First, let's load some packages including HTSSIP
.
library(dplyr)
library(ggplot2)
library(HTSSIP)
See HTSSIP introduction vignette for a description on why dataset parsing (all treatment-control comparisons) is needed.
Let's see the already parsed dataset
physeq_S2D2_l
## $`(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')`
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 1072 taxa and 46 samples ]
## sample_data() Sample Data: [ 46 samples by 17 sample variables ]
## tax_table() Taxonomy Table: [ 1072 taxa by 8 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 1072 tips and 1071 internal nodes ]
##
## $`(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Cel' & Day == '14')`
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 1072 taxa and 46 samples ]
## sample_data() Sample Data: [ 46 samples by 17 sample variables ]
## tax_table() Taxonomy Table: [ 1072 taxa by 8 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 1072 tips and 1071 internal nodes ]
##
## $`(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Glu' & Day == '14')`
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 1072 taxa and 47 samples ]
## sample_data() Sample Data: [ 47 samples by 17 sample variables ]
## tax_table() Taxonomy Table: [ 1072 taxa by 8 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 1072 tips and 1071 internal nodes ]
##
## $`(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Glu' & Day == '3')`
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 1072 taxa and 46 samples ]
## sample_data() Sample Data: [ 46 samples by 17 sample variables ]
## tax_table() Taxonomy Table: [ 1072 taxa by 8 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 1072 tips and 1071 internal nodes ]
Let's set some parameters used later.
# adjusted P-value cutoff
padj_cutoff = 0.1
# number of cores for parallel processing (increase depending on your computational hardware)
ncores = 2
First, we'll just run HR-SIP on 1 treatment-control comparison. Let's get the individual phyloseq object.
physeq = physeq_S2D2_l[[1]]
physeq
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 1072 taxa and 46 samples ]
## sample_data() Sample Data: [ 46 samples by 17 sample variables ]
## tax_table() Taxonomy Table: [ 1072 taxa by 8 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 1072 tips and 1071 internal nodes ]
Let's check that the samples belong to either a 13C-treatment or 12C-control.
physeq %>% sample_data %>% .$Substrate %>% table
## .
## 12C-Con 13C-Cel
## 23 23
OK, we should be ready to run HR-SIP!
Note that the design
parameter for HRSIP()
is the experimental design parameter for calculating log2 fold change (l2fc) values with DESeq. Here, it's used to distinguish label-treatment and unlabel-control samples.
df_l2fc = HRSIP(physeq,
design = ~Substrate,
padj_cutoff = padj_cutoff,
sparsity_threshold = c(0,0.15,0.3)) # just using 3 thresholds to reduce time
## Sparsity threshold: 0
## Density window: 1.7-1.75
## Sparsity threshold: 0.15
## Density window: 1.7-1.75
## Sparsity threshold: 0.3
## Density window: 1.7-1.75
## Sparsity threshold with the most rejected hypotheses: 0
df_l2fc %>% head(n=3)
## # A tibble: 3 x 17
## OTU log2FoldChange p padj Rank1 Rank2 Rank3 Rank4 Rank5 Rank6
## <chr> <dbl> <dbl> <dbl> <fct> <fct> <fct> <fct> <fct> <fct>
## 1 OTU.… -0.133 0.745 1.000 Bact… __Pr… __De… __De… __Ni… __un…
## 2 OTU.… 1.39 0.0486 0.427 Bact… __Ac… __RB… __un… <NA> <NA>
## 3 OTU.… 1.53 0.00326 0.0976 Bact… __Ac… __DA… __un… <NA> <NA>
## # … with 7 more variables: Rank7 <fct>, Rank8 <fct>, density_min <dbl>,
## # density_max <dbl>, sparsity_threshold <dbl>, sparsity_apply <chr>,
## # l2fc_threshold <dbl>
How many “incorporators”“ (rejected hypotheses)?
df_l2fc %>%
filter(padj < padj_cutoff) %>%
group_by() %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length)
## # A tibble: 1 x 1
## n_incorp_OTUs
## <int>
## 1 36
Let's plot a breakdown of incorporators for each phylum.
# summarizing
df_l2fc_s = df_l2fc %>%
filter(padj < padj_cutoff) %>%
mutate(Rank2 = gsub('^__', '', Rank2)) %>%
group_by(Rank2) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>%
ungroup()
# plotting
ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) +
geom_bar(stat='identity') +
labs(x='Phylum', y='Number of incorporators') +
theme_bw() +
theme(
axis.text.x = element_text(angle=45, hjust=1)
)
Let's now run HR-SIP on all treatment-control comparisons in the dataset:
# Number of comparisons
physeq_S2D2_l %>% length
## [1] 4
The function plyr::ldply()
is useful (compared to lapply()
) beccause it can be run in parallel and returns a data.frame object.
