544247 -17.193329 -4.619954 8.378438 1 10411
## beta[2] -14.169569 6.633089 -27.152037 -14.084978 -1.414025 1 10500
## beta[3] -35.936571 8.415110 -52.599736 -35.998599 -19.259210 1 10884
## beta[4] 6.172961 10.716345 -14.670444 6.110057 27.266086 1 10500
## beta[5] 8.423471 3.463758 1.625696 8.447591 15.125755 1 10500
## beta[6] -12.051330 2.336788 -16.655170 -12.046641 -7.537826 1 10500
The number of decimal places displayed can be specified with
round
(except for Rhat which is always rounded to 2 decimal
places and n.eff which always displays whole numbers). Alternatively,
the significant digits displayed can be specified with
digits
.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406
## alpha[2] -10.95 4.09 -18.99 -11.00 -2.93 1 10807
## alpha[3] -12.81 5.35 -23.33 -12.83 -2.51 1 10500
## alpha[4] -13.16 4.55 -22.00 -13.13 -4.27 1 11160
## alpha[5] -11.68 8.89 -28.86 -11.73 6.06 1 10253
## alpha[6] -8.27 6.20 -20.26 -8.22 3.89 1 10500
## beta[1] -4.62 6.54 -17.19 -4.62 8.38 1 10411
## beta[2] -14.17 6.63 -27.15 -14.08 -1.41 1 10500
## beta[3] -35.94 8.42 -52.60 -36.00 -19.26 1 10884
## beta[4] 6.17 10.72 -14.67 6.11 27.27 1 10500
## beta[5] 8.42 3.46 1.63 8.45 15.13 1 10500
## beta[6] -12.05 2.34 -16.66 -12.05 -7.54 1 10500
Specific parameters can be specified to subset summary information.
Square brackets in parameter names are ignored by default. For instance,
all alpha
parameters can be plotted using
params = 'alpha'
.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406
## alpha[2] -10.95 4.09 -18.99 -11.00 -2.93 1 10807
## alpha[3] -12.81 5.35 -23.33 -12.83 -2.51 1 10500
## alpha[4] -13.16 4.55 -22.00 -13.13 -4.27 1 11160
## alpha[5] -11.68 8.89 -28.86 -11.73 6.06 1 10253
## alpha[6] -8.27 6.20 -20.26 -8.22 3.89 1 10500
Individual parameters can also be specified. For example, one
alpha
(of many) may be specified. In this case, the square
brackets should not be ignored, so that only the alpha[1]
parameter can be specified. Use the argument ISB = FALSE
to
prevent square brackets from being ignored (ISB is short for ‘Ignore
Square Brackets’). The exact
argument can be used to
specify whether the parameter name should be matched exactly (after
taking into account the ISB
argument). Therefore, to return
a single alpha
parameter, ISB = FALSE
and
exact = TRUE
can be used in the following way.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406
When exact = FALSE
, the params
argument
reads like a regular expression. Because of this, square brackets must
be escaped with \\
. All other regular expression syntax is
accepted, as typically applied in R. This can be useful for returning a
specific set of a large number of parameters. A great tools for regular
expressions in R can be found here (https://regexr.com/) (though note two slashes are needed
to escape characters in this function rather than one, hence
\\[
as opposed to \[
). \\d
can be
used to specify any digits in a particular place.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406
When using exact = FALSE
, if alpha
has 10
or more parameters (i.e., more than two digits for the index), the
|
(OR) may be needed. For instance, while one could use
alpha[1:10]
to select the first ten indices of the vector
alpha
in R, the regex equivalent to do the same with
MCMCvis
would be alpha\\[(\\d|[1][0])\\]
. The
\\d
specifies any digit, the |
represents OR
(so any one digit number OR), the [1]
specifies that the
first digit must be one, and the [0]
specifies that the
second digit must be zero (so return any one digit number, or 10,
resulting in the equivalent of alpha[1:10]
). Ranges for
each digit can also be specified. For instance, the regex equivalent of
the R alpha[5:15]
would be
alpha\\[([5-9]|[1][0-5])\\]
.
