JointAI: Joint Analysis and Imputation of Incomplete Data

Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a 'JAGS' model, which will then automatically be passed to 'JAGS' <https://mcmc-jags.sourceforge.io/> with the help of the package 'rjags'.

Version: 1.0.6
Imports: rjags, mcmcse, coda, rlang, future, mathjaxr, survival, MASS
Suggests: knitr, rmarkdown, bookdown, foreign, ggplot2, ggpubr, testthat, covr
Published: 2024-04-02
DOI: 10.32614/CRAN.package.JointAI
Author: Nicole S. Erler ORCID iD [aut, cre]
Maintainer: Nicole S. Erler <n.erler at erasmusmc.nl>
BugReports: https://github.com/nerler/JointAI/issues/
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://nerler.github.io/JointAI/
NeedsCompilation: no
SystemRequirements: JAGS (https://mcmc-jags.sourceforge.io/)
Language: en-GB
Citation: JointAI citation info
Materials: README NEWS
In views: MissingData, MixedModels
CRAN checks: JointAI results

Documentation:

Reference manual: JointAI.pdf
Vignettes: After Fitting
MCMC Settings
Model Specification
Parameter Selection

Downloads:

Package source: JointAI_1.0.6.tar.gz
Windows binaries: r-devel: JointAI_1.0.6.zip, r-release: JointAI_1.0.6.zip, r-oldrel: JointAI_1.0.6.zip
macOS binaries: r-release (arm64): JointAI_1.0.6.tgz, r-oldrel (arm64): JointAI_1.0.6.tgz, r-release (x86_64): JointAI_1.0.6.tgz, r-oldrel (x86_64): JointAI_1.0.6.tgz
Old sources: JointAI archive

Reverse dependencies:

Reverse imports: remiod
Reverse enhances: mdmb

Linking:

Please use the canonical form https://CRAN.R-project.org/package=JointAI to link to this page.