# Running in parallel; you may need to change the backend for your environment.
# Or you can just set .parallel=FALSE.
doParallel::registerDoParallel(ncores)
df_l2fc = plyr::ldply(physeq_S2D2_l,
HRSIP,
design = ~Substrate,
padj_cutoff = padj_cutoff,
sparsity_threshold = c(0,0.15,0.3), # just using 3 thresholds to reduce run time
.parallel=TRUE)
df_l2fc %>% head(n=3)
## .id
## 1 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## 2 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## 3 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## OTU log2FoldChange p padj Rank1 Rank2
## 1 OTU.514 -0.1326734 0.744892882 0.99999999 Bacteria __Proteobacteria
## 2 OTU.729 1.3853310 0.048577337 0.42707575 Bacteria __Acidobacteria
## 3 OTU.322 1.5298136 0.003258379 0.09756653 Bacteria __Acidobacteria
## Rank3 Rank4
## 1 __Deltaproteobacteria __Desulfobacterales
## 2 __RB25 __uncultured_Acidobacteria_bacterium
## 3 __DA023 __uncultured_bacterium
## Rank5 Rank6 Rank7 Rank8 density_min
## 1 __Nitrospinaceae __uncultured __uncultured_bacterium <NA> 1.7
## 2 <NA> <NA> <NA> <NA> 1.7
## 3 <NA> <NA> <NA> <NA> 1.7
## density_max sparsity_threshold sparsity_apply l2fc_threshold
## 1 1.75 0 all 0.25
## 2 1.75 0 all 0.25
## 3 1.75 0 all 0.25
Each specific phyloseq subset (treatment-control comparison) is delimited with the ”.id" column.
df_l2fc %>% .$.id %>% unique
## [1] "(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')"
## [2] "(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Cel' & Day == '14')"
## [3] "(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Glu' & Day == '14')"
## [4] "(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Glu' & Day == '3')"
For clarity, let's edit these long strings to make them more readable when plotted.
df_l2fc = df_l2fc %>%
mutate(.id = gsub(' \\| ', '\n', .id))
df_l2fc %>% .$.id %>% unique
## [1] "(Substrate=='12C-Con' & Day=='3')\n(Substrate=='13C-Cel' & Day == '3')"
## [2] "(Substrate=='12C-Con' & Day=='14')\n(Substrate=='13C-Cel' & Day == '14')"
## [3] "(Substrate=='12C-Con' & Day=='14')\n(Substrate=='13C-Glu' & Day == '14')"
## [4] "(Substrate=='12C-Con' & Day=='3')\n(Substrate=='13C-Glu' & Day == '3')"
How many incorporators (rejected hypotheses) & which sparsity cutoff was used for each comparison?
Note: you could set one sparsity cutoff for all comparisons by setting the sparsity_cutoff
to a specific value.
df_l2fc %>%
filter(padj < padj_cutoff) %>%
group_by(.id, sparsity_threshold) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>%
as.data.frame
## .id
## 1 (Substrate=='12C-Con' & Day=='14')\n(Substrate=='13C-Cel' & Day == '14')
## 2 (Substrate=='12C-Con' & Day=='14')\n(Substrate=='13C-Glu' & Day == '14')
## 3 (Substrate=='12C-Con' & Day=='3')\n(Substrate=='13C-Cel' & Day == '3')
## 4 (Substrate=='12C-Con' & Day=='3')\n(Substrate=='13C-Glu' & Day == '3')
## sparsity_threshold n_incorp_OTUs
## 1 0.3 97
## 2 0.0 189
## 3 0.0 36
## 4 0.3 65
How about a breakdown of incorporators for each phylum in each comparision.
# summarizing
df_l2fc_s = df_l2fc %>%
filter(padj < padj_cutoff) %>%
mutate(Rank2 = gsub('^__', '', Rank2)) %>%
group_by(.id, Rank2) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>%
ungroup()
# plotting
ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) +
geom_bar(stat='identity') +
labs(x='Phylum', y='Number of incorporators') +
facet_wrap(~ .id, scales='free') +
theme_bw() +
theme(
axis.text.x = element_text(angle=55, hjust=1)
)
MW-HR-SIP is run very similarly to HRSIP, but it uses multiple buoyant density (BD) windows. MW-HR-SIP is performed with the HRSIP()
function, but multiple BD windows are specified.