The excl
argument can be used to exclude any parameters.
For instance, if all parameters are desired except for
the alphas
, use
params = 'all', excl = 'alpha', ISB = FALSE, exact = FALSE
.
These arguments can be used in any of the functions in the package.
## mean sd 2.5% 50% 97.5% Rhat n.eff
## beta[1] -4.62 6.54 -17.19 -4.62 8.38 1 10411
## beta[2] -14.17 6.63 -27.15 -14.08 -1.41 1 10500
## beta[3] -35.94 8.42 -52.60 -36.00 -19.26 1 10884
## beta[4] 6.17 10.72 -14.67 6.11 27.27 1 10500
## beta[5] 8.42 3.46 1.63 8.45 15.13 1 10500
## beta[6] -12.05 2.34 -16.66 -12.05 -7.54 1 10500
Setting the Rhat
and n.eff
arguments to
FALSE
can be used to avoid calculating the Rhat statistic
and number of effective samples, respectively (defaults for both
Rhat
and n.eff
are TRUE
).
Specifying FALSE
may greatly increase function speed with
very large mcmc.list
objects. Values for Rhat near 1
suggest convergence (Brooks and Gelman 1998). Rhat and n.eff values for
mcmc.list
objects are calculated using the
coda
package (what is typically returned by packages that
utilize JAGS). Rhat and n.eff values for stanfit
and
jagsUI
objects are calculated using a ‘split chain’ Rhat
(as used by their respective packages). The approaches differ slightly
between the coda
and
stanfit
/jagsUI
packages. Details on
calculation of Rhat and number of effective samples using
rstan
can be found in the Stan manual (Stan Development
Team 2018).
## mean sd 2.5% 50% 97.5% Rhat n.eff
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406
## alpha[2] -10.95 4.09 -18.99 -11.00 -2.93 1 10807
## alpha[3] -12.81 5.35 -23.33 -12.83 -2.51 1 10500
## alpha[4] -13.16 4.55 -22.00 -13.13 -4.27 1 11160
## alpha[5] -11.68 8.89 -28.86 -11.73 6.06 1 10253
## alpha[6] -8.27 6.20 -20.26 -8.22 3.89 1 10500
Sample quantiles in MCMCsummary can now be specified directly using
the probs
argument, removing the need to define custom
quantiles with the func
argument. The default behavior is
to provide 2.5%, 50%, and 97.5% quantiles. These probabilities can be
changed by supplying a numeric vector to the probs
argument.
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
probs = c(0.1, 0.5, 0.9),
round = 2)
## mean sd 10% 50% 90% Rhat n.eff
## alpha[1] -9.78 2.09 -12.47 -9.75 -7.13 1 10406
## alpha[2] -10.95 4.09 -16.18 -11.00 -5.67 1 10807
## alpha[3] -12.81 5.35 -19.76 -12.83 -6.10 1 10500
## alpha[4] -13.16 4.55 -19.06 -13.13 -7.29 1 11160
## alpha[5] -11.68 8.89 -23.03 -11.73 -0.36 1 10253
## alpha[6] -8.27 6.20 -16.34 -8.22 -0.31 1 10500
Setting HPD = TRUE
will cause MCMCsummary to use
HPDinterval
from the coda
package to compute
highest posterior density intervals based on the probability specified
in the hpd_prob
argument (this argument is different than
probs
argument, which is reserved for quantiles). Note that
for each parameter HPDinterval
normally returns one
interval per chain. However, MCMCsummary first pools the chains, forcing
HPDinterval
to compute a single interval across all
posterior samples for each parameter. This step is done for user
convenience.
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
HPD = TRUE,
hpd_prob = 0.8,
round = 2)
## mean sd 80%_HPDL 80%_HPDU Rhat n.eff
## alpha[1] -9.78 2.09 -12.38 -7.05 1 10406
## alpha[2] -10.95 4.09 -16.03 -5.58 1 10807
## alpha[3] -12.81 5.35 -19.80 -6.15 1 10500
## alpha[4] -13.16 4.55 -19.44 -7.74 1 11160
## alpha[5] -11.68 8.89 -23.18 -0.57 1 10253
## alpha[6] -8.27 6.20 -16.14 -0.15 1 10500
The func
argument can be used to return metrics of
interest not already returned by default for MCMCsummary
.