Let's use 3 buoyant density windows (g/ml):
1.70-1.73, 1.72-1.75, 1.74-1.77
windows = data.frame(density_min=c(1.70, 1.72, 1.74),
density_max=c(1.73, 1.75, 1.77))
windows
## density_min density_max
## 1 1.70 1.73
## 2 1.72 1.75
## 3 1.74 1.77
Running HRSIP with all 3 BD windows. Let's run this in parallel to speed things up.
You can turn off parallel processing by setting the parallel
option to FALSE
. Also, there's 2 different levels that could be parallelized: either the ldply()
or HRSIP()
. Here, I'm running HRSIP in parallel, but it may make sense in other situations (eg., many comparisons but few density windows and/or sparsity cutoffs) to use ldply in parallel only.
doParallel::registerDoParallel(ncores)
df_l2fc = plyr::ldply(physeq_S2D2_l,
HRSIP,
density_windows = windows,
design = ~Substrate,
padj_cutoff = padj_cutoff,
sparsity_threshold = c(0,0.15,0.3), # just using 3 thresholds to reduce run time
.parallel = TRUE)
df_l2fc %>% head(n=3)
## .id
## 1 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## 2 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## 3 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## OTU log2FoldChange p padj Rank1 Rank2
## 1 OTU.514 -0.06192716 0.64317475 1.0000000 Bacteria __Proteobacteria
## 2 OTU.729 1.40750346 0.11190135 0.6588185 Bacteria __Acidobacteria
## 3 OTU.386 1.43831256 0.03408535 0.3867674 Bacteria __Acidobacteria
## Rank3 Rank4
## 1 __Deltaproteobacteria __Desulfobacterales
## 2 __RB25 __uncultured_Acidobacteria_bacterium
## 3 __RB25 __uncultured_bacterium
## Rank5 Rank6 Rank7 Rank8 density_min
## 1 __Nitrospinaceae __uncultured __uncultured_bacterium <NA> 1.7
## 2 <NA> <NA> <NA> <NA> 1.7
## 3 <NA> <NA> <NA> <NA> 1.7
## density_max sparsity_threshold sparsity_apply l2fc_threshold
## 1 1.73 0 all 0.25
## 2 1.73 0 all 0.25
## 3 1.73 0 all 0.25
Let's check that we have all treatment-control comparisons.
df_l2fc %>% .$.id %>% unique
## [1] "(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')"
## [2] "(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Cel' & Day == '14')"
## [3] "(Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Glu' & Day == '14')"
## [4] "(Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Glu' & Day == '3')"
How many incorporators (rejected hypotheses) & which sparsity cutoff was used for each comparison?
Note: one sparsity cutoff could be set for all comparisons by setting the sparsity_cutoff
to a specific value.
df_l2fc %>%
filter(padj < padj_cutoff) %>%
group_by(.id, sparsity_threshold) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>%
as.data.frame
## .id
## 1 (Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Cel' & Day == '14')
## 2 (Substrate=='12C-Con' & Day=='14') | (Substrate=='13C-Glu' & Day == '14')
## 3 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Cel' & Day == '3')
## 4 (Substrate=='12C-Con' & Day=='3') | (Substrate=='13C-Glu' & Day == '3')
## sparsity_threshold n_incorp_OTUs
## 1 0.0 119
## 2 0.0 245
## 3 0.0 43
## 4 0.3 85
The density windows can vary for each OTU. Let's plot which density windows were used for the OTUs in the dataset.
# summarizing
df_l2fc_s = df_l2fc %>%
mutate(.id = gsub(' \\| ', '\n', .id)) %>%
filter(padj < padj_cutoff) %>%
mutate(density_range = paste(density_min, density_max, sep='-')) %>%
group_by(.id, sparsity_threshold, density_range) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length)
#plotting
ggplot(df_l2fc_s, aes(.id, n_incorp_OTUs, fill=density_range)) +
geom_bar(stat='identity', position='fill') +
labs(x='Control-treatment comparision', y='Fraction of incorporators') +
scale_y_continuous(expand=c(0,0)) +
theme_bw() +
theme(
axis.text.x = element_text(angle=55, hjust=1)
)
Different BD windows were used for different treatment-control comparisons because the amount of BD shift likely varied among taxa. For example, if a taxon incorporates 100% 13C isotope, then a very 'heavy' BD window may show a larger l2fc than a less 'heavy' BD window.
Let's look at a breakdown of incorporators for each phylum in each comparision.