Input is a function to be performed on posteriors for each specified
parameter. Values returned by the function will be displayed as a column
in the summary output (or multiple columns if the function returns more
than one value). In this way, functions from other packages can be used
to derive metrics of interest on posterior output. Column name(s) for
function output can be specified with the func_name
argument. The example below uses the empirical cumulative distribution
function ecdf
to compute the proportion of posterior
samples that are less than -10 for each alpha
parameter.
The argument pg0
can be used to specify whether to
calculate the proportion of the posterior that is greater than 0.
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
round = 2,
func = function(x) ecdf(x)(-10), func_name = "ecdf-10",
pg0 = TRUE)
## mean sd 2.5% 50% 97.5% Rhat n.eff p>0 ecdf-10
## alpha[1] -9.78 2.09 -13.87 -9.75 -5.72 1 10406 0.00 0.45
## alpha[2] -10.95 4.09 -18.99 -11.00 -2.93 1 10807 0.00 0.60
## alpha[3] -12.81 5.35 -23.33 -12.83 -2.51 1 10500 0.01 0.70
## alpha[4] -13.16 4.55 -22.00 -13.13 -4.27 1 11160 0.00 0.75
## alpha[5] -11.68 8.89 -28.86 -11.73 6.06 1 10253 0.09 0.58
## alpha[6] -8.27 6.20 -20.26 -8.22 3.89 1 10500 0.09 0.39
MCMCpstr
is used to output summary information and
posterior chains from MCMC output while preserving the original
structure of the specified parameters (i.e., scalar, vector, matrix,
array). Preserving the original structure can be helpful when plotting
or summarizing parameters with multidimensional structure. Particular
parameters of interest can be specified as with other functions with the
params
argument.
Function output has two types. When type = 'summary'
(the default), a list
with calculated values for each
specified parameter is returned, similar to output obtained when fitting
models with the jags.samples
function (as opposed to
coda.samples
) from the rjags
package.
The function calculates summary information only for the specified
function. The function to be used is specified using the
func
argument.
## $alpha
## [1] -9.775030 -10.954077 -12.812863 -13.162363 -11.683834 -8.272228
Custom functions can be specified as well. If the output length of
the specified function is greater than 1 when
type = 'summary'
, an extra dimension is added to the
function output. For instance, a vector
becomes a
matrix
, a matrix
a three dimensional
array
, and so forth.
## $alpha
## 1% 99%
## alpha[1] -14.74923 -5.0484174
## alpha[2] -20.43502 -1.5155018
## alpha[3] -25.32232 -0.4924355
## alpha[4] -23.58314 -2.4859330
## alpha[5] -32.38629 8.8685816
## alpha[6] -22.56589 6.0892554
##
## $beta
## 1% 99%
## beta[1] -19.75530 10.840028
## beta[2] -30.05090 1.018119
## beta[3] -55.61435 -16.135057
## beta[4] -18.86956 30.939547
## beta[5] 0.48582 16.198588
## beta[6] -17.60307 -6.658913
When type = 'chains'
, a list
with posterior
chain values for each specified parameter is returned. The structure of
the parameter is preserved - posterior chain values are concatenated and
placed in an additional dimension. For instance, output for a vector
parameter will be in matrix
format for that element of the
list
. Similarly, output for a matrix parameter will be in a
three dimensional array
.
## [1] 6 10500
MCMCtrace
is used to create trace and density plots for
MCMC output. This is useful for diagnostic purposes. Particular
parameters can also be specified, as with MCMCsummary
.
Output is written to PDF by default to enable more efficient review of
posteriors - this also reduces computation time. PDF output is
particularly recommended for large numbers of parameters.
pdf = FALSE
can be used to prevent output to PDF.
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
pdf = FALSE)
Just trace plots can be plotted with type = 'trace'
.
Just density plots can be plotted with type = 'density'
.
Default is type = 'both'
which outputs both trace and
density plots. Density plots for individual chains can be output using
the ind
argument.
The PDF document will be output to the current working directory by
default, but another directory can be specified. The
open_pdf
argument can be used to prevent the produced PDF
from opening in a viewer once generated.
iter
denotes how many iterations should be plotted for
the chain the trace and density plots. The default is 5000, meaning that
the last 5000 iterations of each chain are plotted. Remember, this is
the final posterior chain, not including the specified burn-in or
warm-up (specified when the model was run). If less than 5000 iterations
are run, the full number of iterations will be plotted.
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
iter = 100,
ind = TRUE,
pdf = FALSE)
Overlap between the priors and posteriors (PPO - prior posterior
overlap) can also be calculated by specifying the priors associated with
each parameter using the priors
argument. This is
particularly useful when investigating how large the effect of the prior
is on the posterior distribution - this can be informative when trying
to determine how identifiable a particular parameter is in a model.
The priors
argument takes a matrix as input, with each
column representing a prior for a different parameter and each row
representing a random draw from that prior distribution. These draws can
be generated using R functions such as rnorm, rgamma, runif, etc.
Parameters are plotted alphabetically - priors should be sorted
accordingly. If the priors
argument contains only one prior
and more than one parameter is specified for the params
argument, this prior will be used for all parameters. The number of
draws for each prior should equal the number of iterations specified by
(or total draws if less than ) times the number of chains, though the
function will automatically adjust if more or fewer iterations are
specified. It is important to note that some discrepancies between MCMC
samplers and R may exist regarding the parameterization of distributions
- one example of this is the use of precision in JAGS but standard
deviation in R and Stan for the ‘second parameter’ of the normal
distribution. Values for Rhat and number of effective samples can be
plotting on the density plots using the Rhat
and
n.eff
arguments.
# note that the same prior used for all parameters
# the following prior is equivalent to dnorm(0, 0.001) in JAGS
PR <- rnorm(15000, 0, 32)
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
Rhat = TRUE,
n.eff = TRUE)
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Only one prior specified for > 1 parameter. Using a single prior for all
## parameters.
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Number of samples in prior is greater than number of total or specified
## iterations (for all chains) for specified parameter. Only last 10500 iterations
## will be used.
Plots can be scaled to visualize both the posterior and the prior
distribution using the post_zm
argument.
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
post_zm = FALSE)
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Only one prior specified for > 1 parameter. Using a single prior for all
## parameters.
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Number of samples in prior is greater than number of total or specified
## iterations (for all chains) for specified parameter. Only last 10500 iterations
## will be used.
Percent overlap can be output to an R object as well using the
PPO_out
argument. Plotting of the trace plots can be
suppressed with plot = FALSE
.
PPO <- MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
plot = FALSE,
PPO_out = TRUE)
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Only one prior specified for > 1 parameter. Using a single prior for all
## parameters.
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Number of samples in prior is greater than number of total or specified
## iterations (for all chains) for specified parameter. Only last 10500 iterations
## will be used.
## param percent_PPO
## 1 beta[1] 35.6
## 2 beta[2] 33.8
## 3 beta[3] 27.2
Additional arguments can be used to change the limits of the density plots, axes labels, plot titles, line width and type, size and color of text, tick and axes label size, position of ticks, color of lines, and thickness of axes.
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
Rhat = TRUE,
n.eff = TRUE,
xlab_tr = 'This is the x for trace',
ylab_tr = 'This is the y for trace',
main_den = 'Custom density title',
lwd_den = 3,
lty_pr = 2,
col_pr = 'green',
sz_txt = 1.3,
sz_ax = 2,
sz_ax_txt = 1.2,
sz_tick_txt = 1.2,
sz_main_txt = 1.3)
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Only one prior specified for > 1 parameter. Using a single prior for all
## parameters.
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Number of samples in prior is greater than number of total or specified
## iterations (for all chains) for specified parameter. Only last 10500 iterations
## will be used.
If simulated data were used to fit the model, the generating values
used to simulate the data can be specified using the gvals
argument. This makes it possible to compare posterior estimates with the
true parameter values. Generating values will be displayed as vertical
dotted lines. Similar to the priors
argument, if one value
is specified when more than one parameter is used, this one generating
value will be used for all parameters.