# summarizing
df_l2fc_s = df_l2fc %>%
mutate(.id = gsub(' \\| ', '\n', .id)) %>%
filter(padj < padj_cutoff) %>%
mutate(Rank2 = gsub('^__', '', Rank2)) %>%
group_by(.id, Rank2) %>%
summarize(n_incorp_OTUs = OTU %>% unique %>% length) %>%
ungroup()
# plotting
ggplot(df_l2fc_s, aes(Rank2, n_incorp_OTUs)) +
geom_bar(stat='identity') +
labs(x='Phylum', y='Number of incorporators') +
facet_wrap(~ .id, scales='free') +
theme_bw() +
theme(
axis.text.x = element_text(angle=55, hjust=1)
)
Note that the MW-HR-SIP method identifies more incorporators than the HR-SIP method (which uses just one BD window).
MW-HR-SIP detects more taxa for 2 main reasons. First, taxa vary in G+C content, so using only 1 BD window likely encompasses BD shifts for taxa of certain G+C contents (eg., ~50% G+C), but may miss other taxa with higher or lower G+C content. Second, taxa can vary in how much isotope was incorporated, which will affect where each taxon's DNA is in the density gradient.
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] phyloseq_1.22.3 HTSSIP_1.4.1 ggplot2_3.2.0 tidyr_0.8.3
## [5] dplyr_0.8.0.1
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-131 bitops_1.0-6
## [3] matrixStats_0.54.0 bit64_0.9-7
## [5] doParallel_1.0.14 RColorBrewer_1.1-2
## [7] GenomeInfoDb_1.14.0 tools_3.4.3
## [9] backports_1.1.4 utf8_1.1.4
## [11] R6_2.4.0 coenocliner_0.2-2
## [13] vegan_2.5-1 rpart_4.1-15
## [15] Hmisc_4.2-0 DBI_1.0.0
## [17] lazyeval_0.2.2 BiocGenerics_0.24.0
## [19] mgcv_1.8-28 colorspace_1.4-1
## [21] permute_0.9-5 ade4_1.7-13
## [23] nnet_7.3-12 withr_2.1.2
## [25] tidyselect_0.2.5 gridExtra_2.3
## [27] DESeq2_1.18.1 bit_1.1-14
## [29] compiler_3.4.3 cli_1.1.0
## [31] Biobase_2.38.0 htmlTable_1.13.1
## [33] DelayedArray_0.4.1 labeling_0.3
## [35] scales_1.0.0 checkmate_1.9.3
## [37] genefilter_1.60.0 stringr_1.4.0
## [39] digest_0.6.19 foreign_0.8-71
## [41] XVector_0.18.0 base64enc_0.1-3
## [43] pkgconfig_2.0.2 htmltools_0.3.6
## [45] highr_0.8 htmlwidgets_1.3
## [47] rlang_0.4.0 RSQLite_2.1.1
## [49] rstudioapi_0.10 jsonlite_1.6
## [51] BiocParallel_1.12.0 acepack_1.4.1
## [53] RCurl_1.95-4.12 magrittr_1.5
## [55] GenomeInfoDbData_1.0.0 Formula_1.2-3
## [57] biomformat_1.6.0 Matrix_1.2-17
## [59] fansi_0.4.0 Rcpp_1.0.1
## [61] munsell_0.5.0 S4Vectors_0.16.0
## [63] ape_5.3 stringi_1.4.3
## [65] MASS_7.3-51.4 SummarizedExperiment_1.8.1
## [67] zlibbioc_1.24.0 rhdf5_2.22.0
## [69] plyr_1.8.4 blob_1.1.1
## [71] grid_3.4.3 parallel_3.4.3
## [73] crayon_1.3.4 lattice_0.20-38
## [75] Biostrings_2.46.0 splines_3.4.3
## [77] multtest_2.34.0 annotate_1.56.2
## [79] locfit_1.5-9.1 zeallot_0.1.0
## [81] knitr_1.18 pillar_1.4.1
## [83] igraph_1.2.4 GenomicRanges_1.30.3
## [85] markdown_0.9 geneplotter_1.56.0
## [87] reshape2_1.4.3 codetools_0.2-16
## [89] stats4_3.4.3 XML_3.98-1.19
## [91] glue_1.3.1 evaluate_0.14
## [93] latticeExtra_0.6-28 data.table_1.10.4-3
## [95] vctrs_0.1.0 foreach_1.4.4
## [97] gtable_0.3.0 purrr_0.3.2
## [99] assertthat_0.2.1 mime_0.6
## [101] xtable_1.8-4 survival_2.44-1.1
## [103] tibble_2.1.1 iterators_1.0.10
## [105] memoise_1.1.0 AnnotationDbi_1.40.0
## [107] IRanges_2.12.0 cluster_2.0.6