# generating values for each parameter used to simulate data
GV <- c(-10, -5.5, -15)
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
gvals = GV,
pdf = FALSE)
MCMCchains
is used to extract posterior chains from MCMC
objects. Chains can then be manipulated directly. Particular parameters
can be specified as with other functions.
Extract mean values for each parameter:
## beta[1] beta[2] beta[3] beta[4] beta[5] beta[6]
## -4.618601 -14.169569 -35.936571 6.172961 8.423471 -12.051330
Using the mcmc.list
argument, MCMCchains
can return an mcmc.list
object, instead of a matrix, for
the specified parameters. This can be useful when saving posterior
information for only a subset of parameters is desired.
MCMCplot
is used to create caterpillar plots from MCMC
output. Points represent posterior medians. Thick and thin lines
represent credible intervals specified by the user using the
ci
argument, where the default is 50% and 95% credible
intervals, respectively. Note, that the first element in ci
should be less than or equal to the second element. By default,
MCMCplot
plots equal-tailed credible intervals
(HPD = FALSE
). However, highest posterior density intervals
can be visualized using HPD = TRUE
. As with the other
functions in the package, particular parameters of interest can be
specified.
ref_ovl = TRUE
can be used to change how the posterior
estimates are plotted based on the credible intervals. Parameters whose
ci[1]
(higher precision / lower certainty) credible
intervals overlap 0 are indicated by ‘open’ circles. Parameters whose
ci[1]
credible intervals DO NOT overlap 0 AND whose
ci[2]
(lower precision / higher certainty) credible
intervals DO overlap 0 are indicated by ‘closed’ gray circles.
Parameters whose ci[2]
credible intervals DO NOT overlap 0
are indicated by ‘closed’ black circles. A vertical reference at 0 is
plotted by default. The position of this reference line can be modified
with the ref
argument. ref = NULL
removes the
reference line altogether.
Parameters can be ranked by posterior median estimates using the
rank
argument. xlab
can be used to create an
alternative label for the x-axis. Guidelines can be produced using the
guide_lines
argument. This can be helpful when there are a
large number of parameters and matching labels to plotted ‘caterpillars’
becomes difficult.
The orientation of the plot can also be change using the
horiz
argument. ylab
is then used to specify
an alternative label on the ‘estimate axis’.
Output from two models can also be plotted side-by-side, as long as
the parameter names are identical (NOTE: not ALL parameters need to be
identical, just the parameters specified in the params
argument). This is useful for comparing output from similar models. By
default, the the first model input (object
) will be plotted
in black, while the second model input (object2
) will be
plotted in red. Different colors for each model output can be specified
with col
and col2
. The spacing between the
plotted posteriors for each parameter can be adjusted with
offset
(as the desired spacing will depend on the size of
the image as well as the specified thickness/size of the lines/dots).
The ref_ovl
argument can also be specified.
Graphical parameters for x and y-axis limitation, row labels, title, median dot size, CI line thickness, axis and tick thickness, text size, color of posterior estimates, and margins can be specified.
MCMCplot(MCMC_data,
params = 'beta',
xlim = c(-60, 40),
xlab = 'My x-axis label',
main = 'MCMCvis plot',
labels = c('First param', 'Second param', 'Third param',
'Fourth param', 'Fifth param', 'Sixth param'),
col = c('red', 'blue', 'green', 'purple', 'orange', 'black'),
sz_labels = 1.5,
sz_med = 2,
sz_thick = 7,
sz_thin = 3,
sz_ax = 4,
sz_main_txt = 2)
Other elements can be added to MCMCplot
figures as well.
For instance, to add PPO (prior posterior overlap) to the posterior
plot, first calculate PPO using the MCMCtrace
function
(with PPO_out = TRUE
and plot = FALSE
to
suppress plotting).
# note that the same prior used for all parameters
# the following prior is equivalent to dnorm(0, 0.001) in JAGS
PR <- rnorm(15000, 0, 32)
PPO <- MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
plot = FALSE,
PPO_out = TRUE)
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Only one prior specified for > 1 parameter. Using a single prior for all
## parameters.
## Warning in MCMCtrace(MCMC_data, params = c("beta[1]", "beta[2]", "beta[3]"), :
## Number of samples in prior is greater than number of total or specified
## iterations (for all chains) for specified parameter. Only last 10500 iterations
## will be used.
Then use MCMCplot
to create the posterior plot and loop
to plot PPO as text on plot.
MCMCplot(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
xlim = c(-60, 35))
# each parameter is a y-unit of 1
for (i in 1:NROW(PPO)) {
text(x = 10, y = NROW(PPO) - i + 1, paste0('PPO: ', PPO[i,2], '%'), pos = 4, col = 'red')
}
MCMCdiag
is used to create a .txt
file to
summarize model inputs, output, and diagnostics. Options can be
specified to save model output as an .rds
file, create a
new directory to store this file, save other objects of interest (such
as data files or session information) as .rds
files, and to
copy files of interest (such as the version of the R
script
used to fit a model or the associated .stan
or
.jags
file) to the created directory.
Output presented in the .txt
file varies by model fit
object type but includes: model run time, number of warmup/burn-in
iterations, total iterations, thinning rate, number of chains, specified
adapt delta, specified max tree depth, specific initial step size, mean
accept stat, mean tree depth, mean step size, number of divergent
transitions, number max tree depth exceeds, number of chains with BFMI
warnings, max Rhat (maximum Rhat of any parameter printed), min n.eff
(minimum n.eff of any parameter printed), parameter summary information
(arguments from MCMCsummary
are accepted to modify this
summary information), and any additional information fed to the
add_field
argument. See documentation for specific software
used to fit model for more information on particular diagnostics. As
with the other functions in the package, particular parameters of
interest can be specified for the summary information (though typically
all parameters will be of interest as the purpose of this function is to
have a record of the summary information).
This function can facilitate more reproducible workflows and more organized versioning of model results. For instance the following function call:
Results/
named
model-YYYY-MM-DD/
.txt
file named
model-summary-YYYY-MM-DD.txt
within that new directory
containing model inputs, outputs, and diagnostics (with an additional
user-specified field denoting the data version used to fit the
model)model_fit
object provided to the function as
a .rds
file (named model-fit-YYYY-MM-DD.rds
)
within the new directoryDATA
object (in this case, used to fit the
model) as a .rds
file (named
model-data-YYYY-MM-DD.rds
)sessionInfo
, which provides
information on the R
session when the function was run as a
.rds
file (named
session-info-YYYY-MM-DD.rds
)model.stan
(.stan
file
specifying the model) and fit-model.R
(the script used to
fit the model) into the new directory as
model-YYYY-MM-DD.stan
and
fit-model-YYYY-MM-DD.R
, respectivelyMCMCdiag(model_fit,
round = 3,
file_name = 'model-summary-YYYY-MM-DD',
dir = 'Results',
mkdir = 'model-YYYY-MM-DD',
add_field = '1.0',
add_field_names = 'Data version',
save_obj = TRUE,
obj_name = 'model-fit-YYYY-MM-DD',
add_obj = list(DATA, sessionInfo()),
add_obj_names = c('model-data-YYYY-MM-DD', 'session-info-YYYY-MM-DD'),
cp_file = c('model.stan', 'fit-model.R'),
cp_file_names = c('model-YYYY-MM-DD.stan, fit-model-YYYY-MM-DD.R'))
In this way, a complete record of the script, the model file, and the
data used to fit the model, the model output, R
session
information, and a summary of the model output are stored in a dated
directory. Results from a particular model run can then be easily
referenced in the future. A particular version of the model/data can be
easily rerun using these resources. While this is one use case, any
combination of options can be used and any additional objects can be
saved and files copied depending on the desires of the user.
Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7:434.
Stan Development Team. 2018. Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0. https://mc-stan.org
For more information see ?MCMCvis